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ABSTRACT Despite the extensive adoption of crowdsourcing for the timely, cost-effective, and high-quality
completion of software development tasks, a large number of crowdsourced challenges are not able to
acquire a winning solution, on time, and within the desired cost and quality thresholds. A possible reason for
this is that we currently lack a systematic approach that would aid software managers during the process
of designing software development tasks that will be crowdsourced. This paper attempts to extend the
current knowledge on designing crowdsourced software development tasks, by empirically answering the
following management questions: (a) what type of projects should be crowdsourced; (b) why should one
crowdsource—in terms of acquired benefits; (c) where should one crowdsource—in terms of application
domain; (d) when to crowdsource—referring to the time period of the year; (e) who will win or participate
in the contest; and (f) how to crowdsource (define contest duration, prize, type of contest etc.) to acquire
the maximum benefits—depending on the goal of crowdsourcing. To answer the aforementioned questions,
we have performed a case study on 2,209 software development tasks crowdsourced through TopCoder
platform. The results suggest that there are significant differences in the level to which crowdsourcing goals
are reached, across different software development activities. Based on this observation we suggest that
software managers should prioritize the goals of crowdsourcing, decide carefully upon the activity to be
crowdsourced and then define the settings of the task.

INDEX TERMS Crowdsourcing, software development, success factors, crowd factors, cost, duration.

I. INTRODUCTION
The term crowdsourcing combines two words: crowd and
outsourcing. Formally, Howe [12]—who first coined the term
in 2006—defined crowdsourcing as ‘‘the act of taking a
job traditionally performed by a designated agent and out-
sourcing it to an undefined, generally large group of people
in the form of an open call’’. In this context crowdsourc-
ing is a new business model that enables the co-creation
between a ‘‘provider’’ that is the one that sets the details
of the problem, the ‘‘supplier’’ / ‘‘crowd’’ that suggests
a solution and the ‘‘host’’ who offers the crowdsourcing
platform, enabled by Web 2.0 [32], presenting the problem
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formulated by the provider to the crowd. Crowdsourced
Software Engineering (CSE) gained an increasing interest
by both industry and academia, appearing to be a promising
approach for completing specific software engineering tasks.
CSE as a means to leverage the power of the crowd over
task completion is not a new research topic, considering that
the development paradigm of Open Source Software [17] is
popular from the late 90s, but as a formulated contest-based
software development process, has been an emerging hot
trend only the last years [5]. According to Latoza and Van
Der Hoek [17] ‘‘contests’’ as a crowdsourcing model, are
similar to the outsourcing model, in the sense that a client
requests work and pays for its completion, but differs as
it treats the crowd as contestants rather than collaborators.
When formulating a contest, the provider suggests the task to
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be crowdsourced, that may cover requirements, architecture,
user interface design, implementation, and testing, that can
be completed in a number of days. Contestants (the crowd)
provide each one of them a competing solution; from which
a winning one is selected and apprized. Current evidence
suggests that crowdsourcing contests are more successful
when associated with the completion of micro-tasks [37], [7],
yet there are some examples where large, innovation projects
are successfully crowdsourced [12].

Despite the dominating feeling that crowdsourcing is a
low risk alternative to outsourcing tasks, the possibility of
failure is non-negligible [20]. According to Dahlander and
Piezunka [5] only 10% of crowdsourced contests are able
to attract the desired amount of contributions, while in 50%
of the contests there is no contribution at all. The success
of crowdsourced software development is closely related to
the reliability of the participating crowd-workers [1] and
their experience [37] and therefore it is important for contest
providers to attract the suitable contributors [7]. According to
Weidema et al. [37] many participants find the crowdsourced
tasks to be difficult despite the fact they are of limited scope.
A possible reason for this perception might be that the tasks
crowdsourced are poorly oriented [10], or even the fact that
the tasks are not suitable for being crowdsourced [5]. Another
problem that crowdsourcing contests deal with is the quality
of the submitted solutions [37] and the fact that the over-
all costs of contests are underestimated [10]. Summarizing,
crowdsourcing contests apart from failing directly (i.e., they
are not able to acquire a winning solution), they very fre-
quently fail indirectly. In particular, if a solution comes late,
it might not be relevant or useful for the contest provider; if it
is of low quality then, it might not be ready for being brought
into market; or if it is overpriced, it might not be beneficial
decision to not build the product in-house.

Therefore, it is of paramount importance to carefully make
decisions during the planning phase of a crowdsourcing
project [14]. Focusing on the decision phase and inspired
by the 5W+1H model [11] to improve project management
efficiencies in this paper we aim to provide assistance to a
contest provider in order to help him clearly answering the
following questions:
• What to crowd-source? To answer this question, we will
carefully examine the different tasks that can be crowd-
sourced and their performance with respect to solution
acquisition, the required time, the cost, and the quality
of the solution acquired. Traditional software engineer-
ing activities that can be considered for crowdsourcing
are design, development and testing tasks. Also more
specialized activities such as cognitive tasks (i.e. Arti-
ficial Intelligence solutions) can be considered. Such an
answer will help the provider decide upon the specific
task that can be assigned for crowdsourcing.

• Where to crowd-source? This question extends the pre-
vious one, emphasizing on the application domain of
the software engineering challenges that can be crowd-
sourced. Our interest here is to find the types of the

applications that are more likely to be successful when
assigned to an online community. Such application
domains can be scientific applications, media applica-
tions, civil engineering applications or even business
applications among others. Similarly, this question will
help the provider realize whether the application domain
of the task planned to be crowd-sourced has the poten-
tials to be successful.

• Why to crowd-source? The answer to this question is
related to the goals that a provider is expecting to achieve
while adopting crowd-sourcing solutions. Apart from
the delivery of the end-product/artifact crowdsourcing
goals may include cost savings, quick solution acqui-
sition (time reduction), solution diversity (that includes
more than one possible solutions) and increased quality.
A provider needs to clarify which of these goals are
the most important in each contest and focus so as to
carefully set the configuration parameters of the contest.

• When to crowd-source? In this question we will exam-
ine the distributions of challenges over the calendar year
and draw conclusions on the activity of each month,
the completion of successful contests and the crowd
participation. Our target is to help the contest provider,
define the optimal time period to launch a new challenge
so as to maximize the likelihood of achieving crowd-
sourcing goals.

• Who is the crowd? The answer to this question is related
to the profiles of the winners and the participants of
the contest, their competencies and their relative perfor-
mance. Also the profiles of participants and the ‘‘quit-
ters’’ of the contests (low reliability) will be analyzed.
Such information will be useful for contest providers to
better orient the contests based on the experience and
expertise of the community of ‘crowd workers’ they are
expecting.

• How to crowd-source? In this question we examine
the relevant factors that orient a crowdsourcing contest,
in-cluding the configuration parameters in the problem
statement of the challenge. Such parameters can be
the type of the contest, the prize, the duration and the
number of winners. Obviously all the 5W questions are
related to the current question and thus a contest provider
needs to carefully answer all of them to be able to set
a new contest that has the potentials to succeed. The
decision making phase is further exemplified in Fig.1.

This study explores the ‘‘How’’ question by taking into
account the ‘‘Why’’ question in the sense that a manager
should consider the level to which crowdsourcing goals
are achieved across varying software development tasks
(‘‘What’’), different application domains (‘‘Where’’), time
periods that the contest will be announced (‘‘When’’) and the
profiles of ‘crowd’ workers (‘‘Who’’).

For the purpose of this study we have performed an
exploratory case study on 2,209 projects, crowdsourced by
the popular TopCoder platform during 2018. The data involve
a variety of different software development challenges that
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FIGURE 1. Decision making phase for crowdsourcing software.

were crowdsourced through different types of contests and
apprized by specific monetary rewards. The challenges were
further classified to different types of tasks and application
domains. We investigated if there are statistically significant
differences among the success indicators of different types
of challenges, examined the distribution of contest types and
the level to which each type is preferred when different
challenges are crowd sourced. All the results were summa-
rized in evidence-based models that provide assistance to
contest providers when deciding upon the activity to be crowd
sourced and the settings of the chal-lenge, with respect to the
crowdsourcing goals.

The rest of the paper is organized as follows: In Section II
we present an overview of related work and in Section III we
present the case study design, in Section IV we provide the
results, organized by research question, and discuss them in
Section V. In Section VI we present the threats to validity of
our study, and in Section VII, we conclude the paper.

II. RELATED WORK
Crowdsourced Software Engineering (CSE), as a develop-
mentmodel, has been an emerging trend in the last decade [2],
facing new types of management challenges determining its
operational success. In this section we will refer to the differ-
ent CSE management challenges that have been tackled by
the related work by taking into consideration the perspective
of the 5W+1H model. In particular we will present works
related to the questions:

• Why to crowdsource?
• What to crowdsource?

• Where to crowdsource?
• Who will be the crowd?
• When to crowdsource?
• How to crowdsource?

A. WHY TO CROWDSOURCE?
According to Stol et al. [28], the main benefits acquired from
crowdsourcing software are:
Cost reduction that is achieved by exploiting lower devel-

opment costs in certain regions [28] and by offering new
types of compensation models such as experience gain, and
recognition based systems [16] instead of typical monetary
prizes. Another reason that supports the claims of cost reduc-
tion is that crowdsourcing model is a form of outsourcing
and therefore it inherits the typical benefits of outsourcing
such as the avoidance of insourcing costs (i.e hire overheads,
know how acquisition, application of new processes) [18],
[28], [31].
Time reduction that is achieved due to the parallelization

of decomposed tasks [17], [27] and the potential to access
a pool of experienced developers [14], [16], [31] that can
increase productivity and accelerate development. Addition-
ally according to Stol et al. [28], motivated geographically
distributed workers are willing to work during weekends,
exploiting the different time zones so as to achieve a full
24h productive day.
Higher quality is also a potential benefit acquired from

crowdsourcing [4]. According to Latoza and Van Der
Hoek [17] crowdsourcing, as a process, promotes the
generation of alternative solutions to a given problem.
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From these solutions the provider may select or even com-
bine the most appropriate ones, obtaining at the end higher
quality solutions. This argument is further supported by
Stol et al. [28] who emphasize that broad participation of
the crowd provides access to experienced developers that
self-select the task based on their skills and therefore attempt
to offer the highest quality solution in order to win.
Crowd innovation is the last but the most important

motivation to crowdsourcing tasks. The ‘‘wisdom of the
crowd’’ [12], the democratization of participation [17], the
open creativity that many times outmatches the fixed mindset
that exists within individual companies [28], [30] is the main
driver for selecting and designing crowdsourced software
development contests. It seems that crowd participation is
among the most important goals of crowdsourcing since
engaging the right ‘‘crowd’’ the contest provider can obtain
all the aforementioned benefits regarding time and cost reduc-
tion along with quality assurance. Solution diversity obtained
by broad participation is also another benefit leveraging from
crowdsourcing [38].

B. WHAT TO CROWDSOURCE?
Sarı et al. [26] mention that crowdsourcing has been applied
to various process areas in software engineering with cod-
ing tasks being the most popular one. Task selection of the
software development activities crowdsourced is a great chal-
lenge for stakeholders as micro-tasks are more easy to com-
plete according to Latoza and Van Der Hoek [17], but bigger
tasks may under the right environment leverage the most the
power of the crowd. Stol et al. [28] mention that effective task
decomposition can help the organization leverage the most
the power of crowdsourced development.

Thuan et al. [34] offer a theoretical framework to support
decision making regarding the type of task to be crowd-
sourced considering four types of tasks based on their
properties: internet tasks, interactive tasks, sensitive tasks
and partitioned tasks concluding that internet, interactive
tasks are easier to crowdsource. As for task management,
Dissanayake et al. [6] explored task division practices in
team based competitions by analyzing data from the Kag-
gle platform, finding that team leader’s social capital and
team expert’s intellectual capital affect the performance of a
team that is accelerated in contests that are less competitive.
Though in this study the authors do not refer to the specific
types of tasks crowdsourced but rather examine the efficacy
of task division practices. Similarly Yu et al. [40] explored
task assignment and division in collaborative crowdsourced
development.

The level of success of crowdsourced micro-task com-
pletion, and in particular software interface design tasks,
was studied in [37]. The authors conducted experiments
with Amazon Mechanical Turk workers and noted that it
is feasible for the crowd to generate a large number of
alternative solutions, though their quality is highly differen-
tiated. Yang et al. [39] proposed a methodology, based on
ranking, to recommend tasks to crowd workers taking into

consideration, among other factors, the average submission
quality on similar tasks and the overall submission rate of
each crowd worker.

We can observe that despite the fact that task selection and
decomposition is considered a very important success factor
when crowdsourcing software [6], [10], [17], [18], [31], [33],
we cannot find any study that compares the efficiency of
crowdsourcing different types of software engineering tasks
in terms of the success indicators described in section II-A.

C. WHERE TO CROWDSOURCE?
The ‘‘Where’’ question may refer to two things: (a) the
platform in which a software development contest will be
hosted and (b) the application domain where the solution
derived from the crowdsourced contest is deployed. Regard-
ing the first interpretation according to Mao et al. [21] and
Wu et al. [38] there are several online platforms available that
can currently host software development challenges. Several
of these platforms support all types of software development
tasks1 (TopCoder, Bountify) while others support specific
tasks 2 such as testing and mobile development (uTest, Test-
Birds). According toMao et al. [21] TopCoder is a pioneer for
practicing crowdsourced software engineering and the dom-
inant platform when selecting the medium to host contents.
Additionally this platform is used in the majority of research
studies performed for determining success factors of crowd-
sourced software development [1], [2], [19], [36], [38], [39].
However, we were not able to identify any study that com-
pares the efficacy of different platforms. Regarding the sec-
ond interpretation of the where question, we were not able
to find empirical evidence on the application domain that is
more popular for crowdsourcing contests.

D. WHO WILL BE THE CROWD?
Several studies have explored the profile and the charac-
teristics of the ‘‘crowd’’ participating in software devel-
opment contests. The crowd motivation and incentives are
recognized as the most important factors from the crowd
perspective affecting CSE success [17], [18], [22]. A con-
tributor can be highly motivated to participate in a contest
because of the recognition received [19], or the monetary
prize [21] or the acquisition of experience [29]. The crowd
size necessary to tackle a problem is appointed by Latoza and
Van Der Hoek [17], as an important dimension of CSE.
According to Tajedin and Nevo [33] the size of the crowd also
has a positive effect on the crowd composition that affects
CSE success considering the fact that when more people
are attracted to a project the chances of receiving innova-
tive, diversified solutions are increased. Crowd reliability
is recorded also as an important factor by Mehta [22] and
Yang et al. [39] referring to the level to which registered
contributors submit, at the end, a solution and whether this
solution is of the expected quality. Crowd experience is part

1 www.topcoder.com, www.bountify.co
2 www.utest.com, www.appstori.com
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of the CSE success according to Li [19], as it is a factor that
can affect the quality of the end product solution.

E. WHEN TO CROWDSOURCE?
Numerous studies can be found in literature mentioning the
importance of selecting the right period to crowdsource a
project [30]. Stol et al. [30] appoint that providers need to
schedule a contest during the right period so as to ensure
that sufficient number of workers are available when needed.
While there may be extensive expertise within the crowd,
it might not be available at themoment when it is needed [14].

Despite the aforementioned, we were not able to find
any case studies answering the When question directly.
Li et al. [19] approximated time by introducing a variable
representing the contest platform ‘‘traffic’’, measured as the
number of other projects posted when the present project is
being crowdsourced. Li et al. [19] examined the influence
of platform traffic on the final quality of the crowdsourced
project. He concluded that the quality of a crowdsourced
project is increased when it is posted in a prosperous period
(i.e. a number of other challenges are communicated through
the platform).

F. HOW TO CROWDSOURCE?
In this section, we present an overview of the experimental
research performed on how to crowdsource software devel-
opment. We mainly refer to the settings and environmental
parameters that orient a contest and affect its performance in
terms of the quality of the solution acquired and the crowd
participation and engagement. We should mention that we
were not able to find any studies examining the contest
parameters that affect CSE success in terms of cost and time.

Archak [2] was one of the first to explore efficient crowd-
sourcing mechanisms with respect to quality factors. The
findings of his study highlighted the influence of special
factors like payment and project requirements over the final
quality of the delivered project. Li in [19] tested 23 soft-
ware quality factors based on platform and project nature
and performed an experimental analysis on crowdsourced
reusable projects concluding that among the four aspects that
affect CSE quality and should be considered when designing
contests are the time period when a project is posted, the size
of the project, the participation of experienced developers
and the level to which the design documents of the project
are of high quality. Sohibani et al. [27] recorded quality fac-
tors based on the findings from questionnaires answered by
participants of 5 different crowdsourcing platforms YouTube,
AmazonMechanical Turk,Wikipedia, Rally Fighter andKick
Starter appointing as well that the crowd company workers
experience is very important. Wang et al. [36] suggested
a new quality metric for assessing crowdsourced software
development projects, the effort level. The effort level is
calculated as a bi-product of 5 parameters: duration, payment,
specification length and number of links, and technology
requirements.

Crowd participation was found to be influenced by the
clarity of the description of the associated tasks [35].
Tasks with unclear objective description, without specifying
required technologies or environment setup instructions, dis-
courage developers from selecting them. Crowd participation
was also examined by Stol et al. in [28] who concluded that
the duration and the prize of contests do not significantly
affect crowd participation. On the other hand, the number
of competitions that run in parallel within a project has a
significant negative effect on the crowd’s interest in a com-
petition. Alelyani and Yang [1] explored crowd reliability
by investigating possible connections between the nature of
the crowd and crowdsourced tasks. Data regarding work-
force reliability (in terms of complete task submission and
thus participation), task registration speed, task completion
duration, skills (on programming language knowledge list)
and challenge types (on the nature and rewards of each
contest) were analyzed and signalized as catalyst factors for
success. Similarly, Dwarakanath et al. [8] assessed the crowd
trustworthiness based on submission quality, timeliness and
ownership concluding that task requirements, user efficacy
and reputation strongly influence the trustworthiness of the
crowd. Karim et al. in [13] proposed a recommendation
system that can help mainly crowd workers (and as a side
effect providers) on taking over the appropriate tasks based on
technology requirements and their skills. The aforementioned
factors are also explored by Saremi et al. [25] who explored
team reliability, velocity and reliability.

G. CONTRIBUTIONS OF THE STUDY
A summary of the studies experimenting on the success
of crowdsourced development is presented in Table 1. For
instance, study [18] investigates if ‘‘Quality’’ is a parameter
that affects ‘‘why crowdsourcing is performed’’ and ‘‘how the
contest shall be setup’’. The sign ‘‘X’’ corresponds to inves-
tigation performed by the current study. Based on Table 1,
and the aforementioned discussion, we can observe that the
majority of these studies focus on contestants’ behavior and
quality assessment. In this study we go beyond current liter-
ature, since this study:
• Focuses on management issues that can be controlled
and monitored early. In particular, we focus on aspects
that are formulated early while designing and setting up
the crowdsourced activity. Special emphasis is placed on
factors that can affect the success of the CSE operation.

• Provides a model that can aid contest providers on
deciding upon important aspects of challenges’ settings,
based on the specific goal of crowdsourcing.

• Investigates duration and cost of crowdsourcing chal-
lenges, as factors for answering all 5W+1H manage-
ment questions.

• Examines the where to crowdsource question, from the
perspective of the application domain.

• Examines the relation between the time period when a
contest is announced, to the potential success in terms
of cost, duration, solution acquisition and quality.
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TABLE 1. Case studies on CSE challenges.

III. STUDY DESIGN
In this section we present the protocol of our case study
that has been designed according to the guidelines of
Runeson et al. [23]. The main goal of the case study is to pro-
vide empirical evidence on the success potentials of crowd-
sourcing software engineering tasks. The factors of interest
include the parameters that the contest provider should con-
figure, while setting up a new contest, whereas a CSE project
is considered successful if it is able: (a) to acquire a winning
solution, (b) to retain the cost under acceptable thresholds,
(c) to maximize quality, and (d) to minimize the duration of
the contest. To achieve this goal, we conducted a case study
on the 2,209 contests in the TopCoder platform performed
during 2018. The reason for conducting a case study is that
our goal is to investigate the phenomenon of crowdsourcing
in its real context. The cases and units of analysis in this study
are presented in Section III-B.

A. OBJECTIVES AND RESEARCH QUESTIONS
The overall goal of this case study, formulated according
to the Goal-Question-Metric approach [3] is to analyze
data from crowdsourced software development; for the pur-
pose ofovercoming software management challenges; with
respect to achieving contest success in terms of solution
acquisition, cost, quality, duration; from the viewpoint of
the contest provider; in the context of applying the crowd-
sourcing software development approach in design, devel-
opment, quality assurance and cognitive tasks. In order to
achieve the aforementioned goal, we set six research ques-
tions driven by the 5W+1H model defined in Section I:

[RQ1] Why should a contest provider setup a
competition?

RQ1 focuses on the goals of crowdsourcing. Based on the
literature software development crowdsourcing, apart from
the delivery of the product per se, provides additional ben-
efits, e.g., decreased development cost, decreased develop-
ment time and increased quality. Therefore, in this research
question we investigate why contest providers’ crowdsource
with respect to the success indicators that are: delivery of a
solution, reduced costs, time efficiency, quality. We answer
this RQ by investigating the values of the aforementioned
success indicators per type of software engineering challenge.

[RQ2] What types of tasks should be crowdsourced?
RQ2 aims to investigate the types of crowdsourced soft-

ware engineering tasks that are the most common in the
Top-Coder platform and the level to which these tasks achieve
the crowdsourcing goals regarding solution delivery, reduced
costs, time efficiency, quality and Overall Success. In this
RQ we differentiate from RQ1 by examining whether the
performance of each contest, with respect to the four suc-
cess indicators, is within the success thresholds defined
in Section III-D. Being aware of this information the con-
test provider can have access to the accumulated experience
derived from the TopCoder community regarding the specific
types of tasks.

[RQ3] Where can the crowdsourced projects be
exploited?

RQ3 digs further into the findings of RQ1 by placing
emphasis in the application domain (e.g., business applica-
tions, scientific applications, etc.). The obtained benefit from
answering this research question is the same as in RQ1,
we note that the extraction of the application domain cannot
be obtained automatically from the TopCoder API, but was
extracted manually.

[RQ4] Who is going to participate and win the
competition?

RQ4 focuses on investigating the profile of the competition
participants along with the winner(s) profile. In particular,
we obtain information on the experience of the participants/
winners and their reliability. This information can be of
paramount importance for contest providers: e.g., if the nature
of the contest is relevant only for highly experienced devel-
opers, demanding high prize rates, then the configuration of
the contest should not be of a low prize.

[RQ5]When is the right time to crowdsource a project?
RQ5 attempts to investigate trends on which periods of the

year are the most active for competitions in terms of opening
new contests, submitting solutions, receiving successful sub-
missions, etc. The answer to this research question can guide
the contest provider on which month the contest should be
set, so as to achieve maximized success opportunities.

[RQ6] How do the different crowdsourcing success
factors and indicators vary across the different types of
software development activities crowdsourced?

RQ6 focuses on exploring how contest configuration fac-
tors (i.e., contest type, cost, duration, and number of winners)
and project factors (i.e., application domain, challenge type)
can affect the success of the contest. We note that a contest is
considered successful not only if the end product is acquired,
but also if the solution is cost- and time-efficient, and of
high quality. The answer to this research question can be
very useful for contest providers, in the sense that they will
gain awareness on how to improve the success rates for their
products.

B. CASE SELECTION
This paper reports a holistic multiple-case study since cases
match the units of analysis. In particular, the context of the
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FIGURE 2. Types of challenges and tasks crowdsourced during 2018.

case study is crowdsourced software development, whereas
as cases and units of analysis we consider crowdsourced
competitions hosted by the TopCoder platform. TopCoder
platform is a pioneer for practicing Crowdsourced Soft-
ware Engineering (CSE), systematically used for empirical
research the last years [2], [39], [35].

The platform supports four types of software challenges:
Design, Development, and Quality Assurance and Cogni-
tive & AI challenges. Each challenge hosted by TopCoder
platform belongs to the above four types and is performed
through an online competition where crowd developers com-
pete with each other. Qualified winning solutions, i.e., those
that receive the highest score through a review process,
receive the award, which is usually a monetary prize. In the
cases where the contest type is of type ‘‘First-to-Finish’’
the quickest contestant(s) with a qualified solution is (are)
the one(s) that receive(s) the award. For the purposes of this
study we selected all the contests that were announced and
completed the last calendar year 2018, considering that this is
a representative sample of crowdsourcing trends on software
engineering. Fig.2a presents the distribution of challenges
across the four different types. According to TopCoder clas-
sification each challenge can be further classified into eight
specific types of tasks. The different types of tasks crowd-
sourced along with the frequency of each type are depicted
in Fig.2b.

C. DATA COLLECTION
For every competition performed during 2018 on TopCoder
platform we recorded or calculated the variables presented
in Table 2. The majority of the variables are directly extracted
from Topcoder platform API. In the case where further calcu-
lation is required the method to retrieve the variables cores is

presented in the 3rd column of Table 2. In total 26 variables
are recorded for each competition. The anonymized data set
is publicly available.3

In Fig. 3 we present an example of a contest crowd sourced
in TopCoder platform. The metrics that are directly derived
from the description provided in the platform, are presented
with a green font. The metrics that are derived from the
values of the rest of the variables, or through text mining, are
highlighted with red font. The calculation process of success
indicatormetrics (V24- V28) is presented in section III-D. The
tool used to collect data based on TopCoder API is hosted
in Github.4 Specifically the location metric of the contest is
indirectly derived by retrieving the main country where the
provider company is situated, while the location of the contest
winner (V5) is provided directly by TopCoder platform by
parsing the page of the particular participant. Fig. 4 provides
an overall view of the data collection and analysis process
followed to serve the goal of this study.

D. DATA ANALYSIS
In this section we present the data analysis performed to
define the success thresholds for each indicator (solution
acquisition, cost, duration, and quality) and answer the six
research questions defined in section III-A. To reach a con-
clusion whether the crowdsourced software engineering chal-
lenges can be considered successful we followed the steps
described in Fig.4:

Step 1: To define success in terms of solution acquisition
(Solution Acquisitionbinary, V24) we examined the value of
the Number of Winning Solutions (V21) variable and com-
pared it to the value of Number ofWinners (V12). If the value
of variable V21 is smaller than the value of variable V12,
then the contest is considered unsuccessful since it has not
received the desired number of winning solutions. A failure
to this criterion might be either due to lack of sufficient
participation, or complete lack of participation.

Step 2: To define the success thresholds for the cost,
duration and quality indicators we initially classified all chal-
lenges based on the value of variable V2 (Challenge Type)
into the following classes: Design, Development, Quality
Assurance and Cognitive and AI challenges. We selected to
classify the challenges into groups so as to ensure data homo-
geneity within classes that will help us reach representative
conclusions within each type of challenge. Then for each
class of challenges we developed the boxplots for the four
metrics related to the three success indicators, Prize (V10),
Duration (V11), and Quality (V13) and examined the cor-
responding boxplot diagrams for each indicator (see Fig.5).
The graphical representation of boxplots helped us identify
outliers and extreme outliers for each indicator. Next, as a
threshold for each success indicator, we have set the 75%
quartile depicted in the boxplots. The quartile values helped
us define the upper values (Prize, Duration) or the lower

3 https://users.uowm.gr/sbibi/topcoder.xls
4 http://github.com/zozas/topcoder
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TABLE 2. Success factors and metrics.
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TABLE 2. (Continued.) Success factors and metrics.

FIGURE 3. Contest information representation in TopCoder platform.

values (Quality) of the corresponding metric beyond/ above
which any challenge can be considered successful.

The final list of threshold values for each success indicator
for each challenge type is presented in Table 3. Each row of
the table corresponds to a specific challenge type, whereas
the columns correspond to the success indicators. The cells
present the conditions under which a contest is considered
successful: e.g., a design contest that ended up with a cost
lower to 2.600 is considered successful. We note that the

use of different thresholds for different types of challenges is
necessary since the level task granularity and difficulty varies
across them. Therefore, a Development project would be
characterized as ‘‘Successful’’ if it lasts 6 days, but a project
with exactly the same duration is considered as ‘‘Failed’’ if it
involves Quality Assurance tasks.

Step 3: As a next step we created four new binary
variables, Prize Successbinary (V25), Duration Successbinary
(V26), Quality Successbinary (V27) receiving the value 0 if
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FIGURE 4. The data analysis procedure followed in this study.

TABLE 3. Success thresholds per challenge type.

the corresponding metric fails the threshold of Table 3, or 1 if
the metric is within the expected threshold.

Step 4: Finally we calculated the value of Overall
Successbinary (V28) metric which is an aggregated metric that
depicts whether a challenge is within the expected thresh-
olds defined for all of 4 success indicators. The value of
Overall Successbinary metric is calculated as a logical func-
tion depicted below. Therefore a successful competition is
expected to have price and duration lower than the threshold,
quality higher than the threshold, and number of winners the
same as the one defined by the provider. We note that we pre-
ferred the calculation based on binary values (rather than the
actual values) in order to avoid mathematical inconsistencies
in terms of units of measurement (e.g., dollars, days, etc.).

Overall Successbinary = Solution Acquisitionbinary∪
Prize Successbinary ∪ Duration Successbinary∪ Quality
Successbinary

In order to cover the research questions described
in section III-A, we performed several types of analysis as
presented in Table 4.

For RQ1we calculated the descriptive statistics (Min,Max,
Mean and St. Error of Mean) of the target variables with
respect to different types of tasks crowdsourced. By acknowl-
edging the fact that the extracted data can only act as a
proxy for the reasons for crowdsourcing, we have triangu-
lated the findings through a focus group. A focus group
is a ‘‘research technique that collects data through group
interaction on a topic determined by the researcher’’ [15].
The focus group was structured according to the guidelines
provided by Kontio et al. [15]. During the planning of the
focus groupswe defined the goal, whichwas to investigate the
reason for crowdsourcing software tasks. Regarding design,
the focus group lasted for one hour, whereas as participants
we opted for selecting stakeholders with different roles in
the software industry. The participants have been retrieved
from industrial partners of two research projects consortia,
which are spread across EU, and vary in terms of application
domains. In total, 10 people from 5 industries participated
in the focus group. The software development industries
serve the following domains: Healthcare, Telecommunica-
tions, Entertainment, Media and Finance. All participants
have either crowdsourced a software development task or
are in the process of crowdsourcing one. The discussion was
focused on the following topics:

• Describe the last crowdsourcing tasks
• Why have you decided to crowdsource?
• What is the main motivation behind the decision to
crowdsource software development tasks?

For RQ2 to RQ5 we provide the heatmaps, by cross-
tabulating the target and the grouping variables, to visualize
the deviation of the expected against the observed values.
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FIGURE 5. Boxplots for Prize and Duration Success Indicators for
(a) Quality assurance tasks (b) Development tasks.

In these questions we also employ the Pearson chi-square
test to evaluate whether the difference between the different
groups of challenges (classified each time by the different
grouping variable) are statistically significant. Finally, for
RQ6 we adopt the representation formalism of decision trees
to investigate how the different parameters for setting up
crowdsourcing challenges vary across the different types of
software development activities. In particular, we present
tree-like models of decisions related to setting-up a new con-
test, depicting in each branch the average values/percentages
observed for the participating variables in the particular group
of challenges.

TABLE 4. Data analysis methods.
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IV. RESULTS
In this section, we present the findings of this case study,
organized by research question. We note that in this section,
no interpretation of results is performed, as all results are
collectively discussed in section V. In Table 5 we present the
descriptive statistics of the different types of tasks crowd-
sourced with respect to the four success indicators. The
rows of the table represent the different application tasks
that are crowd sourced grouped into eight broad categories
(Application Design, Application Development, Cognitive &
AI, Mobile Design, Mobile Development, Quality Assurance,
Web Design and Web Development) and the columns rep-
resent the mean, minimum and maximum values of the
variables Prize, Solution Provision, Duration and Quality.
Additionally, the mean values of the application tasks that
present the best performance for a specific success indicator
are highlighted in bold.

TABLE 5. Descriptive statistics per application task.

[RQ1] Why should a contest provider setup a
competition?

In this section we discuss the motivation behind the deci-
sion to crowdsource a software project. To achieve this goal,
we first present a qualitative evaluation, by examining the
level to which the four key success indicators are achieved
in TopCoder contests. In Fig. 6 we present the percentages
of projects that are considered to be successful with respect

FIGURE 6. Percentages of successful contests for each indicator.

to the variables Prize, Solution Provision, Duration, Quality
and Overall Success.

We observe thatQuality, as a success indicator, is achieved
in most of the cases, as 91.3% of the examined contests are
successful in terms of assigned quality—i.e, the acquired
solutions are within an acceptable quality. Given the rela-
tively high percentage of success in this criterion, it is sug-
gested that managers who are interested in the quality of the
end product, have a high chance to achieve it, by crowdsourc-
ing tasks.

In themajority of cases (88.2%) the contests are considered
successful in terms of Solution Provision. Despite the fact
that the analyzed contests (in many cases) require advanced
software engineering skills (e.g., algorithmic, design, object-
oriented, etc.) there is a large pool of contest participants
that are able to provide an acceptable solution. Therefore,
a provider can rely on crowdsourcing ‘‘challenging’’ or
‘‘specialized’’ tasks, since the community is expected to pro-
vide a solution.

In terms of Duration, 86.3% of the contests are considered
to be within the acceptable thresholds. Although this criterion
ranks 3rd in this first-level analysis, it is important to consider
that for cases in which a solution was provided, 97% of them
were delivered timely. Therefore, based on the quantitively
analysis, time is a criterion that is almost always satisfied
by the community, promoting it as an important reason to
crowdsource.

In terms of Cost, 80.1% of the contests are considered
to be within the acceptable thresholds. Despite the fact that
the percentage is quite high, we need to note that in relative
terms, this criterion is the one that most frequently fails.
Therefore, it is implied that in some cases contest providers
might overestimate the effort required to complete a task,
leading them to overpay for its completion.

Overall, we observe that only 59.1% of contests are con-
sidered successful by taking into account all the aforemen-
tioned success indicators. The substantially lower percentage
of the overall success, compared to the individual factors,
suggest that while crowdsourcing it is not realistic to expect
a maximization of all factors, but there are trade-off between
them.
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As a next step, by acknowledging the fact that the above
analysis can only proxy the answer to the ‘‘why’’ question,
we have performed a qualitative analysis through a focus
group. During the discussions in the focus group, four reasons
for motivating the decision to crowdsource software devel-
opment tasks have emerged: (a) the opportunity to quickly
exploit skills that are not available in the immediate environ-
ment of the company, (b) the access to diverse solutions to a
single problem, (c) the shrinking of time to acquire a solution,
(d) the need to minimize the risk of failure. The first reason to
crowdsource was mentioned by all five participants as being
themost important. According to softwaremanagers there are
certain software development tasks that require specialized
skills, which are not easy to find. As mentioned by PM1:
‘‘we were in a rush to migrate certain functionalities to the
cloud and we needed a way to eliminate data queries so as
to reduce costs, we crowdsourced the problem and got an
optimized solution for queries’’. The second and third most
important drivers for crowdsourcing is the access to diverse
solutions as quickly as possible: ‘‘we wanted to have access
to a diversity of solutions for the logo and interface for our
new patient teleconsultation app, therefore we decided to
crowdsource the task’’. Concerning the last motivating factor
for crowdsourcing, i.e., theminimization of the risk of failure,
it was mentioned that ‘‘In the past there were cases in which
we either devoted internal resources, or outsourced tasks,
to produce solutions for particular problems (i.e., platform
design). In that cases even if we were dissatisfied with the
result, we still needed to pay internal or external resources.
In the case of crowdsourcing this risk is minimized, as if we
are not satisfied, we will not pay.’’

[RQ2] What types of tasks should be crowdsourced?
In this section, we assess the performance of the most com-

mon types of application tasks crowdsourced with respect to
the four success indicators. Our goal is to explore the success
potentials of each type of task. To achieve this goal, we com-
pare the actual value of a success indicator to the thresholds
defined in section III-D. If the value of the particular success
indicator is below/beyond the defined threshold then the con-
test is considered to be a successful with respect the particular
success indicator. The heatmap of Table 6 presents the differ-
ent success indicators for each type of task. In the heatmap,
the rows correspond to the eight different types of tasks, and
the columns to the different success indicators along with the
accumulated Success metric. The colour of each cell suggests
if the percentage of projects that succeed specific success
thresholds is higher (blue) or lower (red) than the average one
for the specific indicator. The percentage that appears inside
the cell corresponds to the difference between the percentage
of successful projects implementing the specific task, and the
total percentage of successful projects, with respect to the
success indicator considered.

Among the most successful tasks in terms of Cost are the
Web Design tasks, presenting a great difference compared to
the rest types of tasks, while the Application development
tasks present a significant percentage of projects under cost

TABLE 6. Successful CSE indicators per application task.

TABLE 7. Relation of success indicators and CSE tasks.

thresholds. We observe that in terms of Solution Provision
Application Design andMobile Design tasks along with Cog-
nitive& AI tasks present high percentages of solution acqui-
sition while Mobile and App Development tasks are the ones
that present the higher probability of not being able to acquire
a solution. With respect to Duration and time-efficiency,
Mobile and Web Design tasks are the most successful in
terms of time, with Cognitive& AI solutions often exceed-
ing time thresholds. The highest percentages of successful
projects in terms of Quality are observed in Mobile and Web
Design tasks while the lowest percentages are observed in
Application Design tasks. Overall, with respect to the total
Success indicator, we observe that Web Design and Mobile
Design tasks are the ones that are most probable to achieve
good performance with respect to the four success indicators.
Mobile Development and Application Development tasks on
the contrary present the highest percentages of contests not
achieving the success thresholds for the four indicators. The
results of the Chi-square test, between the success indicators
and the type of task crowdsourced are presented in Table 7.

The second column of the table presents the p-value that
indicates whether these variables are independent of each
other. The results show that the success indicators are not
independent to the type of task crowdsourced and that there
is a statistically significant relationship between these two
variables. The Pearson x2 results are highlighted with italic
font when the findings are statistically significant.

[RQ3] Where can the crowdsourced projects be
exploited?

In this research question we emphasize on the application
domain where the crowdsourced software development tasks
are exploited. In order to derive the Application Domain
where the result of a contest will be exploited the second
author parsed lexically the description of the contest in order
to isolate the words that indicate the type of domain. Initially
he used the exact term of the domain as mentioned in the
contest description. As a second step he grouped domains that
belong to the same broad category. In Fig.7 we can see the
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FIGURE 7. Application Domains of CSE.

different types of application domains where CSE is applied.
The majority of tasks are deployed in the Services domain
(Drone Services, Analytics, and Communications) and the
Social Media Business (Social Networks, Crowdsourcing).
Tasks for the Entertainment Business (Religion, Sports, and
Travelling) and Media Business are also very often crowd-
sourced. In the category ‘‘Other’’ we find Science, and Pro-
gramming application domains.

The heatmap of Table 8 presents the different success
indicators for each application domain. The interpretation of
the heatmap is performed similarly to RQ2:
• We observe that in terms of Solution Provision the tasks
destined for Social Media and Entertainment sector
present high percentages of solution acquisition while
the tasks launched by the Finance sector are the ones
that present the higher probability of not being able to
acquire a solution.

• In terms of Cost the most cost-effective tasks are under
the category Social Media and Other. Also we observe
that in the Finance, Commerce and Industry application
domain the percentages of cost success are increased
compared to the expected costs.

• With respect to Time-efficiency, tasks crowdsourced
for the Finance and the Other application domains are
the most successful in terms of time, while tasks for
the Social Media application domain often exceed time
thresholds.

• The highest percentages of successful projects in terms
of Quality are observed in the application domain of
Commerce while the lowest percentages are observed in
the Social Media domain.

• Overall, with respect to the total Success indicator,
we observe that tasks crowdsourced for the Social Media
industry are the ones that are most probable to achieve
good performance with respect to the four success indi-
cators. Tasks for the Commerce Industry on the contrary
present the highest percentages of contests not achieving
the success thresholds for the four indicators.

An analytic presentation of the subcategories of the appli-
cation domains can be found in the Appendix where the
corresponding percentages per sub-category are recorded.

The results of the Chi-square test, between the success indi-
cators and the application domains are presented in Table 9.
The Pearson x2 results are highlighted with italic font when
the findings are statistically significant. The results show

TABLE 8. Successful contests per application domain.

TABLE 9. Relation of success indicators and application domain.

that the success indicators related to Solution Acquisition
and Cost Reduction presents a statistically significant rela-
tionship with the type of the application domain where the
task will be exploited. Such a relationship is not verified for
the Time-efficiency and the Quality indicators. Overall the
total Success indicator also presents a statistically significant
relationship with the type of the application domain.

[RQ4] Who is going to participate and win the
competition?

In this section, we present the results concerning the partic-
ipants’ experience and reliability across different challenges
and activities and provide insights on the winners’ profile.
Crowd experience is measured by the average participants
rating that represents the average scores of all participants
within a contest, the average winners rating that represents
the average of all the winners score. Crowd reliability is
measured as the average number of submissions delivered
in a contest and the average quittance rate (AVG_QTR) in
a contest that is the percentage of participants that registered
in a contest but did not submit a solution. Table 10 presents
the distribution of contests, per development tasks according
to the different number of winners. In this table we do not use
any colors. For example, in the first rowwe observe that 3.9%
of the Application Design contests present no winner at all
(therefore are considered as unsuccessful), while 6.4% have
1 winner. The second column that represents the unsuccessful
contests (zero winners) reveals that Cognitive & AI contests
present an increased possibility to not be able to receive a
suitable submission. This percentage is increased compared
to the rest of the development tasks crowdsourced. Applica-
tion Design and Mobile Design contests are the most suc-
cessful in terms of solution acquisition. Web Development,
Quality Assurance, Mobile Development and Application
Development usually provision 1 or 2 winners. Application
Design, Mobile Design and Web Design usually provision 3
or 2 winners. The cases where more than three winners are
provisioned are very rare.
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TABLE 10. Number of winners per development task.

Table 11 presents the average winner rating, the average
registrants rating, the average number of submissions and
the average quittance rate for the eight types of development
tasks that can be crowdsourced and the 5 success indicators.
For example the first row of the table is interpreted as follow-
ing: In the Application Design contests, the average winner
rate in the case of failure, in terms of cost deviations (Prize
success indicator), is 351.07 while in the case of success
is 151.68, similarly stands for the average registrants rating
variable. Also in the Application Design contests the average
number of submissions in case of failure is 24.3 and in case
of success 19.83, also the average Quit rate in case of failure
is 63.2% and in case of success 74.2%. Some of these results
can be interpreted intuitively:
• In terms of winners experience we note that the maxi-
mum average winner rating is observed in Web Devel-
opment and Mobile Development challenges (∼2500)
while the least experienced winners participate in Appli-
cation Design and Mobile Design challenges. In most
cases the average winner rating is increased in success-
ful projects compared to unsuccessful ones apart from
the case of cost indicator. In that case we observe that
the average winner rating is decreased for most of the
types of development tasks crowd sourced in the case
of successful projects. This can make sense considering
the fact that in challenges that offer higher prize than
the expected ones concentrate the interest of experienced
developers.

• In terms of registrants experience we note that the max-
imum average registrants rating is observed in Web
Development and Application Development challenges
(∼1300) while the least experienced registrants partic-
ipate in Application Design and Mobile Design chal-
lenges. In the majority of cases the average registrants
rating is increased (from 15% to 25% in most cases) in
successful projects compared to unsuccessful ones.

• Regarding the number of submissions, we note that
the maximum number is observed in Cognitive & AI
challenges (∼30) followed by Application Design and
Mobile Design challenges (∼8 submissions). Applica-
tion, Mobile, Web development and Quality assurance
challenges present the minimum number of submis-
sions (∼3). The number of submissions remains stable in
both successful and unsuccessful projects in most cases.

• Overall the maximum Quit rate is observed in Applica-
tion Development and Mobile development challenges
(∼85%), while Cognitive & AI challenges present the
smallest Quit rates (∼45%). The rest types of challenges
present a percentage around 75%. In most cases the Quit
percentage is decreased in successful projects compared
to unsuccessful apart from the case of cost indicator.
Similarly, this makes sense considering the fact that in
challenges that offer higher prize than the expected ones
the participants are highly motivated and therefore are
more persistent to submit a solution.

Additionally, in this RQ we have also examined the winners’
location and whether there is a collocation with the project’s
location. In Fig.8 we can see the distribution of contests
winners’ locations, whereas the majority of the location for
contest providers is United States. To statistically test the pos-
sibility of collocation between contest providers and winners,
we have performed a chi-square test, by crosstabulating the
variables. The results suggest that there is a relation between
the two (x2 = 618, df = 490, p < 0.01). However, this
result shall be treated with caution, since the large majority
of contest providers is concentrated in US.

[RQ5]When is the right time to crowdsource a project?
In this research question we examine the time trends

regarding the periods within a calendar year where crowd-
sourcing activity is observed with respect to the success
indicators under study. Our target is to reach conclusions
regarding the months during which a new contest should be
set, so as to achieve maximized results in terms of the four
success indicators.

In Fig.9 we present the number of competitions announced
during each month of the last year. Based on the results
March, April and May are the months during which the high-
est numbers of new contests are launched. On the other hand
February and September are among themost inactive months.
The heatmap of Table 12 presents the different success indica-
tors for the contests announced during each month of the last
year. The interpretation of the heatmap is performed similarly
to RQ2.

In terms of Cost we observe that contests announced
during August, May and January are considered to be suc-
cessful. Contrary to that the contests announced in Novem-
ber, December and February present higher costs than the
expected. We observe that in terms of Solution Provision
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TABLE 11. Crowd factor mean values per success indicator and different development tasks.

the tasks announced in May, January and July present high
percentages of solution acquisition. Tasks announced dur-
ing November, December and February are the ones that
present the lowest percentages of solution acquisition. With
respect to Time-efficiency, tasks crowdsourced during May,
August and June are the most time-efficient, while tasks

announced during December, February and January often
exceed time thresholds. The highest percentages of success-
ful projects in terms of Quality are observed in February,
May and August while the lowest percentages are observed
during September, November and June. Overall, with respect
to the total Success indicator, we observe that tasks
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FIGURE 8. Winners’ location.

FIGURE 9. Number of contests per month.

crowdsourced during May and August are the ones that
are most probable to achieve good performance with
respect to the four success indicators. Tasks announced
during December, February and November usually fail
in achieving the success thresholds for the four indica-
tors. Table 13 presents the results of Logistic Regression
for estimating the extent to which the month when the
contest is launched affects the success of the contests.
The contest start month served as an independent variable
while the contest attributes (Prize- V10, Duration –V11,
Type of Contest –V3, Noof Winners- V12) as covariates.
The results suggest that both covariates and indepe——–
ndent variable are statistically significant. By comparing the
importance of each month, we have observed that months
January, May, and August are those with the highest prob-
ability to lead to successful contests (marked with italics
in Table 13).

[RQ6] How do the different contest settings affect the
success of the different types of software development
activities crowdsourced?

In this research question we focus on exploring the level to
which contest configuration factors (i.e., contest type, number
of winners, cost, duration, and prize) and project factors
(i.e., application domain, type of task crowd sourced) affect
the success of the contest. To answer this research ques-
tion we constructed four graphical models (see Fig. 10-13),
one for each challenge type (Design, Development, Quality
Assurance, Cognitive & AI solutions), that depict accumu-
latively the values of the contest configuration parameters

TABLE 12. Deviations form success indicators per month.

TABLE 13. Variables and coefficients of logistic regression for success
indicators.

and the project success factors. For each parameter used
to quantify a success factor we provide its mean value (in
a parenthesis we present the standard deviation), based on
the contests that reside in the particular group, along with
the percentage of projects that are considered successful in
the particular context (in the parenthesis we present the mean
values). Especially for the application domain and the contest
type, which are the sole categorical variables, we provide the
percentage of the challenges performed in each application
domain/ type of contest.

For example, in Fig. 10 we observe that 15.2% of
the Design challenges are performed for the Commerce
application domain, 96.5% of which are crowdsourced as
Round-Match contests. In that case the average number of
submissions is 8.6, the average number of registrants is
41.9, the average number of winners is 4.3 (95% of contests
acquired a solution), the average duration of the contests
is 12.4 days (83% of contests are within time thresholds),
the average cost is 2086$ (78% of contests are within cost
thresholds) and the average quality reaches 100% (and all
contests are considered successful in terms of quality). Over-
all 60% of contests are considered to be successful consider-
ing all success indicators (solution acquisition, time, cost, and
quality).

Regarding Design challenges presented in Fig.10:
• Application Domain:Design challenges are very popu-
lar in the Services domain (Analytics, Communications,
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FIGURE 10. Design challenges success rates and contest settings.

IoT ser-vices), Entertainment domain and the Com-
merce domain.

• Contest Type: Design challenges are crowdsourced
mainly as Single Round Matches (RMs) that are fixed
duration con-tests.

• Submission rate: We observe that the number of sub-
missions is increased (over 30% in most cases) in RMs
compared to F2F. Also the number of submissions
is comparable between different application domains
(it ranges from 3.3 to 17.9 submissions).

• Participation: The overall participation remains increased
in Single Round Matches (on average ∼10 registrations
per contest) compared to F2F contests (∼5 registrations
on average).

• Winner: Design challenges in the majority of cases
acquire a winning solution. The average number of win-
ners in most cases remains the same (it ranges from
2.8 to 8.5 winners).

• Duration: First-to-Finish contests in that case present
greater success potentials in terms of duration. Overall
the duration of Design challenges ranges from ∼7 to
∼12 days in RM contests, and from ∼2 to ∼5.5 days
for F2F contests.

• Quality: Most of the Design challenges achieve 100%
success in terms of quality.

• Cost: The cost of Design challenges ranges approx.
from 250$ (for F2F challenges) to 2000$ (for RMs).
F2F contests present increased possibility of being suc-
cessful in terms of cost. This finding can be explained by
the fact that F2F contests usually crowdsource tasks of
limited scope compared to RMs and therefore the prizes
provisioned are smaller.

Regarding Development challenges presented in Fig. 11:

• Application Domain:Development challenges are very
popular in the Services domain (Analytics, Communica-

tions, IoT services), Crowdsourcing and Entertainment
domain.

• Contest Type: It is a common practice to crowd-source
Development problems as Single RoundMatches (RMs)
that are fixed duration contests. This fact though in the
majority of cases leads to decreased success percentages
with respect to all indicators.

• Submission rate: We observe that the number of sub-
missions presents a very small difference between First
to Finish and Single RoundMatch contests, with the first
type of contest concentrating slightly increased number
of submissions. Also the number of submissions is com-
parable between different application domains (it ranges
from 2.7 to 4.8 submissions).

• Participation: The overall participation seems to be
slightly increased in Single-Round-Matches that is
opposed to the trend observed in the number of sub-
missions. The participation does not present differences
between different application domains (it ranges from 17
to 41.7 registrations).

• Winner: Development challenges present a relatively
high possibility of acquiring a winning solution; the
average number of winners in most cases remains the
same.

• Duration: In terms of duration we see that as expected
First-to-Finish contests present greater success poten-
tials. Overall the duration of Development challenges
ranges from ∼6 to ∼10 days in RM contests, and from
∼2 to ∼5.5 days for F2F contests.

• Quality:We observe that F2F challenges present greater
quality percentages. This can be interpreted by the fact
that quality demands in F2F challenges may be looser
compared to RMs, emphasizing in time constraints.

• Cost: The cost of Development challenges is decreased
compared to the other types of challenges, ranging
approximately ∼500 $ for F2F challenges and 1200%
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FIGURE 11. Development challenges success rates and contest settings.

for RMs. F2F contests present increased possibility of
being successful in terms of cost. This finding can be
explained by the fact that F2F contests usually crowd-
source tasks of limited scope compared to RMs and
therefore the prizes provisioned are smaller.

RegardingQualityAssurance challenges presented in Fig. 12:

• Application Domain: Quality assurance challenges are
very popular in the Services domain (Analytics, Com-
munications, IoT services), Crowdsourcing domain and
Media domain.

• Contest Type: First-to-Finish contests and Single-
Round-Matches are both popular in Quality Assurance
challenges. In this case where the performance of the
challenges can be directly compared we observe that
in almost all success indi-cators, F2F contests present
greater success percentages.

• Submission rate: We observe that the number of
submissions presents a very small difference between
First to Finish and Single Round Match contests. Also
the number of submissions is comparable between
different application domains (it ranges from 2.4 to
4.9 submissions).

• Participation: The overall participation seems to be
slightly increased in Single Round Matches (∼28 reg-
istrations).

• Winner:QualityAssurance challenges present increased
percentages of not acquiring a winning solution, com-
pared to the other types of challenges. Challenges per-
formed for the Crowdsourcing, Media and Industry
domain in the form of F2F contests present higher pos-
sibility of not receiving a winning solution. The average
number of winners in most cases remains the same.

• Duration: In terms of duration overall the duration
of Quality Assurance challenges ranges from ∼4.7 to
∼11 days in RM contests, and from ∼1.2 to ∼3.4 days
for F2F contests.

• Quality: In Quality Assurance challenges the quality
ranges from ∼91.67% to 100%.

• Cost: The cost of Quality Assurance challenges is on
average 700 $ for F2F challenges and 1050$ for RMs.
F2F contests present increased possibility of being suc-
cessful in terms of cost.

Regarding Cognitive & AIchallenges presented in Fig.13:

• Application Domain: Cognitive & AI challenges are
very popular in the Services domain, Crowdsourcing and
Enter-tainment domain.

• Contest Type: It is a common practice to crowd-source
Cognitive &AI challenges asMarathonMatches (MMs)
that are long duration contests. Marathon Matches
have longer duration compared to RMs, and therefore
decreased percentages in terms of time success. Also
MMs offer greater prizes; thus they concentrate more
participations and submissions.

• Submission rate: We observe that the number of sub-
missions is highly increased compared to the other types
of chal-lenges, that is for RMs∼10 submissions and for
Marathon Matches ∼40 submissions.

• Participation: The overall participation on the other
hand is increased in Single Round Matches (∼85) com-
pared to Marathon Matches (∼60).

• Winner: Cognitive & AI challenges present high par-
ticipation and a relatively high possibility of acquiring a
winning solution. But in the cases of RMs in ∼50% of
the challenges there is no winning solution.

• Duration: In terms of duration RM contests present
greater success potentials. Overall the duration of Cog-
nitive & AI challenges ranges from ∼10 to ∼18 days
in MM contests, and from ∼5.5 to ∼12.5days for RM
contests.

• Quality: The quality of Cognitive & AI challenges is
most of the time 100%, therefore the success in terms of
quality is usually achieved.
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FIGURE 12. Quality assurance challenges success rates and contest settings.

FIGURE 13. Cognitive & AI solutions challenges success rates and contest settings.

• Cost:The cost of Cognitive&AI challenges is increased
compared to the other types of challenges mainly due
to the specificity and the complexity of the prob-
lems crowdsourced. Cognitive & AI present the higher
awards (14.000$ on average at MMs, 2.700$ on average
at RMs).

V. DISCUSSION
In this section we interpret the results and discuss the
implications of the findings to researchers and practition-
ers. Based on the Overall Success of all types of chal-
lenges, we observed that F2F types of contests are more
efficient in terms of all success indicators. By focusing on the
F2F contests and comparing them to the corresponding RM
contests we identified four major differences. In particular,
F2F contests:

• crowdsource tasks of limited scope, requiring less time
compared to RMs and therefore are assigned to smaller
prizes. For example, in Development challenges an F2F

task might be a small script for updating an instance of
the system while an RM task may include the develop-
ment of an API;

• are well documented presenting clearly the scope of the
challenge, without overwhelming information;

• present clear acceptance criteria for a winning solution;
and

• involve (in theirmajority) QualityAssurance challenges.
Bug hunting contests when formulated as ‘‘The first one
that finds more bugs are the one that wins’’ are easily
perceived by the contributors and present great success
potentials.

Additionally, Cognitive & AI solutions are the most pop-
ular in terms of crowd participation, probably due to the
high prizes and the challenging nature of the crowdsourced
tasks. This fact explains also the high failure percentages
of these contests since (often) a winning solution cannot be
obtained, especially when the contests are crowdsourced as
RMs, instead of MMs. For challenging problems (such as
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Cognitive & AI) that require more time and greater prizes are
assigned, it seems that MMs can offer greater control mecha-
nisms of the submissions and can more effectively handle the
variability in the quality of the winning solutions. Design and
Development tasks are the most frequently crowdsourced.
It seems that they present great success potentials especially
when they are crowdsourced as F2F challenges. In both
cases it seems that careful decomposition of the problem into
tasks that can be effectively crowdsourced can help towards
improving the percentages of successful contests in terms of
duration and cost.

The major findings of this study suggest that there are sig-
nificant differences across different crowdsourced software
development activities, in terms of success indicators. This
fact can be further investigated by researchers and exploited
by practitioners. We encourage researchers to explore the
factors introduced in this paper and propose new metrics
and procedures, for quantifying crowdsourcing success fac-
tors. In this study, to ensure the objectivity and reliability of
the results, we selected to examine a small set of metrics,
the majority of which were raw data, directly provided and
measured from TopCoder. There are also other low-level
metrics such as task size, task difficulty, task specificity, not
considered within the scope of this study due to the fact
that there are no formal procedures yet for quantifying them
within the context of CSE. We believe that a well-specified
procedure for quantifying such low-level metrics will help
into: (a) more accurately describing the tasks to be crowd-
sourced; and (b) better formulating crowdsourcing success
factors and testing their effects. Furthermore, we encourage
researchers to compare the performance and the overall man-
agement and success of crowdsourced projects against non-
crowdsourced ones.

Additionally, we believe that an analysis of success fac-
tors and indicators on contests performed on other popular
software development crowdsourcing platforms like Boun-
tify or even in BugCrowd, which is a specialized platform
for Bug finding and fixing, will provide insights on the
influence of crowdsourcing factors to CSE success in dif-
ferent environment settings. In such a study, it would be
interesting to make a comparison within the crowdsourc-
ing host platforms and observe the differences between the
types of performed challenges, the costs and duration of
related tasks and explore how crowdsourcing success factors
and indicators vary with respect to the different platforms.
Such deviations are expected, since platforms are expected
to launch crowd sourced tasks of different granularities and
complexities. In such a case, it is important to experiment on
the appropriate task decomposition mechanisms for defining
the right granularity of tasks that will lead to more successful
challenges in terms of time, costs, quality and participation.
Similarly, to any empirical endeavor, we encourage the repli-
cation of this study in larger samples of challenges, performed
in different platforms, including more metrics describing the
tasks crowdsourced.

Regarding practitioners, the decision trees presented in
Figs. 10-13 along with the analysis performed in Section IV
can be a useful tool in the hand of challenge providers, during
the decision-making process, when configuring crowdsourc-
ing software development challenges. Based on the results
of this study, software developers can have indications on
the level to which different crowdsourcing goals are achieved
across different software development activities. In this con-
text a software practitioner can employ the following four
step process to define crowdsourcing needs of his company:
• Select the goal of crowdsourcing (is it Quality, Partici-
pation, Low costs or Duration?)

• Based on the goal and the company needs select the
challenge to be crowd

• Based upon goal and challenge type define the contest
settings (select contest type, define prize, define dura-
tion (if needed), describe the challenge and set quality
thresholds with the help of Figs. 6 to 9.

• After the completion of the challenge compare the actual
success indicators of the challenge to the expected ones,
and customize the empirical models presented in this
study to the company’s findings.

VI. THREATS TO VALIDITY
In this section we discuss the threats to validity based on
the four main types appointed by Runeson and Höst [24]:
construct, internal, external and reliability validity. Construct
validity defines how effectively a test or experiment mea-
sures the hypotheses examined. Internal validity examines
weather the causal relationships identified by the experiment
performed are supported by the experimental environment.
External validity is related to the generalization of the study
results to other relevant settings and Reliability is associated
to the reproducibility of the study by other researchers, i.e.
considering that they will be able to repeat the same process,
collect data and reach the same results.

Construct Validity: The set of metrics selected to assess
the success of crowd sourced software development activities
could pose threats to construct validity. It goes without saying
that there are also other factors that may affect crowd sourced
software development success (e.g., platform usability, crowd
collaboration, project size) that we have not considered in
this study. Since in this study we focused on analysing data
from TopCoder platform, a pioneer in crowdsourced software
development, platform usability was excluded as it could be
considered the same for all types of challenges and activi-
ties studies. Additionally, crowd collaboration [40] was out
of the scope of the study since we focused on competi-
tive CSE, not collaborative and therefore factors address-
ing crowd collaboration were not applicable in this case.
Another threat to validity is the selection of thresholds for
transforming continuous variables to binary ones. In order to
minimize the subjectivity in the selection of thresholds a solid
mathematical approach has been employed. Nevertheless,
the use of different thresholds might alter the results.
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TABLE 14. Deviation from success indicators per specific application domains.

Furthermore, metrics, for which there was not a clear and
reliable method for calculating them, like project size and
difficulty, were also excluded in order to avoid introducing
researcher bias in the model. In general, we selected to use
metrics that were directly available by the TopCoder plat-
form so as to ensure the objectivity of the results. As our
target is to provide an easy to use, reliable method for
helping challenge providers define the activities and the
configuration for crowdsourcing them we believe that we
included the most important factors that should be consid-
ered, i.e., type of activity, time, cost, quality, participation.
Although we agree that more CSE metrics, like platform
usability, size and complexity of crowd sourced activity,
collaboration metrics, can further be considered in other
contexts.

Internal Validity: The target of the proposed study was to
explore whether there are differences between success factors

and indicators (such as contest type, platform, duration, qual-
ity, participation) across the different software development
activities crowd sourced. We identified trends and common
practice when it comes to crowdsourcing different software
development activities; however, we do not claim that these
form causal relationships.

Reliability: We believe that the followed research pro-
cess ensures the reliability and safe replication of our study.
The process that has been followed in this study has been
thoroughly documented in the case study protocol, provided
in Section III. Additionally, the data on which this study is
based are publicly available in therefore, the re-production
of the case study can be easily performed by any interested
researcher. However, concerning researcher bias, although
the majority of data participating in the analysis are raw data
directly provided by TopCoder platform, we should state that
it was introduced during the data collection and data analysis
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process in one case, while classifying crowdsourcing chal-
lenges to particular application domains. In that case the chal-
lenge description was inspected by the second author, who
identified frequently appearing keywords that helped him
classify the challenges into the existing application domains.
In order to increase the reliability of this process the first and
the third author validated the results.

External Validity: To ensure the generalizability of our
results we have examined a wide range of challenges pro-
viding a number of different activities crowd sourced that
offer a representative sample of the population. Though as
mentioned in RQ1, not all types of challenges are equally
represented in this sample, but still this shows a trend appoint-
ing that certain types of challenges are rarely selected prob-
ably due to the criticality of the task crowdsourced and the
high costs. Additionally, we note that (as in almost any case
study) in case that the sample challenges change, the results
are expected to deviate from those reported in the study.
Similarly, the results might not be generalizable to other
platforms, in the sense that using challenges that come from
other hosting platforms, would require an adjustment in the
used model, so as to map the environment settings of the new
platform. Therefore, a replication of this study in an even
larger multi-platform set of challenges would be valuable in
verifying and generalizing current findings. By acknowledg-
ing the fact that not all crowdsourcing activities are formu-
lated as ‘‘contest-based’’ we note that the results cannot be
generalized to all types of crowd-sourced challenges.

VII. CONCLUSION
Crowdsourcing practices in the domain of software engi-
neering have proved to be a promising and viable approach
to software related problems in terms of quality, cost and
time reduction. However, selecting the appropriate software
engineering tasks to be crowdsourced and deciding upon the
important managerial decisions for formulating such chal-
lenges is far from trivial due to a number of parameters
that affect the success of the whole endeavor. In this study,
we have performed a case study on 2,209 contests launched
during 2018 through TopCoder platform and explored the
level to which crowdsourcing success factors and indicators
vary across different software engineering activities. The
findings of the study suggest that there are significant differ-
ences in the level to which crowdsourcing goals are reached
across different software development activities. In terms of
participation Cognitive & AI contests are the most popular
ones, in terms of duration Quality Assurance contests present
the minimum times, in terms of cost and quality Development
challenges present the lowest prizes and achieve among the
highest quality scores. The results are summarized in decision
graph models that capture the variance of success factors
across different challenges and contest settings. Such infor-
mation can prove to be useful to practitioners who will easily
identify and decide upon important settings of crowdsourced
projects.

APPENDIX
See Table 14.
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