
The Journal of Systems and Software 134 (2017) 211–227

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Reusability of open source software across domains: A case study

Maria-Eleni Paschali a , Apostolos Ampatzoglou

a , ∗, Stamatia Bibi b ,
Alexander Chatzigeorgiou

c , Ioannis Stamelos a

a Department of Informatics, Aristotle University of Thessaloniki, Greece
b Department of Informatics & Telecommunications Engineering, University of Western Macedonia, Greece
c Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 24 October 2016

Revised 3 August 2017

Accepted 8 September 2017

Available online 9 September 2017

Keywords:

Reusability

Open source

Application domains

a b s t r a c t

Exploiting the enormous amount of open source software (OSS) as a vehicle for reuse is a promising op-

portunity for software engineers. However, this task is far from trivial, since such projects are sometimes

not easy to understand and adapt to target systems, whereas at the same time the reusable assets are not

obvious to identify. In this study, we assess open source software projects, with respect to their reusabil-

ity, i.e., the easiness to adapt them in a new system. By taking into account that domain-specific reuse

is more beneficial than domain-agnostic; we focus this study on identifying the application domains that

contain the most reusable software projects. To achieve this goal, we compared the reusability of approx-

imately 600 OSS projects from ten application domains through a case study. The results of the study

suggested that in every aspect of reusability, there are different dominant application domains. However,

Science and Engineering Applications and Software Development Tools , have proven to be the ones that are

the most reuse-friendly. Based on this observation, we suggest software engineers, who are focusing on

the specific application domains, to consider reusing assets from open source software projects.

© 2017 Elsevier Inc. All rights reserved.

1

w

o

(

i

g

3

r

t

c

r

t

a

a

fi

(

r

h

0

. Introduction

Open source software (OSS) projects can be utilized in many

ays, one of the most important being the white-box reuse

f their source code, which increases development productivity

 Baldassarre et al., 2005), (Morisio et al., 2002) and product qual-

ty (Frakes and Fox., 1996), (Haefliger et al., 2007). Mockus sug-

ests that 53% of OSS projects have performed reuse activities in

0% of their development process and that 49% of projects have

eused more than 80% of their code. Additionally, it is suggested

hat most reused units have gone through major or minor modifi-

ations in order to be adapted in the target project (i.e., white-box

euse). Investing on OSS, as a “code reuser”, involves two major

asks:

• Reusable asset identification . In this step the reuser has to

identify a piece of source code (e.g., method, class, set of

classes, package, complete project, etc.) that implements the

functionality that he/she wants to reuse. This task is a very

difficult one, in the sense that: (a) the available amount of
∗ Corresponding author.

E-mail addresses: mpaschali@csd.auth.gr (M.-E. Paschali),

pamp@csd.auth.gr (A. Ampatzoglou), sbibi@uowm.gr (S. Bibi),

chat@uom.gr (A. Chatzigeorgiou), stamelos@csd.auth.gr (I. Stamelos).

t

a

b

s

u

(

ttp://dx.doi.org/10.1016/j.jss.2017.09.009

164-1212/© 2017 Elsevier Inc. All rights reserved.
reusable assets in OSS is vast, and in some cases not well orga-

nized and documented, and (b) there is a lack of platforms that

can act as search engines for providing access to OSS reposito-

ries.
• Reusable asset adaptation . In this step (after the reusable asset

has been identified), the reuser has to adapt the source code of

the asset as extracted from the source system (in case of white-

box reuse) to fit the architecture of the target system. Such an

adaptation requires that the asset is well structured and main-

tainable. The assessment of maintainability is a non-trivial task

in the sense that although there are plenty of maintainabil-

ity indicators, a specific asset cannot be characterized as main-

tainable or not, in isolation, due to the lack of well-established

thresholds values for the maintainability indices.

By taking into account that software reuse is more ef-

cient when performed within the same application domain

 Johnson et al., 2004), in this paper we focus on domain-specific

euse, i.e., reuse activities in which the target and the source sys-

ems belong to the same application domain (e.g., games, business

pplications, etc.). In the context of domain-specific reuse, it would

e highly valuable for practitioners to know the extent to which a

pecific application domain can benefit from OSS reuse. In partic-

lar, it is expected that an application domain facilitates reuse if:

a) it offers a large variety of reusable assets (e.g., sets of classes

http://dx.doi.org/10.1016/j.jss.2017.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.09.009&domain=pdf
mailto:mpaschali@csd.auth.gr
mailto:apamp@csd.auth.gr
mailto:sbibi@uowm.gr
mailto:achat@uom.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.jss.2017.09.009

212 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Fig. 1. Illustrative example of study motivation.

(

t

a

s

c

g

i

m

s

c

d

S

c

S

c

s

s

t

s

l

i

p

S

a

t

2

2

t

n

i

t

fi

o

b

1
or projects), and (b) the offered assets can be easily adapted in

target systems. Nevertheless, the research state-of-the-art lacks

empirical evidence on which application domains offer the most

reuse opportunities, in terms of number of offered reusable as-

sets. Similarly, in the literature there is no evidence on the flexi-

bility and adaptability of software systems across different applica-

tion domains. Additionally, by considering that software reuse can

be performed at different levels of granularity (Clements, 1995),

(Lau and Wang, 2005), ranging from some lines of code to com-

plete projects, packed as third-party libraries (e.g., as jar files) it

is expected that various aspects of artifacts should be considered

while assessing reusability. Based on the level of reuse granularity,

there are different stakeholders that are interested in the reusabil-

ity of projects: software architects that make high-level decisions

on which third-party libraries to reuse are interested on reusability

at the project level (black-box reuse), and software engineers who

can select to reuse only parts of OSS projects are interested in the

reusability at the set of classes level (white-box reuse). The moti-

vation of this study is further illustrated in the example of Fig. 1 .

In the illustration of Fig. 1 , assume a company that focuses on

the telecommunications domain. The company produces commu-

nications software (for sale) and some software development tools

(for internal use in the company). The main architect of the com-

pany has specific tasks in his backlog for both projects (e.g., a task

for the communications project (TC), and a task for the software

development tool project (TS)). For both tasks the architect feels

that there is a reuse potential from OSS. Other alternatives to reuse

could be buying a component-off-the-self to provide the required

functionality, or build it from scratch. Based on the manpower of

the company, the decision is to reuse an OSS artifact for one of

the two tasks and build the other from scratch. Therefore, one of

the questions that the architect faces is: For which one of the two

projects should I reuse code and for which to build the code from

scratch ? To answer this question many parameters need to be con-

sidered:

• Which application domain offers the most opportunities for

reuse?
• Which factors are of interest in this decision (e.g., black-box vs.

white-box reuse)?
•
 Which application domain excels in each one of these factors?
The example of Fig. 1 will be revisited in the discussion section

see Section 6.3) in which we will try to answer the aforemen-

ioned questions, based on the outcomes of our empirical study.

Although we can acknowledge the fact that the answer to the

forementioned question is influenced by many parameters, in this

tudy we aim at exploring the extent to which specific appli-

ation domains, offer more reuse opportunities. To achieve this

oal, we investigate if there are statistically significant differences

n the reusability of OSS projects from different application do-

ains. To cover the concerns of both stakeholders we report re-

ults on the project level, synthesizing measures from both the

lass and the project level, based on the reusability model intro-

uced by Hristov et al. (2012) —more information are available in

ection 3 . By taking into account the enormous amount of source

ode that is available in Open Source Software repositories (e.g.,

ourceforge, GitHub, etc.), in this paper we perform an exploratory

ase study to investigate the opportunity to reuse OSS assets in

oftware development. To achieve this goal, we exploit a large-

cale meta-repository of OSS projects (namely Percerons 1) that at

his point offers quality assessments for approximately 600 open

ource software projects. The rest of the paper is organized as fol-

ows: In Section 2 we present an overview of related work and

n Section 3 the employed reusability model. In Section 4 we

resent the study design in the form of a case study protocol. In

ection 5 we provide the results, organized by research question,

nd discuss them in Section 6 . In Section 7 we discuss the threats

o validity of our study, and in Section 8 , we conclude the paper.

. Related work

.1. Software reuse

Software reuse has been promoted as a key solution to face

he “software crisis” since the early days of the software engi-

eering discipline (Mili et al., 1991). The systematic use of ex-

sting software assets (referring to both artifacts and knowledge)

o implement new software systems or update existing ones de-

nes the process of software reuse (Jacobson et al., 1997). On the

ther hand, the degree to which a certain asset can be reused

y other software systems determines the property of reusability.
http://www.percerons.com

http://www.percerons.com

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 213

Table 1

Software reusability models.

Quality properties Metrics

Internal quality Direct class coupling: Bansiya and Davies (2002)

Coupling between objects: Kakarontzas et al. (2013)

Lack of cohesion between methods: Kakarontzas et al. (2013)

Cohesion among methods of class: Bansiya and Davies (2002)

Class interface size: Bansiya and Davies (2002)

Response for a class: Kakarontzas et al. (2013) ; Nair and Selvarani (2010)

Weighted methods for class: Kakarontzas et al. (2013) ; Nair and Selvarani (2010)

Design size in classes: Bansiya and Davies (2002)

Number of classes: Kakarontzas et al. (2013)

Depth of inheritance: Kakarontzas et al. (2013) ; Nair and Selvarani (2010)

Customizability Number of properties: Sharma et al. (2009)

Setter methods: Sharma et al. (2009)

Interface Complexity Overall complexity: Sharma et al. (2009)

Portability Number of External dependencies: Sharma et al. (2009) ; Washizaki et al. (2003)

Self-completeness of component: Washizaki et al. (2003)

Understandability Documentation quality: Sharma et al. (2009) ; Washizaki et al. (2003)

Existence of meta information: Washizaki et al. (2003)

Observability: Sharma et al. (2009)

Rate of component observability: Washizaki et al. (2003)

Adaptability Rate of component customizability: Washizaki et al. (2003)

E

a

a

A

m

i

q

s

s

fi

r

s

t

E

2

(

d

e

p

s

m

o

i

b

(

c

n

2

s

t

r

f

m

s

t

r

i

a

t

e

D

a

t

fl

C

s

o

(

i

p

u

v

a

R

I

s

u

a

p

w

f

f

f

t

p

t

2

i

m

m

i

a

W

r

p

u

m

n

o

s

H

s
arly studies in the area examine mainly different types of reuse

nd problematic areas (Standish, 1984), (Krueger, 1992) as well

s effective reuse process (Karlsson, 1995), (Crnkovic et al., 2002).

 full reuse-oriented process (Karlsson, 1995) and maintenance

odel are expected to increase software development productiv-

ty (Boehm, 1999), (Mohagheghi and Conradi, 2007) and minimize

uality degradation during maintenance operations of a software

ystem (Baldassarre et al., 2005). Traditional and reuse-oriented

oftware development are compared by Morisio et al. (2002) con-

rming the findings of Baldassarre et al. (2005) , i.e., that software

euse has a positive effect on productivity and quality.

Several studies in literature can be found examining the pos-

ibility of successful software reuse considering one or more of

he following aspects: (a) the application domain (Schwittek and

icker, 2013), (Cho and Yang, 2008), (Folmer, 2007), (Lee et al.,

006) (b) the requirements specificity (Raemaekers et al., 2012),

c) and the type of reuse (Heinemann et al., 2011). The application

omain reflects the environment in which a software system op-

rates (enterprise software, operating systems, entertainment ap-

lications etc.). The requirements specificity affects software reuse

uccess, as isolating the suitable features for potential reuse is of

ajor importance. The features express the units of functionality

f a software system that satisfy a requirement. The type of reuse

s also of paramount importance distinguishing between white-

ox reuse and black-box reuse (Ruben, 1993). In white-box reuse

 Frakes and Fox, 1996) there is knowledge regarding the internal

oncepts of the artifacts reused while in black-box reuse there is

o such knowledge.

.2. Software reusability metrics and models

In this section, we present the reusability models and the as-

ociated metrics and indices that have been identified in litera-

ure. The investigation of quality/ reusability models that incorpo-

ate metrics for addressing the potential reuse of a certain arti-

act is popular (Franch and Carvallo, 2003). Most of the reusability

etrics and indices that are proposed as reusability indicators are

ource code or design metrics (see Table 1). Our target is to inves-

igate all possible aspects, as recorded in literature that affect the

eusability of a certain artifact along with the relevant metrics and

ndices for quantifying them in order to test the reusability of OSS

rtifacts across different domains.

A wide range of studies have been performed for assessing

he reusability of a certain artifact based on structural prop-
rties (e.g., encapsulation, coupling and cohesion). Bansiya and

avies, 2002 proposed QMOOD, a hierarchical quality model, for

ssessing the quality of object-oriented artifacts that relates struc-

ural properties to high-level quality attributes (e.g., reusability,

exibility, etc.). QMOOD links reusability to Direct Class Coupling,

ohesion among methods of class, Class interface size and De-

ign size in classes. An index for assessing the reuse potential of

bject-oriented software modules is proposed by Kakarontzas et al.

2013) . In this study the C&K metrics suite (Chidamber et al., 1998)

s explored for assessing the reusability of 29 OSS projects by ap-

lying logistic regression. The proposed model is based on the val-

es of CBO, DIT, LOC, WMC, RFC, and LCOM that directly affect the

alue of FWBR index. Furthermore, Nair and Selvarani (2010) ex-

mine the reusability of a certain class based on the values of DIT,

FC and WMC, as defined in the Chidamber et al. (1998) suite.

n total 688 classes were analyzed originating from two medium-

ized java projects. The classes in the projects were grouped, based

pon different metric values, according to thresholds found in liter-

ture. For each group of values a new index was calculated, termed

ercentage of influence in reusability. Multifunctional regression

as then performed across metrics to define the index.

Many studies are also found in literature that consider apart

rom structural properties other high level properties that may af-

ect reusability adopting the rationale that reusability can be per-

ormed at various levels of granularity where properties like cus-

omizability, understandability and adaptability are of crucial im-

ortance. Sharma et al. utilized Artificial Neural Networks (AAN)

o estimate the reusability of software components (Sharma et al.,

009). They proposed four factors affecting component reusabil-

ty, namely: (a) customizability, measured as the number of setter

ethods per total number of properties, (b) interface complexity

easured in scale from low to high, (c) understandability, depend-

ng on the appropriateness of the documentation (demos, manu-

ls, etc.), and (d) portability measured in scale from low to high.

ashizaki et al. (2003) suggested a metric-suite capturing the

eusability of components, based on data created outside the com-

onent environment. Four metrics were suggested for measuring

nderstandability, adaptability, and portability namely existence of

eta-information, rate of component observability, rate of compo-

ent customizability, self-completeness of component and number

f external dependencies. Another model found in literature con-

idering a variety of high-level properties affecting reusability is

ristov’s model (Hristov et al., 2012). This reusability model con-

ists of eight main characteristics: reuse, adaptability, price, main-

214 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

3

r

H

e

q

t

m

s

4

h

a

5

t

t

c

r

T

i

t

s

r

(

2

f

a

f

p

tainability, quality, availability, documentation, and complexity. As

this model consists of both high-level quality attributes and low

level internal quality attributes we considered that it would be

the most relevant and complete model to assess reusability of OSS

projects. The reusability model along with indicative metrics is

presented in Section 3 .

2.3. Open source software reuse

The last years many research papers have explored the reuse

potential of open source software artifacts, (Mockus, 2007, Heine-

mann et al., 2011, Raemaekers et al., 2012) . The plethora of freely

available open-source libraries offers great reuse opportunities,

with relatively low cost, (Ajila and Wu, 2007). However, no stan-

dard reuse process has been yet defined, as practitioners still adopt

rather ad-hoc procedures for identifying the most suitable OSS ar-

tifacts for reuse.

Mockus (2007) and Heinemann et al. (2011) pointed out that

source code reuse in OSS development is more intense compared

to commercial/closed source software. Mockus (2007) explored

white-box reuse of components originating from Linux and BSD

operating systems, to other relatively large OSS projects conclud-

ing that the most widely reused components were relatively small

in size while in some cases the authors observed a group of files

reused without any change. Haefliger et al. (2007) concluded that

black-box reuse is the dominant form of reuse by analyzing six

open source projects and interviewing their developers. Both ar-

chitectural and functional reuse was examined within the scope of

the study. The first type of reuse required changes to the existing

software architecture. The second type of reuse was based on pre-

vious architectural reuse. Through architectural reuse of a compo-

nent, the developer makes functionality available to the program.

Heinemann et al. (2011) investigated the occurrence of black-box

and white-box reuse in 20 OSS Java projects applying static de-

pendency analysis for quantifying black-box reuse and code clone

detection for detecting white-box reuse. The results indicate that

black-box software reuse is most common in OSS projects.

Schwittek and Eicker (2013) isolated 36 Java enterprise applica-

tions and explored the level of black box reuse in OSS applications.

The findings point out that on average, seventy, third party com-

ponents are being reused, with the majority of them being main-

tained by the Apache Foundation. Raemaekers et al. (2012) studied

284 Java systems and libraries representing a wide range of busi-

ness domains and functions coming both from OSS projects and

proprietary systems. The results showed that for logging frame-

works (e.g., log4j), SDK and XML libraries are among the most fre-

quently reused libraries. Sojer and Henkel (2010) conducted a sur-

vey among 686 Sourceforge developers regarding the usage of ex-

isting open-source code for the development of new open-source

software. The developers’ code reuse behavior point out that the

more experienced developers with larger personal networks within

the OSS community exploit reuse opportunities in more extent.

Also the development paradigm that calls for releasing an initial

functioning version of the software early leads to increased reuse.

This paper goes beyond current research by providing guide-

lines to select the relevant components for reuse according to the

application domain of a project. In particular this paper:

• Explores the potential of open source software artifact reuse

with respect to the application domain. In the study we con-

sider 10 application domains covering a wide range of software

categories.
• Adapts an analytical reusability model that consists of both

high-level quality attributes and structural properties for as-

sessing reuse potential of certain software artifacts.
• Examines a plethora of quality attributes affecting reusability,

as recorded in literature, exploring the potential of both white-

box reuse and black-box reuse.

. Reusability model

To assess the reusability of OSS projects, we tailor the

eusability model proposed by Hristov et al. (2012) . According to

ristov et al. (2012) , reusability can be assessed by quantifying

ight main characteristics: reuse, adaptability, price, maintainability,

uality, availability, documentation , and complexity . The quantifica-

ion of the main characteristics is performed based on an “n-to-m”

apping to certain sub-characteristics, as presented in Fig. 2 .

An analysis of the main characteristics of reusability is pre-

ented below:

• Reuse indicates the extent to which a software product is built

upon reused components.
• Adaptability is reflecting the ease with which a component can

be adapted when reused in a new system. Adaptability is af-

fected by three aspects: the programming language, the struc-

ture of the reused component, and the existence of methods

and interfaces for reusing the component.
• Price indicates how expensive or cheap a component is when

reused.
• Maintainability represents the extent to which a component

can be extended, after being added into the system (e.g., during

a new version). Maintainability is reflected in the source code

of the component.
• Quality describes the fulfillment of the component’s require-

ments: (a) the errors and bugs of the component, (b) the in-

clusion of tests and test cases that verify it, and (c) the rating

from its users.
• Availability describes how easy it is to find a component (e.g.,

instantly, after search, unavailable, etc.).
• Documentation reflects the provision of documents related to a

component. The existence of such documents makes the com-

ponent easier to understand and therefore reuse.
• Complexity reflects the internal structure of the component,

and is depicted into many aspects of quality (e.g., the easiness

to understand and adapt in a new context). Component/System

complexity is measured through size, coupling, cohesion, and

method complexity.

. Case study design

In this section we present the design of the case study that we

ave performed for investigating the reusability of OSS projects

cross different application domains. In particular, we examined

96 open source software (OSS) projects that can be classified

o ten application domains (namely: Audio and Video Applica-

ions, Games, Science and Engineering Applications, Graphics Appli-

ations, Communications Applications, Business Applications, Secu-

ity and Utilities, System Administration, and Software Development

ools), so as to examine differences in their levels of reusabil-

ty. The reusability model that we used for this assessment is a

ailored version of the one proposed by Hristov et al. (2012) —

ee Section 3 . The main reason that we performed a case study

ather than another type of empirical evaluation—e.g., survey

 Pfleeger and Kitchenham, 2001) or experiment (Wohlin et al.,

0 0 0) is that we wanted to investigate the reuse opportunities of-

ered by real OSS projects, in the sense that OSS reuse constitutes

 large portion of the complete population of software reuse. The

ollowing sub-sections are presenting the parts of the case study

rotocol, as described by Runeson et al. (2012) .

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 215

Fig. 2. Reusability measurement model.

4

p

o

f

d

q

g

t

m

h

B

c

e

p

t

p

n

4

s

o

a

s

e

v

f

g

t

g

o

s

i

1

E

fi

i

f

b

u

T

b

S

r

P

m

2 Examples of similar meta-repositories include FLOSSmole (http://flossmole.

org/), which is a collaborative repository for OSS research data and analyses de-

veloped by Howison et al. (Howison et al., 2008).
.1. Objectives and research questions

The goal of this case study is to compare the reusability of OSS

rojects in different domains. The evaluation will be made in terms

f the seven characteristics, described in Section 3 , i.e., all expect

or price (which is not applicable for open source projects). In or-

er to achieve this goal, we decompose the goal to seven research

uestions—one for each characteristic:

[RQ 1] Are there differences in the extent to which OSS projects of

different domains are reused?

[RQ 2] Are there differences in the adaptability of OSS projects of

different domains?

[RQ 3] Are there differences in the maintainability of OSS projects

of different domains?

[RQ 4] Are there differences in the external quality of OSS projects

of different domains?

[RQ 5] Are there differences in the availability of reusable sets of

classes extracted from OSS projects of different domains?

[RQ 6] Are there differences in the documentation of OSS projects

of different domains?

[RQ 7] Are there differences in the complexity of OSS projects of

different domains?

Answering the aforementioned seven research questions, will

ive us an overview on how the application domains compare in

erms of each factor in isolation. Next, by synthesizing the infor-

ation obtained by answering these questions, we will attempt to

olistically evaluate the reusability of projects in different domains.

eing able to rank the application domains in terms of reusability

an provide useful information to both researchers and practition-

rs (see Section 6). For example, researchers can easily identify ap-

lications domains that are in need for applying methods and tools

hat improve reusability, whereas practitioners will be aware of ap-

lication domains from which they can more easily reuse compo-

ents.

.2. Case selection and unit analysis

The case study of this paper is an embedded multiple-case

tudy (Runeson et al., 2012), in which the context is OSS devel-

pment, as cases we consider eight application domains, whereas
s units of analysis the projects that belong to them. In order to

elect as many units of analysis as possible for our case study, we

xploited a meta-repository 2 in which we have gathered data from

arious projects, hosted in various OSS repositories (e.g., Source-

orge, GitHub, etc.), namely Percerons 1 . Percerons is a software en-

ineering platform (Ampatzoglou, 2013a) created by one of the au-

hors with the aim of facilitating empirical research in software en-

ineering, by providing: (a) indications of componentizable parts

f source code, (b) quality assessment, and (c) design pattern in-

tances. The platform is consistently used for empirical research

n the last four empirical software engineering conferences—ESEM’

3 (Ampatzoglou, 2013b), ESEM’14 (Griffith and Izurieta, 2014), and

SEM’ 15 (Arvanitou et al., 2015) and (Reimanis, 2015). The identi-

cation of units of analysis is performed automatically, by dump-

ng the complete database of the repository. The collection of data

or each unit of analysis is in some cases automatically performed

y parsing the Percerons database, whereas in other cases man-

al parsing of projects webpages was necessary (see Section 4.3).

o populate the Percerons database a number of projects have

een selected for every application domain in Sourceforge.net (see

ection 4.3 for more details on application domains). The crite-

ia that we have used for selecting projects and populating the

ercerons repository are discussed below:

• projects should be written in Java due to the limitations of the

pattern detection, component identification, and metrics cal-

culation tools that we have used for storing assessments in

Percerons
• projects should provide a compiled version of the project since

the tools use binary code as input
• projects should be highly ranked by popularity in Sourceforge.

To sort projects we ranked them by popularity and then se-

lected the top-100. From them we filtered those that meet the

first two criteria.

The number of projects examined from each application do-

ain varied from 25 to 135, as presented in Table 2 .

http://flossmole.org/

216 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Table 2

Study demographics (application domains).

Application domain Number of projects

Video 50

Games 135

Business & enterprise 50

Home & education 32

Science & engineering 40

Communications 59

Development tools 125

Graphics 55

Security & utilities 25

System administration 25

a

l

t

f

m

e

c

c

m

a

s

v
Currently Percerons provides data on 596 projects that belong to

ten application domains (consisting of more than 117,0 0 0 classes —

i.e., non-trivial systems with on average more than 200 classes

each). Although this number is small compared to the population

of available OSS projects we believe it is representative enough.

4.3. Data collection & analysis

To answer our research questions for every OSS project that we

analyzed we recorded the following variables:

[V 1] Software Name : The name of the OSS project that we an-

alyzed.

[V 2] Application Domain : The software domain names are de-

rived from sourceforge.net, where the open source projects

are being developed and maintained. Table 2 presents the 10

different application domains from which reusable projects

are retrieved along with the distribution and frequencies of

projects in each domain. We note that all application do-

main of Sourceforge.net have been considered in this study

and therefore no selection bias has been introduced. Addi-

tionally, the mapping between projects and application do-

mains has been recorded based on the Sourceforge.net en-

try in the sense that the developers of the software are ex-

pected to provide a valid classification for their software.

[V 3] Reuse : As a way to quantify the reuse aspect of the pro-

posed model, we use three different metrics: (a) the num-

ber of reused external libraries in the project, and (b) the

number of files reused from other projects as an indicator

of amount of reuse , whereas (c) the amount of system files

that have been reused in other projects of our dataset, as an

indicator of reuse frequency .

[V 4] Adaptability : As a proxy of component adaptability, we use

the reusability index defined by Bansiya and Davies (2002) ,

namely AD_QMOOD. Although, based on the naming it

seems that there is a quality mismatch in the selection

of quality attributes, a closer examination of the provided

definitions suggest that reusability as defined in QMOOD

matches adaptability as defined by Hristov et al. (2012) .

In particular, they both define the ability of a component

to be easily adapted from the source systems that it has

been developed for, to the target system in which it will

be reused (i.e., adaptation to the new context). According

to Bansiya and Davies (2002) adaptability can be defined as

a function of component coupling, cohesion, interface size,

and component size in terms of classes.

[V 5] Maintainability: As a way to quantify maintainability, we

use the metric for extendibility, as defined by Bansiya and

Davies (2002) , namely MD_QMOOD. According to the model,

extendibility can be calculated as a function of several

object-oriented characteristics that either benefit or hinder

the extension/easy maintenance of the system: abstraction,

coupling, inheritance, and polymorphism.
[V 6] External Quality: As a proxy of external quality, we use

four metrics, based on the decomposition of external quality,

as suggested by Hristov et al. (2012) . More specifically, we

use: (a) the number of opened and closed bugs as a measure

of the errors and bugs , (b) the number of unit test files as a

proxy for performed tests and availability of test cases, and (c)

the average rating by the users of the software as a proxy

for independent rating and certification .

[V 7] Availability: The number of independent and compileable

components that have been identified for the specific project

in the Percerons repository are quantified into the variable

NCOMP. The methodology that is used to identify compo-

nents from open source projects and populate the reposi-

tory has been proposed by Ampatzoglou et al. (2013b) . The

used algorithm is based on the identification of reusable sets

of classes, by applying a path-based strong component algo-

rithm (Gabow, 20 0 0). In its current state Percerons provides

6.4 million candidate components that concern the 8 afore-

mentioned application domains. However, we need to note

that the majority of these components are not completely

independent, since the algorithm (Ampatzoglou et al., 2012)

stores components with efferent coupling (Martin, 2003)

less than 10. As a measure of availability, we consider ap-

proximately 50,0 0 0 components that are completely inde-

pendent and compileable (i.e., efferent coupling equals zero).

[V 8] Documentation: Documentation is the only factor that

has to some extent been subjectively evaluated. However,

in order to: (a) assure the replicability of the process, and

(b) guarantee the common understanding of our evaluation

from the readers of the manuscript, we have defined a set

of clearly defined, non-overlapping, and unambiguous crite-

ria for OSS project assessment with respect to quantity and

quality of documentation. To assess the amount, complete-

ness , and quality of documentation, we performed manual

inspection to the website of the project in Sourceforge.net .

In particular, we counted the number of text files, multi-

media files, or active forum topics. Based on this, we classi-

fied projects with 0–4 items as very low , projects with 5–10

items as low , 10–20 items as moderate , 20–50 as high , and

projects with more than 50 items as very high . In case that

no help was directly provided, but the community offered a

number of emails as contacts, we assessed this project with

low .

[V 9] Complexity : As proxies of complexity, we used four met-

rics that capture system size [V9.1], average class coupling

[V9.2], average class cohesion [V9.3], and average method

complexity [V9.4], as prescribed by the reusability model

(see Section 3). We adopted the metrics on design quality

from the suite of Chidamber et al. (1998) . In particular, we

used one coupling (CBO: Coupling between objects), one co-

hesion (LCOM: Lack of Cohesion of Methods), and one com-

plexity metric (WMC: Weighted Method per Class).

All the metrics presented in Table 3 (except for documentation)

re calculated initially at class level and then aggregated to project

evel. To aggregate measures from class to project level we selected

he average (AVG) as an approach to assess the overall metric value

or a certain project. Arvanitou et al. (2016) suggest that when

easuring in-large (at project level) we need to employ the av-

rage function for producing stable versions of code-level metrics

ontrary to min, max and sum functions that are more relevant to

lass-level evaluations. Additionally, according to Fenton and Bie-

an (2014) stable metrics should be selected for large-scale evalu-

tions that have the ability to derive the overall trend of the corre-

ponding metric. Complementary, we selected to employ the rele-

ant stable metrics (LCOM, CBO, RFC and NOC) compared to other

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 217

Table 3

Reuse factors and the associated metrics.

Reuse factor Metric name Values/ calculation method Examined artifacts Level of granularity

Reuse Lib_Reuse The number of reused external libraries in the project. Number of files in lib

folder.

Binary Distribution Project

Reuse_Amount The number of reused external libraries in the project that exist in our

dataset (internal reuse).

Reuse_Frequency The amount of files that have been reused in other projects of our dataset. Source Code

Adaptability : AD_QMOOD = −0.25 DCC + 0.25 CAM + 0.5 CIS + 0.5 DSC Source Code Class

DCC is calculated as the number of different classes that a class is related to,

based on attribute declarations.

CAM is calculated using the summation of intersection of parameters of a

method with the maximum independent set of all parameter types in the

class.

CIS is calculated as the number of public methods in a class

DSC is calculated as the total number of classes

Maintainability MD_QMOOD = 0.25 ∗ANA- 0.5 ∗DCC + 0.5 ∗NOH + 0.5 ∗NOP Source Code Class

NOH is the number of class hierarchies in the design.

ANA is calculated as the average number of classes from which a class

inherits information.

NOP is derived as a count of methods that can exhibit polymorphic behavior.

Such methods in Java are marked as abstract.

DCC is defined as in Adaptability factor

External

Quality

BUGS The number of opened bugs Bug/Issue Tracker Project

C_BUGS The number of closed bugs

N_TESTS The number of unit test files Source Code

RT The average rating by the users of the specific software OSS Repository

N_DOWN The number of downloads of the specific project retrieved form

sourceforge.org

Availability NCOMP The number of independent and compileable components. (i.e., efferent

coupling equals zero)

Source Code Class

Documentation

DOC The number of text files, multimedia files, or active forum topics. Project webpage

(official or

repository)

Project

very low: projects with 0–4 items,

low: projects with 5–10 items

moderate: projects with 10–20 items

high: projects with 20–50 items

very high: projects with more than 50 items

Complexity CBO CBO measures the number of classes that the class is connected to, in terms

of method calls, field accesses, inheritance, arguments, return types and

exceptions. High coupling is related to low maintainability and

understandability. The range of values of the CBO metric is [0, NOC-1].

Source Code Class

LCOM LCOM measures the dissimilarity of pairs of methods, in terms of the

attributes being accessed. High Lack of Cohesion is an indicator of

violating the single responsibility principle (Martin, 2003), which suggests

that each class should provide the system with only one functionality.

WMC WMC is calculated as the average Cyclomatic Complexity (CC) among

methods of a class. High WMC results in difficulties in maintaining and

understanding the system.

NOC Number of Classes (NOC), in the sense that it provides an estimation of the

amount of functionality offered by the system (Morisio et al., 2002). The

size of the system needs to be taken into account, since smaller systems

are expected to be less coupled, less complex, to have less classes as leafs

in hierarchies and use less inheritance trees. Thus, assessing quality

characteristics (apart from cohesion), without taking into account the size

of the system would be unfair for application domains with larger projects.

c

a

4

t

s

t

t

t

e

t

b

t

f

m

t

s

f

m

d

r

o

t

e

p

a
andidate ones (CIS, DAC, NOCC) for addressing the complexity of

 certain project (Arvanitou et al., 2016).

.4. Data analysis

The data analysis of this case study has been performed as a

wo-step process (see Table 4). In the first step we calculate de-

criptive statistics and perform Independent Sample Kruskal-Wallis

est to check for difference across application domains. We note

hat we have selected to perform a non-parametric test for inves-

igating the differences across domains, since the variables of inter-

st are not normally distributed. Before the analysis, we “cleaned”

he dataset from extreme values and outliers: (a) visually by using

oxplots, and (b) statistically by checking iteration after iteration

he cases with residuals with three or more standard deviations
rom the mean. Additionally, in order to reduce the effect size of

etrics’ range of values, we normalized all metric scores before

he execution of the tests. The normalization has transformed all

cores to fit the [0, 1] range, by retaining the proportions of scores

or different projects. The formula used for normalization is:

etri c normalized =

metri c actual − min

(max − min)

As a second step, we synthesize the indications provided by the

ifferent variables that are used as proxies for the same aspect of

eusability. To be able to synthesize metrics in a safe way, with-

ut aggregating metrics with different range values, we transform

he numerical indication to ranking. In particular, we characterize

very software project with its rank compared to the rest of the

opulation, as top-10%, top-20%, …, and top-100% included in the

nalysis. To achieve this, all of the software projects that partici-

218 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Table 4

Data analysis and presentation overview.

RQ Variable Analysis

Reuse Testing Variables: Descriptive statistics

● Lib_Reuse, Reuse_Amount, Reuse_Frequency

Grouping variable : Independent Sample Kruskal-Wallis test

● Application Domain

Adaptability Testing variables: Descriptive statistics

● AD_QMOOD Independent Sample Kruskal-Wallis test

Grouping variable :

● Application Domain

Maintainability Testing variables: Descriptive statistics

● MD_QMOOD Independent Sample Kruskal-Wallis test

Grouping variable :

● Application Domain

External Quality Testing variables: Descriptive statistics

● O_BUGS, C_BUGS, N_TESTS, RT, N_DOWN Independent Sample Kruskal-Wallis test

Grouping variable :

● Application Domain

Availability Testing variables: Descriptive statistics

● NCOMP Independent Sample Kruskal-Wallis test

Grouping variable :

● Application domain

Documentation Testing variables: Frequencies (pie chart)

● DOC

Grouping variable :

● Application domain

Complexity Testing variables: Descriptive statistics

● CBO, LCOM, WMC, CC, NOC Independent Sample Kruskal-Wallis test

Grouping variable :

● Application domain

w

t

l

p

t

p

e

t

s

t

i

s

i

s

a

m

b

o

5

t

e

a

Q

t

b

S

d

fi

t

t

c

A

t

pate in the analysis are sorted based on the values of each metric

and the percentages are then calculated with respect to the ap-

plication domain of the software project. For each of these classes

we perform frequency analysis, and visualize the outcome in radar

charts, first grouped by aspect of reusability, and next by providing

a synthesized view representing the complete reusability model.

5. Results

In this section we present the results of our case study, orga-

nized by research question. In each subsection, for each indicator

of each reusability characteristic, we present: (a) the descriptive

statistics for each application domain, and (b) the Kruskal-Wallis

test across application domains. We note that in this section, no

interpretation of results is performed, since it is preferred that all

results are collectively discussed in Section 6 .

5.1. Reuse

In this section, we are presenting results that concern the ex-

tent to which OSS projects are based on software reuse, and are

reused in other systems. As explained in Section 4.3 , reuse is quan-

tified by three indicators: (a) the number of reused external li-

braries in the project (lib-reuse), (b) the number of files reused

from other projects (reuse-amount), and (c) the amount of system

files that have been reused in other projects of our dataset (reuse

frequency). The descriptive statistics and the results of the indepen-

dent sample Kruskall-Wallis test are presented in Table 5 . Each row

of the table corresponds to one application domain, whereas the

columns represent the mean values and standard deviations of the

aforementioned normalized indicators. The last row of the table

presents the results of the Kruskall-Wallis test. We note that other

descriptive statistics have been omitted due to the nature of the

dataset. For example, MIN and MAX have not been presented since

the variables are normalized (min = 0.0 and max = 1.0), whereas

MODE values are not applicable for continuous variables. The do-

main with the higher mean value for each indicator is highlighted
ith bold font, whereas the indicators for which there are statis-

ically significant differences across domains are highlighted with

ight grey cell shading. We note that with italics we highlight ap-

lication domains that are close to the dominant one in terms of

he mean value.

In addition to that, in Fig. 3 , we present the percentage of ap-

lication domains’ projects that are ranked in the top-20% of the

xamined OSS population, in terms of each metric. We note that

he higher this frequency the most reuse is exploited within the

pecific application domain. The scales in graph have been pruned

o the maximum value of each category, since inter-charts compar-

sons are not applicable. Thus, we preferred to not have a uniform

cale (i.e., 0% to 100%) for all of them to safeguard their readabil-

ty. Based on the finding of both Table 5 and Fig. 3 we can ob-

erve that System Administration tools, Software Development tools

nd Science and Engineering applications are the domains in which

ost reuse activity takes place. On the other end, reuse seems to

e a rather neglected software engineering technique, while devel-

ping OSS Games .

.2. Adaptability

In this section, we are presenting results that concern the ex-

ent to which OSS projects are offering source code parts that are

asily adaptable in the target system. As explained in Section 4.3 ,

daptability is quantified through the corresponding metric of the

MOOD suite. The descriptive statistics and the Kruskal-Wallis

est are presented in Table 6 . The presentation of data in the ta-

le is similar to the one in Section 5.1 . Additionally, similarly to

ection 5.1 , the frequency of occurrence of OSS projects of each

omain in the top-20% of the sample, is visualized in Fig. 4 . The

ndings of the case study suggest that Graphics, Business and En-

erprise Applications, as well as Software Development tools offer

he most easily adaptable source code, compared to other appli-

ation domains. On the other hand Security& Utilities and System

dministration applications prove to be less adaptable compared

o applications from other domains.

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 219

Table 5

Software reuse intensity.

Application Domain Lib-Reuse Reuse-Amount Reuse-Frequency

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Audio and Video 0.029 0.06 0.054 0.17 0.009 0.04

Business and Enterprise 0.047 0.16 0.027 0.05 0.001 0.01

Communications 0.029 0.06 0.056 0.09 0.019 0.08

Software Development 0.050 0.06 0.036 0.07 0.006 0.03

Games 0.011 0.03 0.032 0.09 0.016 0.07

Graphics 0.028 0.05 0.036 0.05 0.022 0.11

Home and Education 0.048 0.03 0.048 0.07 0.020 0.04

Science and Engineering 0.050 0.08 0.063 0.09 0.029 0.097

Security Utilities 0.035 0.14 0.032 0.12 0.029 0.14

System Administration 0.055 0.12 0.060 0.14 0.009 0.02

Kruskal-Wallis test (sig.) 0.0 0 0 0.950 0.468

Fig. 3. Software reuse intensity.

Table 6

Software adaptability.

Application Domain AD_QMOOD

Mean Std. Dev.

Audio and Video 0.184 0.04

Business and Enterprise 0.206 0.15

Communications 0.177 0.05

Software Development 0.197 0.09

Games 0.187 0.06

Graphics 0.217 0.11

Home and Education 0.190 0.06

Science and Engineering 0.178 0.06

Security Utilities 0.093 0.01

System Administration 0.087 0.01

Kruskal-Wallis test (sig.) 0.0 0 0

5

t

Fig. 4. Software adaptability.

e

fi

s
.3. Maintainability

In this section, we are presenting results that concern the ex-

ent to which OSS projects are offering source code parts that are
asily maintainable. As explained in Section 4.3 , reuse is quanti-

ed through the extendibility metric of the QMOOD suite. The de-

criptive statistics and the Kruskal-Wallis test (sig.) are presented

220 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Table 7

Software maintainability.

Application Domain MD_QMOOD

Mean Std. Dev.

Audio and Video 0.376 0.05

Business and Enterprise 0.406 0.08

Communications 0.367 0.06

Software Development 0.372 0.07

Games 0.373 0.07

Graphics 0.371 0.04

Home and Education 0.365 0.06

Science and Engineering 0.397 0.06

Security Utilities 0.254 0.28

System Administration 0.420 0.32

Kruskal-Wallis test (sig.) 0.0 0 0

Fig. 5. Software maintainability.

n

b

t

5

e

s

p

n

t

t

fi

A

O

5

u

t

s

q

s

a

t

v

s

c

a

e

t

a

5

p

i

(

a

c

t

s

S

o

d

c

t

a

t

t

i

l

6

s

a

e

o

in Table 7 . The presentation of data in the table is similar to the

one in Section 5.1 . Based on the results presented in Table 7 and

Fig. 5 , we suggest that Science, Engineering, Business and Enterprise

and System Administration applications offer the most maintainable

source code implementations, compared to the rest application do-

mains. Security and Utilities applications present lower maintain-

ability than the rest applications.

5.4. External quality

In this section, we are presenting results that concern the ex-

ternal quality of OSS projects. As explained in Section 4.3 , external

quality is assessed by five indicators: (a) the number of test cases

(tests), (b) the average rating by its users (rating), (c) the number

of downloads during the last week (downloads), (d) the number of

open bugs (open bugs), and (e) the number of closed bugs (closed

bugs). The descriptive statistics and the Kruskal-Wallis test (sig.)

are presented in Table 8 . The presentation of data in the table is

similar to the one in Section 5.1 .

The results concerning external software quality are diversified

across the different external quality metrics. Initially all application

domains present very high values on Rating . This is explained by

the fact that in the analysis we selected the most popular projects

according to their rating on Sourceforge. In terms of Number of

Downloads and Closed Bugs Software development applications ap-

pear to be more active. In terms of the Tests performed Science and

Engineering applications present higher values. Game applications

are generally ranked rather low. A possible explanation for this is

that the rating of the OSS games, might mostly reflect users’ en-

joyment rather than the quality of the software per se. Finally, we
eed to note that, as expected the number of opened and closed

ugs are naturally connected, since no bugs can be closed, unless

hey open in a previous version.

.5. Availability

In this section, we are presenting results that concern the av-

rage number of independent components available from OSS of a

pecific application domain. As explained in Section 4.3 , the com-

onents have been retrieved by an online component repository,

amed Percerons . The descriptive statistics and the Kruskal-Wallis

est (sig.) are presented in Table 9 . The presentation of data in the

able and figure is similar to the one in Section 5.1 . Based on the

ndings presented in this section, Security & Utilities and System

dministration applications offer the most reusable assets in the

SS ecosystem.

.6. Documentation

In this section, we are presenting results that concern the eval-

ation of the documentation in OSS projects of different applica-

ion domains. As explained in Section 4.3 , documentation is as-

essed by three indicators: (a) amount, (b) completeness, and (c)

uality of the documentation that are all accumulated in a single

cale variable, namely Documentation . To present the differences

mong application domains, we present bar charts, that represent

he frequency percentages of different evaluations (varying from

ery low to very high), for different application domains. The re-

ults are presented in Fig. 8 . We note that in order for an appli-

ation domain to be properly documented, we expect to observe

 right skewness on the histogram. Based on this clarification, Sci-

nce and Engineering applications, Business and Enterprise applica-

ions, System Administration tools and Software Development tools,

re the most documented ones in the Sourceforge repository.

.7. Complexity

In this section, we are presenting results that concern the com-

lexity of OSS projects. As explained in Section 4.3 , complexity

s quantified by four indicators: (a) the average cohesion classes

 cohesion), (b) the average class coupling (coupling), (c) the aver-

ge design size in classes (size), and (d) the average cyclomatic

omplexity of methods (complexity). The descriptive statistics and

he Kruskal-Wallis test (sig.) are presented in Table 10 . The pre-

entation of data in the table and figure is similar to the one in

ection 5.1 . The results on complexity are diverse compared to the

nes presented in the previous sections, in the sense that the most

ominant application domains appear to lag in terms of structural

omplexity. In particular, Communication applications appear to be

he ones with the least coupling between classes and the lowest

verage method complexity. However, a possible interpretation for

his might be the relatively small size in classes of such applica-

ions. On the other hand, the most coherent projects can be found

n the Business and Enterprise application domains, whereas the

argest in terms of size in Science and Engineering applications.

. Discussion

In this section we interpret the results obtained by our case

tudy and provide some interesting implications for researchers

nd practitioners. Additionally, we illustrate a possible use case of

xploiting our results in a reuse decision making process by elab-

rating on the example of Fig. 1 (see Introduction).

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 221

Fig. 6. Software external quality.

Fig. 7. Component availability.

6

p

m

i

i

t

b

e

m

d

m

t

m

S

t

t

e
.1. Interpretation of results

First, we can observe that System Administration, Business, Enter-

rise, Science , and Engineering applications, and Software Develop-

ent tools are the OSS projects with the higher levels of reusabil-

ty. The rest application domains present good levels of quality

n some sub-characteristics (e.g., Games for rating, Communica-

ion applications for class coupling and method complexity, etc.),

ut these exceptional cases are rather spread across the differ-

nt reusability aspects. The top-3 optimal application domains per

etric/reuse factor are summarized in Table 11 . The application

omains are ranked based on the radar charts presented for each

etric in the corresponding results section (see Section 5.1 –5.7)

The aforementioned results can be considered as intuitive in

he sense that these application domains (i.e., Business, System Ad-

inistration, Enterprise, Science , and Engineering applications, and

oftware Development tools) are the most “serious” ones, among

hose that are studied in this paper. Particularly, it is expected

hat developers of such applications are most aware of software

ngineering technologies, compared to those of other, most “soft-

222 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Table 8

Software external quality across OSS application domains.

Application Domain Tests Rating Downloads Open Bugs Closed Bugs

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Audio and Video 0.008 0.03 0.956 0.08 0.189 0.45 0.451 0.15 0.118 0.21

Business and Enterprise 0.015 0.04 0.955 0.08 0.034 0.05 0.489 0.05 0.111 0.24

Communications 0.017 0.09 0.973 0.04 0.035 0.12 0.390 0.32 0.045 0.12

Software Development 0.031 0.11 0.968 0.05 0.111 0.30 0.507 0.05 0.104 0.20

Games 0.004 0.02 0.977 0.04 0.032 0.11 0.420 0.11 0.039 0.12

Graphics 0.007 0.02 0.977 0.03 0.014 0.05 0.555 0.01 0.038 0.11

Home and Education 0.010 0.03 0.988 0.03 0.010 0.05 0.540 0.01 0.034 0.08

Science and Engineering 0.036 0.12 0.980 0.03 0.035 0.06 0.463 0.16 0.085 0.17

Security Utilities 0.004 0.08 0.991 0.02 0.016 0.06 0.560 0.02 0.031 0.08

System Administration 0.007 0.04 0.926 0.13 0.091 0.21 0.435 0.06 0.028 0.06

Kruskal-Wallis test (sig.) 0.0 0 0 0.403 0.0 0 0 0.04 0.01

Table 9

Component availability.

Application Domain Availability

Mean Std. Dev.

Audio and Video 0.013 0.02

Business and Enterprise 0.015 0.02

Communications 0.010 0.01

Software Development 0.018 0.02

Games 0.012 0.03

Graphics 0.016 0.02

Home and Education 0.015 0.02

Science and Engineering 0.027 0.02

Security Utilities 0.072 0.22

System Administration 0.064 0.07

Kruskal-Wallis test (sig.) 0.0 0 0

w

w

e

a

m

6

s

e

s

f

E

p

a

p

r

v

a

T

p

p

t

t

g

r

6

r

c
skilled” or artistic application domains (e.g., Graphics, Audio and

Video applications, or Games). Concerning the design quality of the

applications with respect to their complexity we can distinguish

applications belonging to the Communications domain. Communi-

cation projects present better average design metrics scores com-

pared to other types of applications, being among the smallest in

terms of size. Home and Education projects present the worse lev-

els of design quality and complexity as well. Projects belonging to

this application domain appear to be the least coherent and among

the most coupled systems. The average size though, of Home and

Education applications is not among the largest ones to explain

the high complexity values. Nevertheless, it consistently had the

largest variance in metric values, which is an indicator that this

category is too broad and should be decomposed for further analy-

sis. In fact, in Sourceforge the category consists of four very diverse

sub-categories. The largest systems are Science and Engineering, De-

velopment Tools and Business and Enterprise projects. Among them,

the best levels of design quality are provided by Development Tools ,
Table 10

Software complexity.

Application Domain LCOM CBO

Mean Std. Dev. Mean

Audio and Video 0.766 0.16 0.675

Business and Enterprise 0.788 0.15 0.654

Communications 0.736 0.26 0.708

Software Development 0.783 0.17 0.651

Games 0.780 0.18 0.662

Graphics 0.778 0.17 0.677

Home and Education 0.703 0.21 0.698

Science and Engineering 0.785 0.19 0.587

Security Utilities 0.725 0.18 0.687

System Administration 0.760 0.04 0.662

Kruskal-Wallis test (sig.) 0.39 0.0
hich can be due to the fact that they are created by developers

ith strong software engineering background. Furthermore, in the

ntertainment field we can find Games, Graphics, Audio and Video

pplications that share some common modules, presenting similar

etrics (size, complexity and inheritance).

.2. Implications to researchers and practitioners

The results of this study provide useful information both to re-

earchers and practitioners. First, they can provide guidance on the

xistence of reuse opportunities for practitioners. Based on the re-

ults of this study, software developers can have indications on the

easibility of reuse in different application domains. Science and

ngineering application developers can exploit the great reuse op-

ortunities offered by OSS components in these domains (highest

vailability). These application domains offer the most components

er project and are among the optimal among all characteristics of

eusability. On the other hand, the results of this study can pro-

ide guidance on case selection for researchers. Nowadays, more

nd more researchers perform empirical studies on OSS projects.

he results of the study can guide researchers in selecting appro-

riate application domains to identify as many units of analysis as

ossible. Finally, as future work we suggest the investigation of: (a)

he actual reuse rates of OSS components in other applications, (b)

he reusability of these components can be tested by software en-

ineers through experiments, and (c) a process for systematically

eusing these components can be introduced.

.3. Applicability of empirical findings

By further focusing on the example of Section 1 , we are now

eady to present data that would be able to guide the software ar-

hitect of Fig. 1 in his decision making approach. Assuming that
NOC WMC

Std. Dev. Mean Std. Dev. Mean Std. Dev.

0.19 0.130 0.11 0.911 0.05

0.14 0.145 0.15 0.862 0.18

0.17 0.261 0.15 0.922 0.05

0.16 0.060 0.07 0.903 0.10

0.15 0.221 0.21 0.911 0.05

0.14 0.187 0.28 0.894 0.07

0.13 0.220 0.07 0.906 0.05

0.19 0.345 0.33 0.912 0.05

0.12 0.210 0.23 0.911 0.04

0.08 0.045 0.02 0.900 0.02

0 0.04 0.02

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 223

Table 11

Panorama of the results.

Reuse Factor Metric Name top-1 top-2 top-3 Optimal w.r.t. Factor

Reuse Lib_Reuse Science and Engineering System Administration Software Development Science and Engineering

Reuse_Amount Science and Engineering System Administration Software Development

Reuse_Frequency Science and Engineering Software Development Business and Enterprise

Adaptability AD_QMOOD Software Development Games Graphics Software Development

Maintainability MD_QMOOD System Administration Science and Engineering Business and Enterprise System Administration

External Quality O_BUGS Home and Education Graphics Science and Engineering Science and Engineering

C_BUGS Audio and Video Software Development Business and Enterprise

N_TESTS Science and Engineering Software Development Business and Enterprise

RT Science and Engineering Games Software Development

N_DOWN Business and Enterprise System Administration Science and Engineering

Availability NCOMP System Administration Security Utilities Software Development System Administration

Documentation DOC Science and Engineering Business and Enterprise System Administration Science and Engineering

Complexity CBO Science and Engineering Business and Enterprise Home and Education Communications / Science and Engineering

LCOM Communications Games System Administration

WMC Communications Home and Education Audio and Video

NOC Science and Engineering Software Development Business and Enterprise

Table 12

Exploration of white-box alternatives.

Reuse Factor Metric Name Candidate Application Domains

Software Development Communications

Complexity CBO 0 0

LCOM 0 5

WMC 0 5

NOC 3 0

Complexity Score (35%) 0.75 (0.26) 2.5 (0.87)

External Quality O_BUGS 0 0

C_BUGS 3 0

N_TESTS 3 0

RT 1 0

N_DOWN 0 0

Complexity Score (20%) 1.4 (0.28) 0 (0)

Maintainability MD_QMOOD 0 0

Maintainability Score (20%) (0) (0)

Availability NCOMP 1 0

Availability Score (25%) 1 (0.25) 0 (0)

Total Evaluation of Alternative 0.79 0.87

t

t

f

d

d

c

m

t

i

a

n

a

c

t

T

o

t

d

7

i

m

s

s

d

c

l

q

t

i

o

r

t

t

f

p

p

a

w

F

s

t

w

o

t

s

i

i

w

m

l

d

t

t

s

O

v

s

y

n

c

t

a

i

t

t

t

t

n

m

he company intends to perform black-box reuse, the reuse fac-

or of interest do not include any internal characteristic. There-

ore, the architect should focus on: reuse , external quality , and

ocumentation . Based on the findings presented in Table 11 , the

ecision seems trivial, since the Software Development Tools appli-

ation domain out performs the Communications domain for all

etrics in these reuse factors. On the other hand, assuming that

he company is interested in white-box reuse, the decision mak-

ng becomes more complex. Assuming that the architect selects

 weighted method with three factors: complexity (35%), exter-

al quality (20%), maintainability (20%) , and availability (25%)

 more elaborate selection process is required. For instance let us

onsider that the following point system is used: 5-points for the

op-1 domain, 3-points for the top-2, and 1-point for the top-3.

he results of the scoring process is presented in Table 12 , based

n which we can observe that for white-box reuse purposes (given

he selected weights and criteria), the Communications application

omain offers more reuse opportunities.

. Threats to validity

In this section we discuss the threats to validity that we have

dentified for this study. The section is organized based on the four

ain types of threats to validity for quantitative research within

oftware engineering as appointed by Runeson et al. (2012) : con-

truct, internal, external and reliability validity. Construct validity

efines how effectively a test or experiment measures up to its
laims. Internal validity is related to the examination of causal re-

ations examining whether an experimental environment is ade-

uate to support the claim. External validity examines whether

he results of a study can be generalized to other cases. Reliabil-

ty is associated to the reproducibility of the study, i.e. the ability

f other researchers to repeat the same process, collect data and

each the same results.

Construct Validity : The set of metrics selected to measure

he adequacy of the extracted components could pose a possible

hreat to construct validity. For this reason we selected Hristov’s

ramework (2012) for evaluating the adequacy of reusable com-

onents. Components evaluation was performed by quantifying a

lethora of main characteristics: reusability, adaptability, maintain-

bility, quality, availability, documentation, and complexity each of

hich synthesized by the values of several metrics as depicted in

ig. 1 . Thus in total 18 metrics were addressed for the scope of this

tudy in an attempt to avoid the case in which any important at-

ribute is missing from the analysis. We note that the metrics that

e selected for the quantification of the reuse factors are only few

f the potential candidates. Therefore, we acknowledge the exis-

ence of alternative metrics, and we do not claim that the set we

elected consists of optimal reusability predictors. Still the valid-

ty of the selected set and the level to which they affect reusabil-

ty across OSS domains were addressed in Section 7 . Additionally

e attempted to normalize data by using the ranking of possible

etrics instead of the actual metrics (see Section 4). In particu-

ar we should also mention specifically for the metric referring to

ocumentation that we acknowledge that the documentation quan-

ity (number of documents, webpages, etc.) is not a sole indica-

or of the documentation quality and we plan in the future to as-

ign the value of this metric based on questionnaires provided to

SS developers. In this context another possible threat to construct

alidity is whether the identified candidate components can be

tand-alone reusable artifacts that can be migrated to settings be-

ond their own derived application. Since in the literature there is

o known algorithm that captures accurately 100% of all intended

omponents our study was based on an exhaustive search process

hat provided adequate recall rates.

Internal validity : The proposed study attempted to form an

ssociation between quality characteristics (such as maintainabil-

ty, availability and interactivity) and the application domain of

he components extracted. We cannot claim that the quality at-

ributes under study form a causal relationship with the applica-

ion domain of the components but only that the results indicate

rends and common practice when it comes to selecting compo-

ents. Some of these trends can be verified intuitively while others

ay be surprising.

224 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

Fig. 8. Software documentation.

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 225

Fig. 9. Software complexity.

l

o

b

i

e

t

p

n

p

r

d

i

fi

t

T

p

t

a

a

t

o

a

s

b

m

s

p

p

m

t

f

i

s

s

m

t

p

v

d

t

I

f

e

fi

8

d

s

p

a

d

a

c

t

i

T

w

r

c

m

d

c

f

o

Reliability : With respect to reliability we believe that the fol-

owed research process ensures the reliability and safe replication

f our study. The process that has been followed in this study has

een thoroughly documented in the case study protocol, provided

n Section 4 . Therefore, the re-production of the case study can be

asily performed by any interested researcher. Additionally the ex-

raction of the dataset and the associated structural metrics was

erformed with the help of the publicly available meta- repository

amely, Percerons and therefore any interested researcher can re-

eat the analysis and derive the same results. However concerning

esearcher bias, we should state that it was introduced during the

ata collection and data analysis process in one case. In particular

n the data collection phase, the only possible bias can be identi-

ed while quantifying the metric value of the level of documen-

ation provided for each project the component was derived from.

o gather data on the documentation variable, a manual recording

rocess was employed and performed by the first author. In order

o increase the reliability of this process the second and the third

uthor validated the results.

External validity : Concerning generalizability, we can say that,

s in all such studies, in the case the sample of projects was al-

ered and the component extraction was performed on additional

r even different applications, then the results might be different

s well. To ensure the generalizability of our results we have mea-

ured a wide range of applications providing a respectful num-

er of reusable components, from a variety of application do-

ains. Therefore we believe that the selected cases (∼ 600 open

ource applications), offer a large and representative sample of the

opulation. However, as the scope of the study are open source

rojects developed in Java, a possible bias regarding the program-

ing language may affect our results limiting their transferability

o other programming languages. Another possible threat comes

rom the choice of Percerons as a component identification repos-

tory, pooling reusable assets from Sourceforge, as source for the
tudy objects could bias our selection, as a certain kind of open

ource developers could prefer other project repositories (such as

aven, GitHub or Google Code). Additionally we should mention

hat a possible bias is inserted when selecting the most popular

rojects from each application domain (based on star rating pro-

ided by Sourceforge). This choice ensures that the relevant can-

idate projects for examining reusability aspects are included in

he analysis but introduces bias in the values of the metric RAT-

NG that assess external quality, as the majority of projects present

our-star rating and up. Though, a replication of this study in an

ven larger component set would be valuable in verifying current

ndings.

. Conclusions

Software reuse is often viewed as a promising approach for re-

ucing costs, shortening time-to-market and improving quality in

oftware development. Especially in the vast world of open source

rojects it is expected that almost every piece of required function-

lity is somewhere to be found. However, reuse is far from trivial

ue to a number of reasons pertaining to the availability, adapt-

bility, maintainability, documentation and complexity of existing

omponents. In this study, we have performed an embedded mul-

iple case study on 596 Java OSS projects to assess their reusabil-

ty with respect to the application domain that they belong to.

he findings of the study suggest that application domains differ

hen analyzed from the perspective of seven distinct aspects of

eusability. The application domains Science and Engineering Appli-

ations and Software Development Tools , have proven to offer the

ost reuse-friendly components, while on the other hand, Game

evelopers seem to pay limited attention to reuse. Such evidence

an be valuable to both researchers and practitioners as a guide

or selecting appropriate projects for studying or exploiting reuse

pportunities.

226 M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227

H

H

H

J

K

K

L

K

M

M

M

M

N

P

R

R

R
R

S

S

W

Acknowledgement

This work was financially supported by the action "Strengthen-

ing Human Resources Research Potential via Doctorate Research"

of the Operational Program "Human Resources Development Pro-

gram, Education and Lifelong Learning, 2014-2020 ′′ , implemented

from State Scholarship Foundation (IKY) and co-financed by the

European Social Fund and the Greek public (National Strategic Ref-

erence Framework (NSRF) 2014–2020).

References

Ajila, S.A. , Wu, D. , 2007. Empirical study of the effects of open source adoption on
software development economics. J. Syst. Softw 80 (September(9)), 1517–1529

Elsevier .
Ampatzoglou, A. , Stamelos, I. , Gkortzis, A. , Deligiannis, I. , 2012. Methodology on ex-

tracting reusable software candidate components from open source games. In:

Proceeding of the 16th International Academic MindTrek Conference. Finland.
ACM, pp. 93–100 .

Ampatzoglou, A. , Michou, O. , Stamelos, I. , 2013a. Building and mining a repository
of design pattern instances: Practical and research benefits. In: Entertainment

Computing, 4. Elsevier, pp. 131–142 .
Ampatzoglou, A. , Gkortzis, A. , Charalampidou, S. , Avgeriou, P. , 2013b. An embed-

ded multiple-case study on OSS design quality assessment across domains. In:

7th International Symposium on Empirical Software Engineering and Measure-
ment (ESEM’ 13) 10–11 October. ACM/IEEE Computer Society, Baltimore, USA,

pp. 255–258 .
Arvanitou, E.M. , Ampatzoglou, A. , Chatzigeorgiou, A. , Avgeriou, P. , 2015. Introducing

a ripple effect measure: a theoretical and empirical validation. 9th International
Symposium on Empirical Software Engineering and Measurement (ESEM’ 15).

ACM/IEEE Computer Society, Beijing, China .

Arvanitou, E.M. , Ampatzoglou, A. , Chatzigeorgiou, A. , Avgeriou, P. , 2016. Software
metrics fluctuation: a property for assisting the metric selection process. Inf.

Softw. Technol. 72 (April), 110–124 .
Baldassarre, M.T. , Bianchi, A. , Caivano, D. , Visaggio, G. , 2005. An industrial case

study on reuse oriented development. 21st International Conference on Soft-
ware Maintenance (ICSM’05). IEEE Computer Societ .

Bansiya, J. , Davies, C.G , 2002. A hierarchical model for object-oriented design qual-

ity assessment. Trans. Softw. Eng. IEEE Comput. Soc. 28 (January(1)), 4–17 y,
283–292, September 2005 .

Boehm, B. , 1999. Managing software productivity and reuse. Computer 32 (9),
111–113 .

Chidamber, S.R. , Darcy, D.P. , Kemerer, C.F. , 1998. Managerial use of metrics for object
oriented software: an exploratory analysis. Trans. Softw. Eng. IEEE Comput. Soc.

24 (August(8)), 629–639 .
Cho, H. , Yang, J.S. , 2008. Architecture patterns for mobile games product lines. In:

Proceedings of the 2008 International Conference on Advanced Communication

Technology (ICACT’08). Korea. IEEE Computer Society, pp. 118–122. 17–20 Febru-
ary .

Clements, P.C , 1995. From subroutines to subsystems: component-based software
development. Am. Program. 8 31–31 .

Crnkovic, I. , Hnich, B. , Johnson, T. , Kiziltan, Z. , 2002. Specification, implementa-
tion, and deployment of components. Commun. Assoc. Comput. Mach. 45 (Oc-

tober(10)), 35–40 .

Fenton, N. , Bieman, J. , 2014. Software Metrics: A Rigorous and Practical Approach,
third ed. CRC Press, Inc., Boca Raton, FL, USA .

Folmer, E. , 2007. Component based game development – a solution to escalating
costs and expanding deadlines. In: 10th International Symposium on Compo-

nent Based Software Engineering (CBSE’ 07) 9–11 July. Springer-Verlag, Medford,
MA , USA , pp. 66–73 .

Frakes, W.B. , Fox, C.J. , 1996. Quality improvement using a software reuse failure

modes model. Trans. Softw. Eng. IEEE Comput. Soc. 22 (April(4)), 274–279 .
Franch, X. , Carvallo, J.P. , 2003. Using quality models in software package selection.

Softw. IEEE Comput. Soc. 20 (January/February(1)), 34–41 .
Gabow, H.N , 20 0 0. Path-based depth-first search for strong and bi-connected com-

ponents. Inf. Process. Lett. 74 (May(3–4)), 107–114 Elsevier .
Griffith, I. , Izurieta, C. , 2014. Design pattern decay: the case for class grime. 8th

International Symposium on Empirical Software Engineering and Measurement

(ESEM ’14) 18–19 September. ACM/IEEE Computer Society, Torino, Italy .
Haefliger, S. , Krogh, G.V. , Spaeth, S. , 2007. Code reuse in open source software. Man-

age. Sci. 54 (November(1)), 180–193 PubsOnline .
einemann, L. , Deissenboeck, F. , Gleirscher, M. , Hummel, B. , MIrlbeck, M. , 2011. On
the extent and nature of software reuse in open source java projects. 12th In-

ternational Conference on Top Productivity through Software Reuse (ICSR’ 11).
Springer .

ristov, D. , Hummel, O. , Huq, M. , Janjic, W. , 2012. Structuring software reusability
metrics for component-based software development. 7th International Confer-

ence on Software Engineering Advances (ICSEA) .
owison, J. , Conklin, M. , Crowston, K. , 2008. FLOSSmole: a collaborative repository

for FLOSS research data and analyses. In: Integrated Approaches in Information

Technology and Web Engineering: Advancing Organizational Knowledge Shar-
ing. IGI Global, pp. 18–27 .

acobson, I. , Griss, M. , Jonsson, P. , 1997. Software reuse: architecture. Process and
Organization for Business Success. ACM Press/Addison-Wesley Publ. Co., New

York, NY, USA .
Johnson, I. , Snook, C. , Edmunds, A. , Butler, M. , 2004. Rigorous development of

reusable, domain-specific components, for complex applications. 3rd Interna-

tional Workshop on Critical Systems Development with UML (CSDUML’04).
Springer .

akarontzas, G. , Constantinou, E. , Ampatzoglou, A. , Stamelos, I. , 2013. Layer assess-
ment of object-oriented software: a metric facilitating white-box reuse. J. Syst.

Softw. 86 (2), 349–366 .
rueger, C.W. , 1992. Software reuse. Comput. Surv. 24 (2), 131–184 ACM .

Lau, K.K. , Wang, Z. , 2005. A taxonomy of software component models. In: 31st EU-

ROMICRO Conference on Software Engineering and Advanced Applications (EU-
ROMICRO-SEAA). IEEE, pp. 88–95 .

ee, W.P. , Liu, L.J. , Chiou, J.A. , 2006. A component-based framework to rapidly proto-
type online chess games for home entertainment. In: Proceedings of the Inter-

national Conference on Systems, Man and Cybermetrics (SMC’06) 8–11 October.
IEEE Computer Society, Taipei, Taiwan, pp. 4011–4016 .

arlsson, .A. , 1995. Software reuse: a Holistic Approach. John Wiley & Sons, Inc .

artin, R.C. , 2003. Agile Software development: Principles, Patterns and Practices.
Prentice Hall, New Jersey .

ili, H. , Mili, F. , Mili, A. , 1991. Reusing software: issues and research directions. IEEE
Trans. Softw. Eng. 21 (6), 528–562 .

ockus, A. , 2007. Large-scale code reuse in open source software. 1st International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS’ 07).

IEEE Computer Society .

Mohagheghi, P. , Conradi, R. , 2007. Quality, productivity reuse: a review of industrial
and economic benefits of software studies. Empir. Softw. Eng. 12 (5), 471–516 .

orisio, M. , Romano, D. , Stamelos, I. , 2002. Quality, productivity, and learning in
framework-based development: an exploratory case study. Trans. Softw. Eng.

IEEE Comput. Soc. 28 (September(9)), 876–888 .
air, T.R.G. , Selvarani, R. , 2010. Estimation of software reusability: an engineering

approach. SIGSOFT Softw. Eng. Notes 35 (January(1)), 1–6 .

fleeger, S.L. , Kitchenham, B. , 2001. Principles of survey research part 1: turning
lemons into lemonade. Special Interest Group Softw. 26 (November(6)), 16–18

ACM .
aemaekers, S. , Deursen, A.V. , Visser, J. , 2012. An analysis of dependence on third–

party libraries in open source and proprietary systems. 6t h International Work-
shop on Software Quality and Maintainability (SQM’ 12) March .

eimanis, D. , 2015. A research plan to characterize, evaluate, and predict the im-
pacts of behavioral decay in design patterns. 13th International Doctoral Sym-

posium on Empirical Software Engineering (IDOSE’ 15) .

ubén, P.D , 1993. Status report: software reusability. IEEE Softw. 10.3, 61–66 .
uneson, P. , Host, M. , Rainer, A. , Regnell, B. , 2012. Case Study Research in Software

Engineering: Guidelines and Examples. John Wiley & Sons .
Schwittek, W. , Eicker, S. , 2013. A study on third party component reuse in java en-

terprise open source software. In: 16th International Symposium on Componen-
t-based Software Engineering (CBSE’ 13). ACM, pp. 75–80 .

harma, A. , Grover, P.S. , Kumar, R. , 2009. Reusability assessment for software com-

ponents. SIGSOFT Softw. Eng. Notes 34 (February(2)), 1–6 .
Sojer, M. , Henkel, J. , 2010. Code reuse in open source software development: quanti-

tative evidence, drivers, and impediments. J. Assoc. Inf. Syst. 11 (December(12)),
868–901 .

tandish, T.A. , 1984. An essay on software reuse. IEEE Trans. Softw. Eng. 5, 4 94–4 97 .
Washizaki, H. , Yamamoto, H. , Fukazawa, Y. , 2003. A metrics suite for measuring

reusability of software components. In: Software Metrics Symposium, 2003.

Proceedings. Ninth International. IEEE .
ohlin, C. , Host, M. , Runeson, P. , Ohlsson, M , Regnell, B. , Wesslen, A. , 20 0 0. Experi-

mentation in Software Engineering: an Introduction. Kluwer Academic Publish-
ers .

http://dx.doi.org/10.13039/501100004895
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0029
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30199-1/sbref0048

M.-E. Paschali et al. / The Journal of Systems and Software 134 (2017) 211–227 227

f Informatics of the Aristotle University of Thessaloniki (Greece), in the group of Software

atics from University of Macedonia, Greece (2011), and a BSc degree in Informatics and
te of Serres, Greece (2008). Her research interests include software reuse, open source

 Department of Informatics of the Aristotle University of Thessaloniki, where he carries

period from 2013 to 2016, he was an Assistant Professor at the University of Groningen
s (2003), an MSc on Computer Systems (2005) and a PhD in Software Engineering by

 research interests include technical debt, source code analysis, software maintainability,
ineering and software design. He has published more than 55 articles in international

research and development projects in Information & Communication Technologies with

ally, he serves as a reviewer in numerous leading journals of the software engineering
nce program committees.

n the Department of Informatics and Telecommunications at the University of Western

ics (2002) and a PhD (2008) in software engineering from the Aristotle University of
re process models, estimation of software development cost and quality, cloud computing,

 engineering in the Department of Applied Informatics at the University of Macedonia,
al Engineering and the PhD degree in Computer Science from the Aristotle University of

m 1997 to 1999 he was with Intracom S.A., Greece, as a telecommunications software

ng staff at the Hellenic Open University. His research interests include object-oriented
alysis. He has published more than 150 peer-reviewed articles in international journals,

 Technical Chamber of Greece.

Informatics of the Aristotle University of Thessaloniki, where he carries out research and
diploma of Electrical Engineering (1983) and a PhD in Computer Science by the Aristotle

terests are focused on open source software engineering, software project management
 articles in international journals and conferences. He is/was the scientific coordinator or

 development projects in Information & Communication Technologies with funding from
Maria Eleni Paschali is a PhD Student at the Department o

Engineering. She holds an MSc degree in Applied Inform
Communications from the Technological Education Institu

software development, and computer games.

Dr. Apostolos Ampatzoglou is a Guest Researcher at the

out research in the area of software engineering. In the
(the Netherlands). He holds a BSc on Information System

the Aristotle University of Thessaloniki (2012). His current
software quality management, open source software eng

journals and conferences. He is/was involved in over 10

funding from national and international organizations. Fin
domain, and as a member of various international confere

Dr. Stamatia Bibi is a Lecturer of software engineering i

Macedonia, Kozani, Greece. She holds a BSc in Informat
Thessaloniki, Greece. Her research interests include softwa

and open source software.

Dr. Alexander Chatzigeorgiou is a Professor of software
Thessaloniki, Greece. He received the Diploma in Electric

Thessaloniki, Greece, in 1996 and 20 0 0, respectively. Fro

designer. Since 2007, he is also a member of the teachi
design, software maintenance, and software evolution an

conference proceedings and books. He is a member of the

Dr. Ioannis Stamelos is a Professor at the Department of
teaching in the area of software engineering. He holds a

University of Thessaloniki (1988). His current research in
and software education. He has published more than 200

principal investigator for his University in 30 research and
national and international organizations.

	Reusability of open source software across domains: A case study
	1 Introduction
	2 Related work
	2.1 Software reuse
	2.2 Software reusability metrics and models
	2.3 Open source software reuse

	3 Reusability model
	4 Case study design
	4.1 Objectives and research questions
	4.2 Case selection and unit analysis
	4.3 Data collection & analysis
	4.4 Data analysis

	5 Results
	5.1 Reuse
	5.2 Adaptability
	5.3 Maintainability
	5.4 External quality
	5.5 Availability
	5.6 Documentation
	5.7 Complexity

	6 Discussion
	6.1 Interpretation of results
	6.2 Implications to researchers and practitioners
	6.3 Applicability of empirical findings

	7 Threats to validity
	8 Conclusions
	 Acknowledgement
	 References

