
The Journal of Systems and Software 167 (2020) 110618 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

CODE reuse in practice: Benefiting or harming technical debt 

Daniel Feitosa 

a , ∗, Apostolos Ampatzoglou 

b , Antonios Gkortzis c , Stamatia Bibi d , 
Alexander Chatzigeorgiou 

b 

a Data Research Centre, University of Groningen , Groningen, the Netherlands 
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece 
c Department of Management Science and Technology, Athens University of Economics and Business, Greece 
d Department of Informatics and Telecommunications, University of Western Macedonia , Kozani, Greece 

a r t i c l e i n f o 

Article history: 

Received 1 July 2019 

Revised 26 April 2020 

Accepted 27 April 2020 

Available online 23 May 2020 

Keywords: 

Technical debt 

Reuse 

Case study 

a b s t r a c t 

During the last years the TD community is striving to offer methods and tools for reducing the amount of 

TD, but also understand the underlying concepts. One popular practice that still has not been investigated 

in the context of TD, is software reuse. The aim of this paper is to investigate the relation between 

white-box code reuse and TD principal and interest. In particular, we target at unveiling if the reuse of 

code can lead to software with better levels of TD. To achieve this goal, we performed a case study on 

approximately 400 OSS systems, comprised of 897 thousand classes, and compare the levels of TD for 

reused and natively-written classes. The results of the study suggest that reused code usually has less TD 

interest; however, the amount of principal in them is higher. A synthesized view of the aforementioned 

results suggest that software engineers shall opt to reuse code when necessary, since apart from the 

established reuse benefits (i.e., cost savings, increased productivity, etc.) are also getting benefits in terms 

of maintenance. Apart from understanding the phenomenon per se, the results of this study provide 

various implications to research and practice. 

© 2020 Elsevier Inc. All rights reserved. 

1

 

r  

r  

(  

d  

t  

(  

i  

d  

c  

G  

n  

n  

(  

t  

t  

T  

A

a

2  

o  

2

 

T  

w  

T  

r  

t  

c  

s  

t  

p  

i  

o  

fi  

m  

2  

o  

h

0

. Introduction 

Technical Debt (TD) is a software engineering metaphor that

elates the construction of poor-quality software with incur-

ing additional cost, and more specifically to going into debt

 Kruchten et al., 2012 ). Based on the TD metaphor, software in-

ustries save an amount of money by not developing the sys-

em in optimal design-time quality levels—termed as principal

 Ampatzoglou et al., 2015 ). However, later the maintenance costs

ncrease—this amount is called interest ( Ampatzoglou et al., 2015 )

ue to lowered maintainability, whenever maintenance tasks oc-

ur (their frequency map to interest probability ( Seaman and

uo, 2011 )). By acknowledging the tremendous relevance of tech-

ical debt in software development industries, the TD commu-

ity is striving to produce methods and tools for TD Management

TDM) that would reduce the amount of TD in the software, by ei-

her preventing the accumulation of additional TD, or by removing

he existing one ( Arvanitou et al., 2019 ). To this end, the roots of

D have been extensively studied ( Kazman et al., 2015 ; Mo et al.,
∗ Corresponding author. 

E-mail addresses: d.feitosa@rug.nl (D. Feitosa), a.ampatzoglou@uom.edu.gr (A. 

mpatzoglou), antoniosgkortzis@aueb.gr (A. Gkortzis), sbibi@uowm.gr (S. Bibi), 

chat@uom.edu.gr (A. Chatzigeorgiou). 

L  

c  

(  

2

ttps://doi.org/10.1016/j.jss.2020.110618 

164-1212/© 2020 Elsevier Inc. All rights reserved. 
015 ; Xiao et al., 2016 ) along with factors that encourage devel-

pers to manage it efficiently ( Amanatidis et al., 2018 ; Ernst et al.,

014; Palomba et al., 2014 ; Potdar and Shihab, 2014 ). 

Under the prism of understanding possible reasons that lead to

D accumulation, it becomes relevant to investigate existing soft-

are engineering practices, which might enforce TD accumulation.

o this end, in this paper we focus on software reuse: through

euse, artifacts developed originally for one system ( source sys-

em ), are used again (either “as are ” or after modification) in the

onstruction of another target system ( Krueger, 1992 ). The inten-

ity of reuse as a phenomenon, becomes evident by considering

hat code reuse from 1.3 K popular Open Source Software (OSS)

rojects (e.g., log4j, jUnit, etc.) in other projects, represents approx-

mately 316 K staff years and tens of billions of dollars in devel-

pment costs ( Ampatzoglou et al., 2013 ). Some of the main bene-

ts that promoted reuse as a leading practice in software develop-

ent is the increase of development productivity ( Baldassare et al.,

005 ; Frakes and Kang, 2005 ), the improvement of several aspects

f software quality ( Ajila and Wu, 2007 ; Baldassare et al., 2005 ;

im, 1994 ), and better software reliability in cases when the reused

omponents are already tested when they are selected for reuse

 Joos, 1994 ; Juristo and Moreno, 2001; Lim, 1994 ; Morisio et al.,

002 ; Poulin, 1999 ; Rine, 1997 ). 

https://doi.org/10.1016/j.jss.2020.110618
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110618&domain=pdf
mailto:d.feitosa@rug.nl
mailto:a.ampatzoglou@uom.edu.gr
mailto:antoniosgkortzis@aueb.gr
mailto:sbibi@uowm.gr
mailto:achat@uom.edu.gr
https://doi.org/10.1016/j.jss.2020.110618


2 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

Fig. 1. Stakeholders’ concerns—contributions of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

f  

r  

a  

f  

a  

o  

t  

s  

c  

d

 

w  

r  

a  

c  

g  

S  

d  

i  

p  

a

2

 

t  

t  

2  

r  

w  

u  

q  

c  

b

 

d  

s  

t  

m  

o  

g  
According to Barros-Justo et al. (2018) , research efforts should

focus on the use of quality models for testing the actual impact

of reuse benefits, with maintainability appointed as the most im-

portant one, while linking them to specific practices. In this direc-

tion Mikkonen and Taivalsari (2019) stress that the revival of soft-

ware reuse, due to the enormous amount of freely available source

code on the web, poses new challenges to the software engineering

community related to the systematic analysis of the compatibility

and the properties of popular open source components. From the

above, it becomes clear that although various aspects of business

and product qualities have been studied, with respect to reuse,

there is still the need to empirically explore the structural prop-

erties of the freely available reused components and their effect

to the quality of the software in which they are integrated (see

Section 2 ). 

In this paper we target this specific knowledge gap, by inves-

tigating the relation of open-source code reuse to the structural

quality of the target system. More specifically, we investigate if on

average the structural quality of source code that is written from

scratch ( native code ), is lower or higher compared to reused code .

Additionally, by acknowledging the relevance of TD in modern

software quality assurance processes, we focus our assessment of

structural quality to technical debt measurements. Software reuse

can be performed in two ways ( Heinemann et al., 2011 ): (a) white-

box, in which the reused code is inserted in the application as

source code (i.e., directly editable); and (b) black-box, in which the

reused code is inserted in the application in a binary form (i.e.,

it cannot be edited and maintained). Regarding black-box reuse,

the notion of TD is not considered fitting, in the sense that ar-

tifacts reused in a black-box fashion, do not involve any mainte-

nance. Therefore, for the purpose of our study we focus only on

white box reuse. Finally, we note that TD is a far more multifaceted

term, and that it is not restricted to code only. However, to keep

the scoping of this study realistic, and by considering that reuse of

small code-chunks (such as classes) are more likely to affect code

TD rather than architecture, we focus this investigation on code

TD only. 

In particular, we scope our research so as to answer the fol-

lowing concerns of software practitioners and researchers, as illus-

trated in Fig. 1 . 

• Practitioner : “Will the code that I want to reuse have a low num-

ber of code smells, so that I can easily bring it to the quality stan-

dards of the company? ”
• Practitioner : “Will the code that I will reuse: follow object-

oriented practices ( e.g. , low coupling, high cohesion, etc.) that fa-

cilitate maintenance, or will it hinder fixing of defects and modifi-

cation of functionality? ”
• Researcher : “Is code reuse a practice that would be helpful in pre-

venting the accumulation of code TD, or would writing native code

yield better software quality? ”
• Researcher : “Which particular aspects of the TD metaphor are

hurt and which benefit from code reuse? ”

To answer the aforementioned concerns, we have performed a

arge-scale case study on approx. 50 Million (Mo) lines of code,

rom 400 different projects. The projects are first divided into its

eused and native parts (i.e., classes), then reused classes are char-

cterized as white-box or black-box, then we measure TD aspects

or native and white-box reused classes, and perform statistical

nalysis, to draw meaningful conclusions. The main contribution

f this study from a research point of view, is the exploration of

he relation between white-box code reuse and code TD in a large-

cale, which until now is rather unexplored. In terms of practical

onsiderations, the results are expected to be useful for technical

ebt prevention, as explained in Fig. 1 . 

The rest of the paper is organized as follows: in Section 2 ,

e present related work, i.e., studies that investigate the effect of

euse on software quality—since this is the first study on reuse

nd TD. In Section 3 , we present background information, fo-

using on TD terminology and measurement/assessment strate-

ies. In Section 4 , we outline the case study design, whereas in

ection 5 we present the obtained results. Next, in Section 6 we

iscuss them, by contrasting them to existing literature, provid-

ng tentative interpretations, and implications for researchers and

ractitioners. Finally, in Section 7 we discuss threats to validity,

nd in Section 8 we conclude the paper. 

. Related work 

In this section we present related work to our study. Since to

he best of our knowledge, this is the first study that investigates

he effect of software code reuse (as discussed by de Almeida et al.,

005 ) on technical debt, in this section we broaden the scope of

eporting to studies that explore the effect of reusing code to soft-

are quality. Special emphasis will be given to structural prod-

ct quality, in the sense that it is closer to TD, compared to other

uality views (Kitchenham, 1996). Nevertheless, the terms techni-

al debt and software reuse (not restricted to code) have already

een discussed in current literature. 

First, Martinez-Fernandez et al. (2013 ) considered technical

ebt as a parameter for their economic model, while reusing at the

oftware architecture level, by implementing reference architec-

ures. Second, Yli-Huumo et al. (2013 ) investigates technical debt

anagement techniques when using software product lines, i.e.,

ne of the prominent ways of systematic reuse. To achieve this

oal, they have conducted interviews with 12 practitioners; the



D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 3 

r  

t  

(  

i  

q  

t  

n  

e  

r

 

v  

M  

r  

P  

i  

t  

t  

s  

t  

t  

a  

d  

fi  

r  

a  

v  

l  

w  

q  

t  

s  

t  

c  

s  

m  

e

 

i  

D  

t  

u  

b  

l  

K  

o  

l  

m  

f  

o  

b  

t  

c  

c  

Z  

i  

w  

s  

p  

o  

g  

(  

p  

a  

b  

t  

o

 

i  

t  

c  

t  

i  

o  

d  

o  

s  

t

3

 

n  

u  

c  

t  

c  

e  

w

3

 

s  

s  

a  

c  

b  

c  

h  

p  

d  

h  

d  

n  

e  

t  

e  

t  

t

 

o  

a  

w  

u  

T  

t  

S  

s  

c  

n  

b  

i  

i  

q  

l  

q  

t  

a  

c  

l  

(

esults suggest that: (a) TD is mostly formed as a result of inten-

ional decisions made during the project to reach deadlines; and

b) customer satisfaction was identified as the main reason for tak-

ng TD in short-term but it turned to economic consequences and

uality issues in the longer perspective. Also, the results suggested

hat product line managers did not had any specific plan for tech-

ical debt management. Both these studies are substantially differ-

nt from this work, in the sense that they focus on architecture,

ather than source code. 

The positive effect of reuse on software quality has been

erified by several studies ( Lim, 1994 ; Frakes and Kang, 2005 ;

ahagheghi and Conradi, 20 07 , 20 08 ). Lim (1994) analyzed met-

ics collected from two reuse programs completed by Hewlett-

ackard and reported improved quality, in terms of defect density,

ncreased productivity and reduced time to market. In this direc-

ion Frakes and Kang (2005) performed an exploratory study on

he relationship between the amount of reuse and the quality of

oftware modules developed in C/C ++ within an industrial con-

ext. The authors analyzed four software projects and concluded

hat software reuse is positively correlated to software quality, as

ssessed by the developers, and negatively correlated to the error

ensity. Another study that added evidence to the quality bene-

ts acquired from reuse was performed by Mohagheghi and Con-

adi (2007) , who examined the potentials of software reuse in

 telecommunications project. The results of their case study re-

ealed that software reuse contributed to lower fault-density and

ess modified code between the successive releases of the soft-

are product under study ( Mohagheghi and Conradi, 2008 ). The

uality benefits acquired from software reuse are also reported in

he review performed by Mohagheghi and Conradi (2007) who as-

essed the effects of reuse in an industrial context. Concluding, by

ransferring the aforementioned results to the TDM context, one

ould argue that reuse leads reduced interest probability , in the

ense that the reused code has fewer defects; thus, it undergoes

ore rarely corrective maintenance, and therefore produces inter-

st more sparsely. 

In terms of structural quality, we have identified very few stud-

es that investigate the effect of reuse on software product quality.

eniz and Bilgen (2014) performed a case study to test whether

he quality of software code is improved as reuse rates of the prod-

cts increase. The authors analyzed software modules developed

y a defense industry (mainly developed in C ++ ) in order to calcu-

ate complexity and class level metrics proposed by Chidamber and

emerer (1994) . Their findings show that some metrics (number

f classes, lines of code, depth of inheritance tree) do not corre-

ate with changing reuse rate. However, Coupling and Complexity

etrics are significantly improved when the reuse rate increases, a

act that indicates the positive effect of reuse on structural quality

f code. Constantinou et al. (2014) explored the effect of white-

ox reuse on software quality. In particular, they investigated more

han 1 K Java projects and highlighted that on average reused

lasses where of higher complexity, less coherent, and more closed

oupled to other classes, compared to system classes. Additionally,

aimi et al. (2015) explored the effect reuse decisions on reusabil-

ty, extendibility, flexibility, and effectiveness of the target soft-

are. To achieve this goal, the authors explored the reuse deci-

ion taken along the evolution of 5 well-known Java open-source

rojects. The results suggested that no statistically significant effect

f reuse decisions to design-time quality attributes could be ar-

ued. Nevertheless, the update of a library version usually led to an

on average) improved quality. Finally, Nikolaidis et al. (2019) com-

ared the levels of TD in source code reused from StackOverflow

nd suggested that reused code is in the majority of the cases of

etter quality, in terms of technical debt, compared to the code of

he rest of the target system. This result was based on the analysis

f approximately 50 reused code chunks of non-negligible size. 
To summarize the aforementioned results, in Table 1 (for each

dentified study), we characterize it as directly or indirectly (e.g.,

hrough structural properties) associated to TD, we note the TD

oncept that is being analyzed, the used research method (quali-

ative, quantitative, descriptive), and the sign of the relation (pos-

tive or negative). Based on Table 1 (and the detailed descriptions

f related works), we can conclude that: (a) there is limited evi-

ence on the relation of TD Principal and Reuse; and (b) the results

n the relation of TD Interest and Reuse are inconclusive, in the

ense that some studies suggest positive correlations, other nega-

ive ones, and other no correlation all. 

. Technical debt terminology, measurement, and assessment 

In this section we discuss all background information that is

ecessary for facilitating the understanding of this study. In partic-

lar, we present: (a) the TD metaphor; (b) an overview of TD con-

epts; and (c) the ways that they can be assessed, or measured. For

he purpose of this study, we have decided to work at the source

ode level. To ease the understandability of this section, we present

ach concept along with each way of measure (or assess) and then

e proceed to the next concept. 

.1. Introduction to technical debt 

Maintenance is one of the most effort-intensive activities in the

oftware lifecycle, since it stands for 50 - 75% of the total effort

pent during the software lifecycle ( van Vliet, 2008 ). Maintenance

ctivities, such as requests for adding new functionality, or the

orrection of errors are hard to neglect and shall be performed

etween almost all pairs of successive software versions. On the

ontrary, changes that are not directly related to the external be-

avior of the system, but relate to design-time qualities, are often

ostponed or neglected, to shrink product time to market and re-

uce short-term costs. However, software systems are by definition

ighly evolving products, whose design-time quality will gradually

ecay ( Parnas et al., 1994 ), and therefore deferring such mainte-

ance activities (e.g., refactorings, resolution of bad smells, reverse

ngineering) might have a significant impact on several design-

ime qualities (e.g., maintainability, comprehensibility, reusability,

tc.). This strategy leads to the creation of a financial overhead due

o degraded quality, originally termed, by Cunningham (1992) , as

echnical debt. 

Technical debt (TD) is a metaphor that is used to draw an anal-

gy between financial debt as defined in economics and the situ-

tion in which an organization decides to produce immature soft-

are artifacts (e.g., designs or source code), to deliver the prod-

ct to market within a shorter time period ( Cunningham, 1992 ).

he most modern definition of technical debt is the 16,162 defini-

ion, that was one of the main conclusions of the TDM Dagstuhl

eminar in 2016, which is stated as follows: “In software-intensive

ystems, technical debt is a collection of design or implementation

onstructs that are expedient in the short term, but set up a tech-

ical context that can make future changes more costly or impossi-

le. Technical debt presents an actual or contingent liability whose

mpact is limited to internal system qualities, primarily maintainabil-

ty and evolvability ”. In addition to trade-offs between design-time

ualities and business goals (such as time-to-market, etc.), recent

iterature identifies trade-offs between run-time and design-time

uality attributes ( Feitosa et al., 2015 ), especially in software sys-

ems in which run-time properties cannot be compromised, such

s embedded or real-time systems. These trade-offs, can also been

onsidered as potential roots of neglecting design-time qualities,

eading to the accumulation of TD (( Ampatzoglou et al., 2016 ) and

 Martini et al., 2014 )). 



4 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

Table 1 

Related work overview. 

Study Association to TD TD Concept Research Method Outcome 

Martinez-Fernandez et al., 2013 Direct Principal Qualitative TD hinders reuse 

Yli-Huumo et al., 2014 Direct Principal Qualitative No strategy for TDM in SPLs 

Lim, 1994 Indirect Interest 

Probability 

Quantitative Reuse positively affects: (a) defect density; (b) 

productivity; and (c) time to market 

Frakes and Kang, 2005 Indirect Interest 

Probability 

Quantitative Reuse positively affects defect density 

Mahagheghi and Conradi, 2007 Indirect Interest 

Probability 

Quantitative Reuse positively affects defect density and change 

proneness 

Mahagheghi and Conradi, 2008 

Deniz and Bilingen, 2014 Indirect Interest Quantitative Reuse improves coupling and complexity. Not 

correlated to size and inheritance 

Constantinou et al., 2015 Indirect Interest Quantitative Reuse increases complexity and coupling. Lowers 

cohesion 

Zaimi et al., 2015 Indirect Interest Quantitative No relation found to reusability 

Nikolaidis et al., 2019 Direct Principal Quantitative Reuse decreases TD principal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. TD Terminology visualization ( Chatzigeorgiou et al., 2015 ). 

t  

o  

p  

t  

t  

a  

s  

d  

e  

a  

“  

Q  

u  

i  

p  

i  

a  

t  

t  

m  

l  

a  

8  

o

 

a  

e  
TD is accumulated during all development phases, i.e. require-

ments analysis, architectural/detailed design, and implementation,

and therefore should be monitored and handled during the com-

plete software lifecycle ( Kruchten et al., 2012 ). Nevertheless, code

TD is reported as the most frequently studied type in research

( Alves et al., 2016 ) and the most important one in the industry

( Ampatzoglou et al., 2016 ). Although, TD is sometimes desirable

(e.g., in cases when companies opt for investing on a different

products, rather than improve the quality of an existing one) and

its complete repayment is considered unrealistic ( Eisenberg, 2013 ),

its side-effects cannot be ignored, in the sense that TD severely

hinders the maintainability of the software ( Zazorwka, 2011 ). To

this end, TD should be continuously monitored and managed. As

a first step of any management process, it is important to identify

the most crucial concepts that need to be monitored, and define a

measurement plan for them—see Section 3.2 . 

3.2. Technical debt concepts and their measurement/assessment 

The cornerstones of the TD metaphor are two concepts bor-

rowed from economics: principal and interest . TD Principal is the

effort required to eliminate inefficiencies in the current design or

implementation of a software system ( Ampatzoglou et al., 2015 );

typical examples of such inefficiencies are code and design smells.

On the contrary, TD Interest is the additional development effort

required to modify the software, due to the presence of such in-

efficiencies ( Ampatzoglou et al., 2015 ): corresponding to the extra

effort required to add new features or fix bugs because of the pres-

ence of TD ( Buschman, 2011 ). The estimation of principal and in-

terest depends on the type of TD (e.g., code, design, testing TD). In

the next paragraphs we elaborate on estimating code TD principal

and interest, which is the focus of this paper. 

In Fig. 2 , we visualize an overview of the two concepts, so as

to allow the easy interpretation of TD terminology, based on the

study of Chatzigeorgiou et al. (2015) . In Fig. 2 , we can observe the

positioning of a random system in the y-axis (“actual ”), which rep-

resents the level of design-time quality of the system. The actual

quality is at some distance from the “optimal ” quality: The effort

required for the development team to close this quality gap, repre-

sents the TD principal . The negative consequence of principal, is TD

interest , which represents the additional effort required to maintain

the software in the actual state, compared to the effort that would

be required if the system was of optimal quality. 

According to two recent secondary studies on TD management

by Ampatzoglou et al. (2015) and Li et al. (2015) , SonarQube is the

most frequently used tool for estimating TD principal . SonarQube

is representing TD principal through two different views: (a) the

number of inefficiencies in the source code, and (b) the amount of
ime required to fix such inefficiencies. The platform algorithm was

riginally based upon an adopted version of the SQALE method

roposed by Letouzey (2012) , in which a remediation index is ob-

ained for requirements of an applicable Quality Model. Since in

his study we are adopting the Dagstuhl 16,162 definition of TD, we

re not using the calculations of SonarQube, “as-is ”, but we con-

ider only the effort to resolve maintainability issues (code smells,

uplicated lines density, and coverage), since it is the only prop-

rty discriminable at design-time. For code smells (by default) there

re 334 rules—e.g., “Method overrides should not change contracts ”,

Package declaration should match source file directory ”, etc. Sonar-

ube rules that are related to code smells are associated with code

nderstandability, poorly written code, runtime security, and cod-

ng standard. Regarding duplicated code , SonarQube measures the

ortion of the code that contains duplicated logic—not necessar-

ly only copy-pasted code, but also conceptual clones occurring

t multiple places. Finally, SonarQube itself cannot assess which

ests are actually executed and the code coverage ; thus, it relies on

hird-party test coverage tools—e.g., JaCoCo for Java. All the afore-

entioned effort s are summed up as the total TD principal : calcu-

ated as the effort required to fix all the aforementioned maintain-

bility issues. The measure is stored in minutes in the database. An

-hour day is assumed, when values are shown in days. The value

f the cost to develop a line of code is 0.06 days. 

Software maintainability is inherently related to technical debt,

nd in particular to TD interest ( Kruchten et al., 2012 ) (i.e., how

asy it is for a software engineer to apply changes in a specific



D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 5 

Table 2 

Maintainability properties and metrics. 

Property Metric Description 

Inheritance DIT Depth of Inheritance Tree : Inheritance level number, 0 for the root class. 

NOCC Number of Children Classes : Number of direct sub-classes that the class has. 

Coupling MPC Message Passing Coupling : Number of send statements defined in the class. 

RFC Response For a Class : Number of local methods plus the number of methods called by class methods. 

DAC Data Abstraction Coupling : Number of abstract types defined in the class. 

Cohesion LCOM Lack of Cohesion of Methods : Number of disjoint sets of methods (a set of methods that do not interact with each other), in the class. 

Complexity CC Cyclomatic Complexity : Average cyclomatic complexity of all methods in the class. 

WMPC / NOM Weighted Method per Class : Weighted sum of methods. Each method of the class is assigned to a weight equal to 1. 

Size SIZE1 Lines of Code : Number of semicolons in the class. 

SIZE2 Number of Properties : Number of attributes and methods in the class 

s  

a  

t  

b  

i  

h  

o  

m  

m  

(

 

e  

(  

m  

f  

q  

s  

t  

a  

t  

o  

t  

s  

t  

M  

t  

a  

H  

o  

r  

u  

c

 

t  

i  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

s  

p  

p  

s  

g

4

 

c  

g  

r  

r

 

 

 

 

oftware system). Therefore, in this study we consider maintain-

bility as a proxy for TD interest. The relation of interest and main-

ainability, as a consequence of the existence of TD principal, has

een highlighted in the literature: “the existence of compromises

ncur a “debt” in the software that should be repaid to restore the

ealth of the system in the future and to avoid “interest” in the form

f decreasing maintainability ” ( Seaman and Guo, 2011 ). The set of

etrics that we have selected to use in our study for quantifying

aintainability (see Table 2 ) belong to well-known metric suites

 Chidamber and Kemerer, 1994 ; Li and Henry, 1993 ). 

The metrics selection was based on a secondary study by Riaz

t al. (2009) , which reported on a systematic literature review

SLR) aimed at summarizing software metrics that can be used as

aintainability predictors. In particular, Riaz et al. (2009) have per-

ormed a quality assessment of maintainability models, through a

uantitative checklist, in order to identify studies of high-quality

core, i.e., studies that provide reliable evidence. More specifically,

he checklist was comprised of 19 questions and each model was

ssessed for each criterion by a three-point scale: yes, no, or par-

ially, with associated scores of 1, 0, and 0.5 respectively. The range

f the total score of each study was between 0 and 19. All studies

hat have scored 7 or below were excluded from the list of selected

tudies, whereas among the studies with the highest scores were

hose of van Koten and Gray (2006) , Zhou and Leung (2007) and

isra (2005) . These studies have used the same definition of main-

ainability while the common metrics used in all three studies

re the ones belonging to the metric suites proposed by Li and

enry (1993) and Chidamber et al. (1994), i.e., two well-known

bject-oriented set of metrics. The employed suites contain met-

ics that can be calculated at the source-code level, and can be

sed to assess well-known quality properties, such as inheritance,

oupling, cohesion, complexity and size. 

The employed suites contain metrics that can be calculated at

he source-code level, and can be used to assess well-known qual-

ty properties, such as inheritance, coupling, cohesion, complexity

nd size. 

• Regarding inheritance , although we acknowledge its need as

one of the main advantages of object-orientation, excessive lev-

els of inheritance renders the design more complex, and there-

fore harder to maintain. More specifically, the DIT metric can

be characterized as maintainability predictor, in the sense that

a class placed very low in the inheritance tree has access to

more properties or methods of super-classes and thus is hard

to maintain. In such a case, it is more difficult to locate which

class implements a method that needs to be changed or a prop-

erty that need to be parsed. Similarly, for NOCC metric, the

more direct sub-classes a class has, may affect its maintainabil-

ity, in the sense that for understandability reasons it may be

preferable to organize entities inside sub-hierarchies instead of

giving excessive breadth to the design. 
• Three coupling metrics are related to maintainability. In partic-

ular, RFC metric calculates the cardinality of the response of a

class. Thus, a class that has many local methods and all these

methods call others, RFC metric will score high, signifying a

larger and more complex class in which it will be difficult to

identify errors, due to excessive message delegation. Similarly,

with RFC, the MPC metric depicts the dependence of a class

to methods in other classes. Classes with high levels of MPC

are more prone to ripple effects, i.e., changes propagated due

to changes in other classes. Finally, a class that has multiple

variables of abstract data types (DAC) is difficult to maintain,

since method calls to abstract objects can potentially lead to

concrete implementations located in sub-classes. Thus, identify-

ing the proper implementation becomes more time consuming.
• Regarding cohesion , LCOM characterizes the amount of respon-

sibilities offered by a class. A class with many responsibilities

is expected to change more frequently, and to include longer

methods that are hard to maintain. 
• For the complexity property we use two metrics: CC and

WMPC. In particular, WMPC is the number of methods in a

class. For a class that has a lot of methods, its’ interface will

be more frequently maintained. In addition, by focusing on the

body of methods, CC measures the average cyclomatic complex-

ity. A method with high CC, is harder to understand since it has

more control flows (e.g. loops, if, etc.). 
• Finally, the size of a class is very important, in the sense that

a class that has a large number of lines of code, properties and

methods will be more difficult to understand and maintain. For

assessing this property, we use two metrics: SIZE1 and SIZE2. 

. Study design 

The objective of this study is to investigate the relation between

oftware reuse and technical debt. To achieve this goal, we com-

are the levels of the two pillars of the TD concept (i.e., princi-

al, and interest) of reused and native classes, through a multi-case

tudy. The study has been designed and reported according to the

uidelines suggested by Runeson et al. (2012) . 

.1. Objectives and research questions 

The goal of the study is to “compare white-box reused and native

lasses with respect to their TD principal and interest ”. Based on this

oal (and the two aspects of technical debt) we have derived two

esearch questions that will guide the case study design and the

eporting of the results: 

RQ 1 : Is reused code having lower principal compared to native

code? 

This research question aims at investigating if the overall qual-

ity (as captured by TD) of the reused code is higher compared

to the overall quality of the native code, in which the reused



6 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4  

i  

d  

(  

d  

w  

Table 3 

Reaper repo descriptives. 

Variable Min Max Mean Std. Dev. 

History 0 209 12,54 21,824 

#Issues 0 67 2,38 6078 
code is to be introduced. This question is relevant for cases that

development teams: (a) have to decide on whether to reuse

code or develop it from scratch; and/or (b) want to refactor

reused code so as to pass certain quality standards in the com-

pany. To answer this research question, we compare the average

TD principal of native and reused code: TD principal sums-up

the effort to refactor all code smells, as provided by SonarQube.

RQ 2 : Is reused code having lower interest compared to native

code? 

This research question aims to investigate if the effort r equir ed t o

maintain reused code is higher or lower, compared to native code.

The answer to this question is interesting to practitioners that aim

at applying white-box reuse that will involve code maintenance in

the target system. To answer this research question, we compare

the average TD interest of native and reused code. TD interest is

assessed through a set of proxies, i.e. , well-known maintainability

predictors: see Section 3 for more details. 

4.2. Case selection and units of analysis 

According to Yin (2003) , for every case study, researchers must

determine the context, the cases, and the units of analysis. In this

study, the context is open-source software and the cases / units

of analysis are open source classes. We note that this case study is

holistic: for each case one unit of analysis is extracted. To gather as

many cases as possible, we queried the Reaper database 1 and se-

lected the GitHub projects written in Java, using Apache Maven as

an automation tool. We selected Java as a programming language

so as to take advantage of the capabilities of exiting tools for quan-

tifying the aspects of TD. We have selected Maven as a build tools

(e.g., against Gradle), since it offers a lar ge number of projects that

could lead to a large-scale dataset, and since it is more generic-

scoped compared to Gradle. In particular, most Gradle projects are

Android applications; thus, they require manual customization and

pre-build configurations. These tasks prevent the automated build

and data-extraction of these projects for the needs of this large-

scale analysis. Finally, to filter and select a subset of project in the

Reaper database, we sorted them based on their popularity, i.e.,

their stars in GitHub API. 

4.3. Data collection 

The dataset that has been used in this study consists of 897,044

rows, one row for each class of the considered systems. For every

class, we recorded 18 variables: 

1 Software : The name of the OSS project from which we ex-

tracted the data. 

2 Class : The name of the class under study. 

3 Reuse : Reused or Native 

4 TD Principal : The amount of TD principal in a specific class,

based on SonarQube. 

5 TD Interest : The values of the 10 object-oriented metrics (V.5.1

– V.5.10) that can be used as proxies of TD interest, as calcu-

lated from the Percerons Client—see Table I. 

For enabling the automated extraction of these variables, the

following process has been used: 

• Step 1: Download repositories . After selecting the projects (see

Section 4.2 ), using Git, we cloned locally the top 10 0 0 ones. We

selected this number of projects to improve the representative-

ness of the sample towards the population and strengthen the

statistical analysis. 
1 https://github.com/RepoReapers/reaper 
• Step 2: Build projects and retrieve dependencies. With the

repositories at hand, we have then built each project. During

the building process, the generated compiled package (i.e., a .jar

or .war file) are placed in the local Maven repository (the .m2

directory by default). The dependencies (third party packages or

libraries) of each project are also downloaded and placed in the

local repository (in cases that the source code was not available

as glass-box reuse, we downloaded it manually). From the to-

tal 10 0 0, we discarded 598 projects that failed to build. For the

remaining 402 successfully built projects, we stored their de-

pendency tree, i.e., the paths to the packages of the project and

its dependencies. 
• Step 3: Collect project information. In this step, we analyzed

each project’s dependencies’ tree and collected the first groups

of variables (V1-V3). In particular, regarding V3, we used a two-

step process. First, we marked as reused all systems classes that

exist in the compiled packages that are downloaded from the

Maven repository (black-box reuse – however black-box reused

classes have not been studied in our analysis). Then, for each

one of these classes from the Maven repository, we searched

them in the source code of the 402 built projects, and when

we identified them in a project (other than the source/original

one), we marked them as reused (white-box reuse). The iden-

tification of the original project relied on the naming of the

projects. Classes that are reused in more than one projects

have been removed as duplicates (i.e. we retained only a sin-

gle class). All other classes of the built projects (i.e. other than

reused ones) are tagged as native, in the sense that we have no

indication of reuse within our set of analyzed projects. 
• Step 4: Measure TD Principal . For quantifying TD principal

(V4), we have used SonarQube (see Section 3 ). According to

its documentation, SonarQube aims at the continuous evalua-

tion of software quality. SonarQube can assess the quality of

software on a multitude of programming languages, generating

documentation on quality measures and issues, such as coding

rule violations. The analysis has been performed according to

the platform’s default configuration. The TD Principal for each

artifact corresponds to the total effort needed in order to re-

solve all existing maintainability issues in an artifact. 
• Step 5: Measure TD Interest. For calculating the metrics

of Table 1 that can be considered as interest proxies (see

Section 3 ), we have used Percerons Client ( Ampatzoglou et al.,

2013 ). Percerons is a software engineering platform

( Ampatzoglou et al., 2013 ) created by one of the authors

with the aim of facilitating empirical research in software engi-

neering, by providing: (a) indications of componentizable parts

of source code, (b) quality assessment in Java code through

software metrics, and (c) design pattern instances. This step

led to the recording of variables V.5.1 – V.5.10. 

In the end of this process 897 thousand classes, retrieved from

02 projects, have been analyzed. The average size of the projects

s approximately 2231 classes. The number of native classes in the

ataset is 167 K (~19%) classes, whereas the rest are reused ones

~7% white-box reused and 74% black-box reused). Some additional

emographics are presented in Fig. 3 and Table 3 . From the figure

e can observe that both the absolute, as well as, the normalized
#Unit Tests 0 1 0,21 0,187 

Stars 3 3440 176,91 325,200 

https://github.com/RepoReapers/reaper


D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 7 

Table 4 

Hypothesis testing overview. 

RQ Dependent Variables Grouping Variable Null Hypothesis 

RQ 1 [V4] Total TD Principal [V3] Native or Reused H 0 : The population means for TD 

principal from the white-box and 

reused classes groups are equal 

RQ 2 [V5.1] – [V5.10] H 0 : The population means for 10 

proxy metrics for TD interest from the 

white-box and reused classes groups 

are equal 

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

AVG (NoM) AVG (LoC) SUM(Mo LoC)

na�ve reused

Fig. 3. Descriptives of the dataset. 

v  

t  

r

4

 

a  

c  

b  

s  

e  

f  

t  

s

 

 

 

 

 

 

 

 

T  

f  

F  

v  

S  

w  

e  

e

 

t  

Table 5 

Hypothesis testing for TD principal. 

Code Mean TD Principal (in minutes) Std. Dev. t-value sig. 

Native 0.472 40.79 - 

6.788 

< 0.01 

Reused 1.388 32.31 

b  

f  

s  

o  

n  

b  

i  

c

5

 

r  

r

(

 

s  

c  

c  

t  

s  

l  

m  

m  

p  

i  

v  

f  

i  

p  

s

 

h  

r  

c  

c  

c  

t  

n  

c  

b

 

T  

f  

t  

f  

s  
alues (divided by the number of classes) are quite close, consti-

uting the two groups (the analysis is performed per class) compa-

able. 

.4. Data analysis 

To answer the research questions set in Section 4.1 , given the

vailable dataset (see Section 4.3 ), the following data analysis pro-

ess has been performed. Given the fact that all the analysis is

uilt around subjects that can be split into two groups, we have

elected tests and means of visualization for comparing the lev-

ls of a certain numerical variables between groups. To this end,

or hypothesis testing, we have used the independent sample t -

est. According to Field (2017) the proper execution of independent

ample t-tests requires checking the following four assumptions: 

• normal distribution : We have checked that the differences be-

tween scores are normally distributed, using the Kolmogorov-

Smirnov test ( Field, 2017 ). 
• data are measured at least at the interval level : This assump-

tion holds, since all the recorded variables are at a continuous

scale. 
• homogeneity of variance : We have checked that the variances

of the two groups are equal in the population, using the Lev-

ene’s test ( Field, 2017 ). 
• independence of variables’ scores : This assumption holds, since

all datapoints come from different classes. 

Due to space limitations, here we report only the results on the

D Principal variable, but the same process has been performed

or all ten variables that are proxies of TD Interest. In particular, in

ig. 4 , we present the Q-Q plot, suggesting that the values of the

ariable are normally distributed for both groups. The Kolmogorov-

mirnov test for native classes is 0.087 (sig: 0.11), whereas for

hite-box reused classes is 0.072 (sig: 0.15). Additionally, the Lev-

ne’s test of equality of variances suggested that the variances are

qual (F: 0.266 and sig: 0.55). 

The analysis on principal has been performed: (a) for the to-

al TD principal; whereas (b) for interest, on all metrics that can
e used as interest proxies—see Section 3 . To ensure that the con-

ounding factor of reused code size is factored out of the analy-

is, we performed hypothesis testing to compare the average size

f reused and native classes, in terms of lines of code (LOC) and

umber of methods (NOM). The outcome of this comparison will

e important during the interpretation of the results, since size

s acknowledged as an important factor while performing quality

omparisons. An overview of data analysis is presented in Table 4 . 

. Results 

In this section we present the results of this study organized by

esearch question. In Section 5.1, we answer RQ 1 (relation between

euse and TD principal), whereas, in Section 5.2 we answer RQ 2 

reuse and TD interest). 

As a pre-processing step for our analysis, we explored the pos-

ible differences in the size of reused and not reused classes. The

omparison has been made, by using two size metrics: (a) lines of

ode—LOC, and (b) number of methods—NOM. The results suggest

hat the two groups (native and white-box reused classes) have

imilar size in mean values (64.42 ± 191.04 vs. 65.22 ± 188.63

ines of code per class, and 10.38 ± 21.24 and 12.18 ± 22.48

ethods per class respectively). However, the differences in their

ean values are statistically significant (hypothesis testing with

 < 0.01). Therefore, since any differences identified in the upcom-

ng sections could be attributed to the different size of the reused

s. native code, mitigation actions shall be taken. To this end: to

actor out this confounding factor all variables have been normal-

zed against the lines of code of each class. Studying TD Princi-

al Density instead of TD values per se has been adopted by other

tudies as well (e.g., by Digkas et al., 2018 ). 

Reuse and TD Principal. In Table 5 we present the results that

ave been obtained by studying the TD principal accumulated in

eused classes compared to native ones. Based on the results, we

an conclude that TD Principal is higher in white-box reused code

ompared to native code. The difference apart from being statisti-

ally significant, is also important in an absolute value, in the sense

hat reused code has 290% more TD Principal Density, compared to

ative code. Despite the fact that standard deviation is quite high

ompared to the mean values, the standard deviation is compara-

le between the two groups (standard deviation ratio: 0.792). 

Reuse and TD Interest. Following a similar analysis to RQ 1 , in

able 6 , we present the results of the independent sample t-tests

or the variables that are proxies of TD interest. We note that from

his analysis, we have omitted size metrics, since they have been

actored out as explained in the beginning of Section 5 . The results

uggest that based on all metrics (except from Cyclomatic Com-



8 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

Table 6 

Hypotehsis testing for TD interest. 

TD Interest Code Mean Std. Dev. t-value sig. 

Depth of Inheritance Tree Native 2.164 1.48 19.587 < 0.01 

Reused 1.977 1.34 

Number of Children Native 0.661 3.65 5.877 0.02 

Reused 0.602 4.29 

Cyclomatic Complexity Native 1.623 2.45 -6.444 < 0.01 

Reused 1.702 1.96 

Lack of Cohesion Native 195.184 2481.79 0.889 0.78 

Reused 175.338 4217.11 

Response for a Class Native 37.970 61.98 4.995 < 0.01 

Reused 35.111 58.69 

Message Passing Coupling Native 41.095 122.95 0.102 0.85 

Reused 38.698 111.78 

Data Abstraction Coupling Native 0.335 1.21 11.172 < 0.01 

Reused 0.295 1.73 

Fig. 4. Q-Q plots for checking normal distribution for TD principal. 

Fig. 5. Continuents of TD interest. 

 

 

 

 

 

 

 

 

 

 

 

 

m  

c  

c  

A  

i  

i  

c  

i  

l  

a  

r  

r  

m  

o

6

 

g  

t  

r  

r  

a

 

c  

c  

t  

b  

O  

a  

h  

g  
plexity) the reused code is more maintainable compared to the

native one. Nevertheless, the differences are statistically significant

only for the two inheritance metrics (DIT and NOCC), the complex-

ity metric (CC), and two coupling metrics (RFC and DAC). 

By focusing on the actual values of the metric scores (see

Fig. 5 ), we can observe that the differences are rather small, rang-

ing from 4.64% for CC to 15.22% for DAC, whereas for the majority

of cases the difference is around 10%. This observation is in con-

trast to TD principal, in which: (a) the difference was more sub-

stantial in terms of absolute numbers, and (b) the native code ex-

celled compared to the reused one. 

The aforementioned findings are considered as expected in the

sense that code that is organized into libraries is by definition pay-

ing special attention to modularity, so as to be reusable. Software
odularity is composed by two structural properties: coupling and

ohesion ( van Vliet, 2008 ). Therefore, the fact that reused code ex-

els in terms of coupling and cohesion can be consider expected.

dditionally, reused code usually is a more conceptually difficult to

mplement code chunk, that offers advanced functionality, which

nevitable contains necessary complexity . Thus, the fact that native

ode is on average less complex can be attributed to the fact that it

s a collection of trivial and advanced functionalities, in contrast to

ibrary code, which usually encapsulates more complex function-

lities. Additionally, in terms of abstraction and inheritance , the

eused code is also expected to be superior, since it is meant to be

eused and therefore offers extension points through well-known

echanisms such as patterns, open-close principle, etc., that rely

n polymorphism. 

. Discussion 

In this section we discuss the main findings of this paper, or-

anized into two sub-sections. First, we present interpretations of

he main findings of the case study, by providing comparisons to

elated work, when it is possible. Then, we provide implications to

esearchers and practitioners in the form of actionable outcomes

nd future work opportunities. 

Interpretation of Results and Practical Considerations. This study

ompared the reused and native source code in terms of techni-

al debt. The findings of the study are not uniform in the sense

hat the two aspects that have been investigated do not seem to

e affected in the same way by software reuse as a phenomenon.

n the one hand, the TD principal (i.e., the effort required to fix

ll source code inefficiencies) of reused code appears to be 3 times

igher compared to native one. Interpreting this observation sug-

est that, supposing that software development industries want to



D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 9 

r  

c  

a  

m

 

a  

m  

s  

c  

t  

i  

p  

i  

p  

e  

c  

c  

t  

t  

o  

g  

a  

t  

e  

S  

C  

r  

c

 

m  

p  

e  

o  

A  

t  

b  

s  

p  

b  

m  

b  

i  

i  

c  

v  

(  

p  

n

 

v  

t  

i  

a  

d  

s  

c  

a  

fi  

t  

t  

d  

y  

n  

b  

t  

p

7

 

v  

n

7

 

p  

fi

 

s  

t  

A  

n  

d  

A  

S  

c  

T  

i  

i  

i

 

t  

t  

w  

o  

f  

(  

t  

a  

t  

t  

m  

t  

l  

o  

b  

c  

d  

T  

0  

a  

d

 

m  

t  

s  

d  

s  

f  

a  

a  

f  

s  

l  

p  

a  

i  

u

 

d  

o  

s  
etain a certain standard of quality assurance, in terms of source

ode issues (i.e., code conventions, clumsy code, etc.), it is prefer-

ble to write their own code, in the sense that reused code is in

ore need of refactoring. 

On the other hand, based on our findings the reused classes

ppear to be more maintainable than native classes (even

arginally, less than 10% )—i.e., having lower TD interest . This ob-

ervation has merit since it shows that in cases that the reused

lasses need to be maintained, their structure enables the easy ex-

ension of the code base. This finding is extremely interesting since

t: (a) contradicts existing literature on the relation between TD

rincipal and interest, which until now have been reported as pos-

tively correlated (e.g., ( Kosti et al., 2017 )); and (b) does not com-

ly with the traditional relation between principal and interest in

conomics—a claim that it is also supported by others in the TD

ommunity (e.g., Schmid, 2013 ). This finding, suggests that reused

ode has some special characteristics that deserve further inves-

igation. In particular, the findings of this study suggest that al-

hough the reused code is in-need of various refactorings (in terms

f styling, coding conventions, etc.) the produced code obeys to

ood object-oriented practices; lowering complexity and coupling,

nd improving cohesion. Additionally, this finding suggests that al-

hough measuring TD principal (through SonarQube) and TD inter-

st (through maintainability metrics) are having some overlap (e.g.,

onarQube offers some rules, by setting thresholds on the value of

yclomatic Complexity) the two amounts are not by-definition cor-

elated, and therefore are valid and independent views of the two

oncepts. 

Implications to Researchers and Practitioners. Based on the afore-

entioned observations various implications to researchers and

ractitioners can be highlighted. On the one hand, practitioners are

ncouraged to perform open-source code reuse, at least in terms

f guaranteeing that technical debt can be sufficiently managed.

lthough the amount of TD principal that is brought to the sys-

em is higher compared to native code, reused code appears to

e easier to maintain. In particular, the extra effort that shall be

pent in refactoring existing inefficiencies is equalized at the first

lace by the effort saved during development, and in the long term

y the interest savings along maintenance. However, each develop-

ent team should monitor the TD principal and interest incurred

y reuse and check whether it aligns with the team’s overall qual-

ty assurance strategy. Additionally, in the special case of select-

ng between commercial components off-the-shelf (COTS) and OSS

omponents, the results of the study can be used as part of the

aluation of reuse alternatives, e.g., through real-option approaches

 Mavridis, 2014 ). Such strategies consider the trade-offs between

aying for get ting access to propertiary components, against the

eed for paying for technology transfer. 

On the other hand, regarding TD research community , we pro-

ide evidence that reuse is a promising technology for preventing

he accumulation of TD, and for ensuring the future TD sustainabil-

ty of the system. An interesting research implication that leads to

 very interesting future work opportunity is studying why reuse

oes not have the same effect on TD principal and interest. This

eems to be a special case for the TD literature in the sense that

urrent empirical evidence suggest that TD principal and interest

re correlated ( Kosti, 2017 ) and since it contradicts the underlying

nancial concept that principal and interest are related through in-

erest rate, as discussed by Schmid (2013) . Deviating from these

wo observations constitute reuse at the class level as a candi-

ate for more in-depth analysis, explanatory studies that goes be-

ond out exploratory ones. An interesting future work opportu-

ity would be the replication of the study, by using additional

uilding tools (e.g., Gradle), in order to investigate if the build

ool related to the quality of the code that is brought inside the

roject. 
. Threats to validity 

In this section, we present and discuss potential threats to the

alidity of our case study: construct validity, reliability, and exter-

al validity ( Runeson et al., 2012 ). 

.1. Construct validity 

Construct validity is related to the way in which the selected

henomena are observed and measured. In this study we quanti-

ed two TD concepts, namely TD principal and TD interest: 

TD principal is quantified through SonarQube, which is the

tate-of-practice tool for measuring TD principal ( Alves, 2016 ) in

he sense that is the most widely used in research and practice.

lthough SonarQube is an established tool, it focuses on code TD,

eglecting other types of TD, like architecture debt, requirements

ebt, etc. Despite the identified limitations, especially the lack of

rchitectural Technical Debt (ATD) identification and measurement,

onarQube is considered as extremely useful for code TD identifi-

ation, monitoring, measurement and prioritization. According to

sintzira et al. (2019) the TD principal as measured in this study

s correlated at the level of 0.83 to the perception of practitioners

n terms of the amount of effort required to refactor an existing

ndustrial system. 

In the literature there is no established way to measure TD in-

erest . This is due to the fact that an accurate measurement of in-

erest would require the simultaneous maintenance of two soft-

are solutions: an optimal and an actual one and the anticipation

f future maintenance activities. Besides the inability to fore-cast

uture changes, such an approach is unrealistic for two reasons:

a) there is no way to define a universally accepted optimal sys-

em, and (b) it is cost inefficient to maintain two real systems just

iming to accurately measure technical debt interest. Therefore, as

he current state-of-the-art stands TD interest can only be assessed

hrough proxies. In this study, as a proxy of interest we selected

etrics that assess maintainability. Although in literature, main-

ainability has been linked to various metrics, in this study we se-

ected ten object-oriented metrics (grouped in 5 categories/aspects

f TD interest) measured at source code. Metrics’ selection was

ased on empirical evidence in the literature suggesting that a

ombination of these metrics is the optimal maintainability pre-

ictors ( Riaz et al., 2009 ). According to Tsintzira et al. (2019) the

D interest as measured in this study is correlated at the level of

.73 to the perception of practitioners in terms of the amount of

dditional effort required to maintain an existing industrial system,

ue to the presence of inefficiencies. 

Finally, a tentative threat to construct validity might arise by

ixing up design and code TD, while calculating interest (we note

hat all calculations have been made at the source code level). De-

pite the fact that the interest proxy metrics are intended to be

esign ones, the majority of them cannot be calculated from de-

ign artifacts (e.g., a class diagram). For instance, LCOM requires

or each calculation to be aware of the attributes that are being

ccessed in the body of a function. This information is only avail-

ble at the implementation phase and from the source code arti-

act; despite the fact that the level of calculation is the class. The

ame holds for other metrics, e.g., the coupling ones, since the dec-

aration of an extra variable in a method body would increase cou-

ling, but it is highly unlikely that it would lead to the inclusion of

n association in a class diagram. Therefore, the used metrics are

n the border between code and design TD; and we consider their

se as a proper decision. 

Respect to reliability, we consider any possible researchers’ bias,

uring the data collection and data analysis process. The design

f the study, concerning data collection, does not contain threats,

ince all data are automatically extracted by tools, without any



10 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m  

i

D

 

c  

i

C

 

m  

-  

M  

v  

o  

S  

d  

c  

v

R

A  

 

d  

 

A  

 

A  

 

 

A  

 

A  

 

A  

 

A  

 

 

 

A  

 

 

B  

 

 

B  

 

B  

 

 

C  

 

C  

 

D  

 

subjective configuration. Moreover, with respect to the data analy-

sis process, to mitigate any potential threats to reliability, three re-

searchers were involved in the process, aiming at double checking

the work performed and thus reducing the chances of reliability

threats. Furthermore, the detailed case study protocol presented in

Section 4 enables the repetition of the study, as well as the provi-

sion of a replication package. 

7.2. Internal validity 

Concerning internal validity, we note possible confounding fac-

tors that might have biased the results of this study. The main

threat to internal validity is related to the characterization of

classes with respect to reuse. First, regarding the characterization

of a class as reused or native, we have used a systematic process

for classifying classes. Through this process, we are certain that the

classes that have been classified as reused ones are true-positive

occurrences (high recall); however, we acknowledge that we might

have characterized as native, some classes that have been reused

in the white-box form (lowered precision—false positives). Due to

the enormous size of the dataset, it was not realistic to perform a

comprehensive check; however, to alleviate this problem, we have

performed a manual check on a subset of our dataset (approx. 500

classes) and we have identified, no such cases. Second, regarding

the characterization of classes as white-box, we note that we can-

not differentiate between white- and glass-box reused classes: i.e.,

cases in which the reused code, is copied inside the code bases

of the target application (as source), but it was never maintained.

Getting definite results on this would require the analysis of the

whole project evolution. We opted not to perform this task, since

we believe that glass-box and white-box reuse do not differ sub-

stantially, and although some classes have not been maintained

still, they contribute to the TD of the system, since they are candi-

dates for accommodating future changes. 

7.3. External validity 

Concerning external validity, a potential threat to generalization

is the possibility that performing the study on different projects of

different languages might affect the obtained observations. How-

ever, we believe that the selected projects, given their size and

complexity, represent a realistic real-world system. Additionally,

the results of the study are not applicable to non-object-oriented

systems, in the sense that TD interest in such systems could not be

assessed through properties such as inheritance, coupling and co-

hesion, which are applicable only in OO software modules. Finally,

the identified outliers (less than 1% of the sample) might influence

the generalizability of results in the sense that in the population

more extreme values might exist. However, we believe that this

threat is substantially mitigated by the size of our sample and the

small proportion of outliers. 

8. Conclusions 

Reuse is an established practice in software engineering that is

yielding several benefits for the quality of the target system, and

the development process, in terms of productivity. In this paper,

we study the relation between software reuse at the class level

and technical debt, which is a modern view of structural soft-

ware quality, which valuates future maintenance actions. In par-

ticular, we have explored the reuse activities performed in ~400

projects (~890 K classes) and compared the TD principal and in-

terest of reused and natively-developed classes. The results of the

study suggested that reused classes tend to concentrate more prin-

cipal, but are easier to maintain (lower interest). Unveiling the un-

derlying relations between source-code reuse and technical debt,
re useful to both practitioners and researchers, since they can get

ore informed decisions while reusing, and trigger some promis-

ng research opportunities. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interestsor personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Daniel Feitosa: Conceptualization, Methodology, Software, For-

al analysis, Data curation, Writing - original draft, Writing

 review & editing. Apostolos Ampatzoglou: Conceptualization,

ethodology, Data curation, Writing - original draft, Writing - re-

iew & editing. Antonios Gkortzis: Conceptualization, Methodol-

gy, Software, Writing - original draft, Writing - review & editing.

tamatia Bibi: Conceptualization, Methodology, Writing - original

raft, Writing - review & editing. Alexander Chatzigeorgiou: Con-

eptualization, Methodology, Writing - original draft, Writing - re-

iew & editing. 

eferences 

jila, S.A. , Wu, D. , 2007. Empirical study of the effects of open source adoption

on software development economics. J. Syst. Softw. 80 (9), 1517–1529 Else-
vierSeptember . 

e Almeida, E.S. , Alvaro, A. , Lucredio, D. , Garcia, V.C. , de Lemos Meira, S.R. , 2005. A
survey on software reuse processes. In: 7 th International Conference on Informa-

tion Reuse and Integration , Las Vegas, USA. IEEE, pp. 66–71 15-17 August . 

lves, N.S.R. , Mendes, T.S. , de Mendonça, M.G. , Spínola, R.O. , Shull, F. , Carolyn Sea-
man , 2016. Identification and management of technical debt: A systematic map-

ping study. Inf. Softw. Technol. 70, 100–121 Elsevier . 
manatidis, T. , Mittas, N. , Chatzigeorgiou, A. , Ampatzoglou, A. , Angelis, L. , 2018.

The Developer’s Dilemma: Factors Affecting the Decision to Repay Code Debt.
In: 1 st International Conference on Technical Debt (TechDebt’ 18), Gothenburg.

IEEE/ACM, pp. 62–66 27-28 May . 

mpatzoglou, A. , Ampatzoglou, A. , Chatzigeorgiou, A. , Avgeriou, P. , 2015. The fi-
nancial aspect of managing technical debt: A systematic literature review. Inf.

Softw. Technol. 64, 52–73 ElsevierAugust . 
mpatzoglou, A. , Ampatzoglou, A. , Avgeriou, P. , Chatzigeorgiou, A. , 2016. A Finan-

cial Approach for Managing Interest in Technical Debt. A Financial Approach for
Managing Interest in Technical Debt. Springer . 

mpatzoglou, A. , Gkortzis, A. , Charalampidou, S. , Avgeriou, P. , 2013. An embedded

multiple-case study on OSS design quality assessment across domains. In: 7 th 

International Symposium on Empirical Software Engi-neering and Measurement

(ESEM’ 13), Baltimore, USA. ACM/IEEE, pp. 255–258 10-11 October . 
mpatzoglou, A. , Ampatzoglou, A. , Chatzigeorgiou, A. , Avgeriou, P. , Abrahamsson, P. ,

Martini, A. , Zdun, U. , Systa, K. , 2016. The perception of technical debt in the
embedded systems domain: an industrial case study. In: 8 th International Work-

shop on Managing Technical Debt (MTD’ 16), Raleigh, USA. IEEE, pp. 9–16 4 Oc-

tober . 
rvanitou, E.M. , Ampatzoglou, A. , Bibi, S. , Chatzigeorgiou, A. , Stamelos, I. , 2019.

Monitoring technical debt in an industrial setting. 23 rd International Conference
on the Evaluation and Assessment in Software Engineering (EASE’ 19). ACM

14-17 April . 
aldassarre, M.T. , Bianchi, A. , Caivano, D. , Visaggio, G. , 2005. An industrial case study

on reuse oriented devel-opment. In: 21 st International Conference on Software

Maintenance (ICSM’05), Budapest, Hungary. IEEE, pp. 283–292 25-30 Septem-
ber . 

arros-Justo, J.L. , Pinciroli, F. , Matalong, S. , Martínez-Araujo, N. , 2018. What software
reuse benefits have been transferred to the industry? A systematic mapping

study. Inf. Softw. Technol. 103, 1–21 Elsevier . 
uschmann, F. , 2011. To pay or not to pay technical debt. Software 28 (6), 29–31

IEEEJune . 

Chatzigeorgiou, A. , Ampatzoglou, A. , Ampatzoglou, A. , Amanatidis, T. , 2015. Estimat-
ing the breaking point for technical debt. In: 7 th International Workshop on

Managing Technical Debt (MTD). IEEE, pp. 53–56 Bremen2 Octomber . 
hidamber, S.R. , Kemerer, C.F. , 1994. A metrics suite for object oriented design.

Trans. Softw. Eng. 20 (6), 476–493 IEEEJune . 
Constantinou, E. , Ampatzoglou, A. , Stamelos, I. , 2014. Quantifying reuse in OSS: A

large-scale empirical study. Int. J. Open Source Softw. Process. 5 (3), 1–19 IGI–
GlobalJuly . 

unningham, W. , 1992. The WyCash Portfolio Management System. In: 7 th Inter-

national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’92), Vancouver, Canada, pp. 29–30 5-10 October . 

eniz, B. , Bilgen, S. , 2014. An Empirical Study of Software reuse and quality in an
industrial setting. In: International Conference on Computer Science and its Ap-

plications, pp. 508–523 Springer30 June . 

http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0019


D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 11 

D  

 

 

E  

 

F  

 

 

F
F  

H  

 

J

K  

 

K  

 

 

K  

K

L  

 

L  

L  

L  

M  

 

M  

 

 

M  

 

M  

M  

M  

 

 

M  

 

M  

 

M  

 

N  

 

 

P  

 

 

P  

 

P  

 

P  

R  

 

 

R  

 

R  

S  

S  

 

T  

 

 

v  

 

v  

X  

 

Y  

 

 

Y  

Z  

 

 

 

Z  

 

Z  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

igkas, G. , Lungu, M. , Avgeriou, P. , Chatzigeorgiou, A. , Ampatzoglou, A. , 2018. How
do developers fix issues and pay back technical debt in the apache ecosystem?

In: 25 th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER’ 18). IEEE Computer Society, pp. 153–163 March . 

isenberg, R. , 2013. Management of technical debt: a lockheed martin experience
report. 5 th International Workshop on Managing Technical Debt (MTD’ 13) 9

October . 
eitosa, D. , Ampatzoglou, A. , Avgeriou, P. , Nakagawa, E.Y. , 2015. Investigating qual-

ity trade-offs in open source Critical Embedded Systems. In: 11 th International

Conference on Quality of Software Architectures (QoSA’ 15), Montreal, Canada.
ACM, pp. 113–122 4-7 May . 

ield, A. , 2017. Discovering Statistics Using IBM SPSS, fifth ed. SAGE Publications . 
rakes, W.B. , Kang, K. , 2005. Software Reuse Research: Status and Future. Trans.

Softw. Eng. 31 (7), 529–536 IEEEJuly . 
einemann, L. , Deissenboeck, F. , Gleirscher, M. , Hummel, B. , Irlbeck, M. , 2011. On

the extent and nature of software reuse in open source java projects. Lect. Notes

Comput. Sci. 207–222 Springer . 
oos, R. , 1994. Software reuse at motorola. Software 42–47 September . 

azman, R. , Cai, Y. , Mo, R. , Feng, Q. , Xiao, L. , Haziyev, S. , Fedak, V. , Shapochka, A. ,
2015. A Case study in locating the architectural roots of technical debt. In: 37 th 

IEEE International Conference on Software Engineering (ICSE’ 2015), IEEE/ACM,
pp. 179–188 Florence, Italy, 16-24 May . 

osti, M.V. , Ampatzogirlou, A. , Chatzigeorgiou, A. , Pallas, G. , Stamelos, I. , Angelis, L. ,

2017. TD principal assessment through structural quality metrics. In: 43 rd Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA’

17), Vienna, Austria. IEEE, pp. 329–333 30 August – 1 September . 
ruchten, P. , Nord, R. , Ozkaya, I. , 2012. Technical debt: from metaphor to theory and

practice. Software 29 (6), 18–21 IEEENovember . 
rueger, C.W. , 1992. Software reuse. Computing Surveys 24 (2), 131–183 ACMJune . 

etouzey, J.L. , 2012. The sqale method for evaluating technical debt. In: 3 rd Interna-

tional Workshop on Managing Technical Debt (MTD ‘12), Zurich, Switze r land.
IEEE, pp. 31–36 2–9 December . 

i, W. , Henry, S. , 1993. Object-oriented metrics that predict maintainability. J. Syst.
Softw. 23 (2), 111–122 ElsevierFebruary . 

i, Z. , Avgeriou, P. , Liang, P. , 2015. A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 ElsevierMarch . 

im, W.C. , 1994. Effects of reuse on quality, productivity, and economics. Software

11 (5), 23–30 IEEEMay . 
artínez-Fernández, S. , Ayala, C.P. , Franch, X. , Marques, H.M. , 2013. REARM: a

reuse-based economic model for software reference architectures. 13 th Interna-
tional Conference on Software Reuse (ICSR’ 13). Springer 18-21 June . 

artini, A. , Bosch, J. , Chaudron, M. , 2014. Architecture Technical Debt: Understand-
ing Causes and a Qualitative Model. In: 40 th EUROMICRO Conference on Soft-

ware Engineering and Advanced Applications (SEAA’ 14), Verona, Italy. IEEE,

pp. 85–92 27-29 August . 
avridis, A. , 2014. Valuation and Selection of OSS with Real Options. In: 26 th Inter-

national Conference on Advanced Information Systems Engineering (CAISE’ 14).
Springer, pp. 44–52 16-20 June . 

ikkonen, T. , Taivalsaari, A. , 2019. Software reuse in the era of opportunistic design.
IEEE Softw. 36 (3), 105–111 May-June . 

isra, S.H. , 2005. Modeling design/coding factors that drive maintainability of soft-
ware systems. Softw. Qual. J. 13 (3), 297–320 Springer . 

o, R. , Cai, Y. , Kazman, R. , Xiao, L. , 2015. Hotspot patterns: The formal definition

and automatic detection of architecture smells. In: 12 th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA ’15), Ottawa, Ontario, Canada. IEEE,

pp. 51–60 May . 
ohagheghi, P. , Conradi, R. , 2007. Quality, productivity and economic benefits of

software reuse: a review of industrial studies. Emp. Softw. Eng. 12 (5), 471–516
SpringerMay . 

ohagheghi, P. , Conradi, R. , 2008. An empirical investigation of software reuse ben-

efits in a large telecom product. Trans. Softw. Eng. Methodol. 17 (3), 13 ACM-
pagesSeptember . 

orisio, M. , Romano, D. , Stamelos, I. , 2002. Quality productivity and learning in
framework-based development: an exploratory case study. Trans. Softw. Eng. 28

(9), 876–888 IEEESeptember . 
ikolaidis, N. , Digkas, G. , Ampatzoglou, A. , Chatzigeorgiou, A. , 2019. Reusing code

from StackOverflow: the effect on technical debt. 45 th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA’ 19). IEEE 28-30 August .
alomba, F. , Bavota, G. , Penta, M.D. , Oliveto, R. , Lucia, A.D. , 2014. Do they really smell

bad? A study on developers’ perception of bad code smells. In: 30 th Interna-
tional Conference on Software Maintenance and Evolution (ISCME’ 14), Victoria,

Canada. IEEE, pp. 101–110 29 September – 3 October . 
arnas, D.L. , 1994. Software Aging. In: 6 th International Conference on Software En-

gineering (ICSE ‘94), Sorrento, Italy. IEEE Computer Society, pp. 279–287 16 -21

May . 
otdar, A. , Shihab, E. , 2014. An exploratory study on self-admitted technical debt.

In: 2014 IEEE International Conference on Software Maintenance and Evolution,
pp. 91–100 . 

oulin, J.S. , 1999. Reuse: been there done that. Communications 42 (5), 98–100 ACM
May . 

iaz, M. , Mendes, E. , Tempero, E. , 2009. A systematic review of software main-

tainability prediction and metrics. In: 3rd International Symposium on Em-
pirical Software Engineering and Measurement (ESEM’ 09). IEEE, Florida, USA,

pp. 367–377 15–16 October . 
ine, D.C. , 1997. Success factors for software reuse that are applicable across do-
mains and businesses. In: Symposium on Applied Computing (SAC’ 97), ACM,

San Jose, USA, pp. 182–186 28 February – 2 March . 
uneson, P. , Höst, M. , Rainer, A. , Regnell, B. , 2012. Case Study Research in Software

Engineering: Guidelines and Examples. John Wiley and Sons . 
eaman, C. , Guo, Y. , 2011. Measuring and monitoring technical debt. Adv. Comput.

82, 25–46 Elsevier . 
chmid, K. , 2013. On the limits of the technical debt metaphor some guidance on

going beyond. In: 4 th International Workshop on Managing Technical Debt (MTD

‘13), IEEE Computer Society, San Francisco, USA, pp. 63–66 18 - 26 May . 
sintzira, A .A . , Ampatzoglou, A . , Matei, O. , Ampatzoglou, A. , Chatzigeorgiou, A. ,

Heb, R. , 2019. Technical Debt Quantification through Metrics: An Industrial Val-
idation. 15 th China-Europe International Symposium on Software Engineering Edu-

cation (CEISEE’ 19) , IEEE 30-31 May . 
an Koten, C. , Gray, A. , 2006. An application of Bayesian network for predicting ob-

ject-oriented software maintaina-bility. Inf. Softw. Technol. 48 (1), 59–67 Else-

vier . 
an Vliet, H. , 2008. Software Engineering: Principles and Practice. John Wiley &

Sons . 
iao, L. , Cai, Y. , Kazman, R. , Mo, R. , Feng, Q. , 2016. Identifying and quantifying archi-

tectural debt. In: 38 th International Conference on Software Engineering (ICSE),
Austin, TX, USA. IEEE/ACM, pp. 4 88–4 98 May . 

li-Huumo, J. , Maglyas, A. , Smolander, K. , 2013. The sources and approaches to man-

agement of technical debt: a case study of two product lines in a middle-size
finnish software company. 14 th International Conference on Product-Focused Soft-

ware Process Improvement (PROFES’ 14) , Springer 12-14 June . 
in, R.K. , 2003. Case Study Research: Design and Methods, third ed. Sage Publica-

tions . 
aimi, A. , Ampatzoglou, A. , Triantafyllidou, N. , Chatzigeorgiou, A. , Mavridis, A. ,

Chaikalis, T. , Deligiannis, I. , Sfetsos, P. , Ioannis Stamelos , 2015. An empirical

study on the reuse of third-party libraries in open-source software develop-
ment. 7 th Balkan Conference on Informatics Conference (BCI ’15), ACM article

42-4 September . 
azworka, N. , Shaw, M. , Shull, F. , Seaman, C. , 2011. Investigating the impact of design

debt on software quality. In: 2 nd Workshop on Managing Technical Debt (MTD
‘11), ACM, Hawaii, USA, pp. 17–23 21 -28 May . 

hou, Y. , Leung, H. , 2007. Predicting object-oriented software maintainability using

multivariate adaptive regres-sion splines. J. Syst. Softw. 80 (8), 1349–1361 Else-
vier . 

Dr. Daniel Feitosa is an Assistant Professor in the Faculty
Campus Fryslân and the Chief Data Scientist at the Data

Research centre of the University of Groningen. He is also

an associated researcher in the group of Software Engi-
neering and Architecture of the University of Groningen.

He holds a BSc degree (2010) and MSc (2013) in Com-
puter Science from the University of São Paulo, Brazil, and

was awarded his PhD degree (2019) in Software Engineer-
ing by the University of Groningen. He currently has 20

publications among journal, conference papers and book

chapters. His main research interests are in software ar-
chitecture, software patterns and data analytics. 

Dr. Apostolos Ampatzoglou is an Assistant Professor of

Software Engineering, in the Department of Applied Infor-

matics in University of Macedonia (Greece). Before join-
ing University of Macedonia, he was an Assistant Profes-

sor in the University of Groningen (Netherlands). He holds
a BSc on Information Systems (2003), an MSc on Com-

puter Systems (2005) and a PhD in Software Engineering
by the Aristotle University of Thessaloniki (2012). He has

published more than 80 articles in international journals

and conferences, and is/was involved in over 15 R&D ICT
projects, with funding from national and international or-

ganizations. His current research interests are focused on
technical debt, maintainability, reverse engineering, qual- 

ty management, and design. 

Antonis Gkortzis is a PhD Student at the Athens Uni-

versity of Economics and Business (Greece) in the Soft-
ware Engineering and Security (SENSE) group. He holds

an MSc degree in Software Engineering from University
of Groningen (the Netherlands) and a BSc degree in In-

formation Technology from the Technological Institute of
Thessaloniki (Greece). His research interests include secu-

rity, object-oriented design, maintainability, and software 

quality assessment. 

http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0044
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0045
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0054
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0054
http://refhub.elsevier.com/S0164-1212(20)30096-0/othref0001
http://refhub.elsevier.com/S0164-1212(20)30096-0/othref0001
http://refhub.elsevier.com/S0164-1212(20)30096-0/othref0001
http://refhub.elsevier.com/S0164-1212(20)30096-0/othref0001
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0055
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0055
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0056
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0056
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0056
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0056
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0056
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0057
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0057
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0057
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0067
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0067
http://refhub.elsevier.com/S0164-1212(20)30096-0/sbref0067


12 D. Feitosa, A . Ampatzoglou and A . Gkortzis et al. / The Journal of Systems and Software 167 (2020) 110618 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dr. Stamatia Bibi is an Assistant Professor of software en-

gineering in the Department of Informatics and Telecom-
munications at the University of Western Macedonia,

Kozani, Greece. She holds a BSc in Informatics (2002) and
a PhD (2008) in software engineering from the Aristotle

University of Thessaloniki, Greece. Her interests include

process models, cost estimation, quality assessment, and
cloud computing. 
Dr. Alexander Chatzigeorgiou is a Professor of Software

Engineering in the Department of Applied Informatics at
the University of Macedonia, Thessaloniki, Greece. He re-

ceived the Diploma in Electrical Engineering and the PhD
degree in Computer Science from the Aristotle University

of Thessaloniki, Greece, in 1996 and 20 0 0, respectively.

From 1997 to 1999 he was with Intracom, as a software
designer. His research interests include object-oriented

design, software maintenance and evolution. He has pub-
lished more than 130 articles in international journals

and conferences. 


	CODE reuse in practice: Benefiting or harming technical debt
	1 Introduction
	2 Related work
	3 Technical debt terminology, measurement, and assessment
	3.1 Introduction to technical debt
	3.2 Technical debt concepts and their measurement/assessment

	4 Study design
	4.1 Objectives and research questions
	4.2 Case selection and units of analysis
	4.3 Data collection
	4.4 Data analysis

	5 Results
	6 Discussion
	7 Threats to validity
	7.1 Construct validity
	7.2 Internal validity
	7.3 External validity

	8 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References


