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Abstract. WiMAX (Worldwide Interoperability for Microwave Access) constitutes a candidate networking technology towards
the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA) technique, the latest
IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting
scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the
OFDMA-based wireless systems: the dynamic adjustment of the downlink-to-uplink width ratio. In order to fully exploit the
supported mobile WiMAX features, we design, develop, and evaluate a rigorous adaptive model, which inherits its main aspects
from the reinforcement learning field. The model proposed endeavours to efficiently determine the downlink-to-uplink width
ratio, on a frame-by-frame basis, taking into account both the downlink and uplink traffic in the Base Station (BS). Extensive
evaluation results indicate that the model proposed succeeds in providing quite accurate estimations, keeping the average error
rate below 15% with respect to the optimal sub-frame configurations. Additionally, it presents improved performance compared
to other learning methods (e.g., learning automata) and notable improvements compared to static schemes that maintain a fixed
predefined ratio in terms of service ratio and resource utilization.
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1. Introduction

Worldwide interoperability for microwave access (WiMAX) constitutes one of the most promising
broadband access technologies in the next generation networking environments, supporting high capac-
ity, long-distance communication and users’ mobility. WiMAX is based on wireless metropolitan area
networking (WMAN) standards developed by the IEEE 802.16 group. IEEE 802.16e standard, referred
to as Mobile WiMAX, provides nomadic and terminal mobility support.
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Mobile WiMAX adopts orthogonal frequency division multiple access (OFDMA), enabling users
to utilize concurrently different bandwidth regions in the time and frequency domains. To this end,
OFDMA combines time and frequency division multiple access, providing multiple timeslots at differ-
ent frequencies to multiple users. OFDMA forms strong bonds between the physical (PHY) and the
medium access control (MAC) layer, since it is responsible for allocating PHY resources to MAC re-
quests. To this end, the term “slot” is defined as the minimum PHY resource unit that can be allocated
to a single subscriber in the time and frequency domains [1].

Full duplex communication is achieved by dividing the entire MAC frame into two sub-frames, the
downlink sub-frame carrying data from a base station (BS) towards mobile stations (MSs) and the uplink
sub-frame transmitting data from MSs towards the BS [2]. Frequency division duplexing (FDD) or time
division duplexing (TDD) technique may be applied for the transmission of the two sub-frames. The
TDD is favored by the majority of applications mainly due to its flexibility and simplicity. In the current
study, the authors adopt the TDD technique for bi-directional communication as well.

Considering a TDD-based frame, its duration is fixed and pre-defined; in turn the downlink sub-frame
is followed by the uplink sub-frame after a specific guard time interval, which aims at avoiding inter-
ference between the downlink and uplink traffic. After a short control period used for synchronization
and channel estimation at the beginning of a frame and downlink control information providing frame
and bandwidth allocation configuration details, downlink allocations follow. The uplink sub-frame com-
prises control channels such as a ranging channel for performing frequency and power measurements as
well as the MSs’ bandwidth requests.

Acquiring an optimal or a near-optimal bandwidth allocation (i.e., optimal assignment of slots to the
subscribers’ requests in both the downlink and uplink directions) is not a trivial problem. The target is
to exploit the available bandwidth to the extent possible [3]. Additionally, bandwidth assignment should
follow certain rules and comply with constraints imposed by the OFDMA technique [4]. Specifically,
the available bandwidth is structured as a two-dimensional rectangular shaped allocation bin, having
one dimension associated with frequency (height) and the other with time (width) [5]. Moreover, each
downlink request (or a set of requests that share common PHY characteristics, referred to as burst [6])
must comply with the rectangular shape. This rule does not apply to the uplink requests, simplifying,
thus, the uplink sub-frame allocation process. Hence, in this context, a problem that should be addressed
is the accommodation of traffic requests to both downlink and uplink sub-frames.

The BS is responsible for accommodating all MSs’ requests to both uplink and downlink sub-frames.
For the downlink sub-frame, the BS decision is based on the needs and characteristics of the incoming
traffic, while, for the uplink sub-frame, allocations are based on requests originating from the MSs,
involving several mechanisms and polling schemes [7]. The network elements that accomplish this task
are the scheduler and the mapper. Specifically, the scheduler receives the requests originating from all
MSs and determines an initial bandwidth distribution, taking into account both subscribers’ needs and
potential service quality requirements so as to support quality of service (QoS) provisioning [8]. The
final bandwidth allocation takes place into the mapper. The mapping process collects the requests from
the scheduler and constructs, for each connected MS, a complete transmission program (both downlink
and uplink), defining the exact time and frequency of transmitting (uplink) and receiving (downlink)
data.

Efficiently utilizing the available bandwidth through the OFDMA technique constitutes an open and
active area of research due to the following two reasons: a) the efficiency of scheduling and mapping
operations significantly affect network performance and b) the standard does not include specific algo-
rithms to be adopted and the problem’s solution is left open to alternate WiMAX implementations.
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In the light of the aforementioned aspects, the mapping process is of paramount importance in the
OFDMA-based WiMAX. Recognizing this issue, the standard supports flexible and dynamic adjust-
ment of the downlink-to-uplink ratio, which may be varied from 3:1 to 1:1. This feature could lead
to significant performance improvement with respect to the mapping operation, considering different
traffic profiles such as real-time and non-real time traffic. However, most existing mapping techniques
proposed in related research literature are inflexibly designed, defining static allocations that do not take
into account subscribers’ demands. Thus, they suffer from either inefficient use of bandwidth in case of
low traffic conditions or high number of unserved requests under high traffic.

This paper endeavors to address this weakness by proposing a novel scheme, hereafter referred to
as reinforcement learning based adaptive mapping (RLAM), for dynamically adjusting the downlink-
to-uplink ratio, by exploiting learning from experience techniques in order to adequately follow traf-
fic dynamics. Specifically, the proposed scheme is based on reinforcement learning, introducing re-
wards/penalties in order to favor/punish previous actions, depending on the feedback produced from the
environment as a response to the actions taken. Thus, progressively, the scheme is enabled to acquire the
most appropriate selection of the forthcoming frame’s downlink-to-uplink ratio.

The scheme’s performance efficiency is examined in terms of OFDMA resources utilization and ser-
vice ratio, considering also fixed schemes that maintain downlink and uplink sub-frames’ configurations
static, defined in advance. Additionally, in comparison to a learning automata based solution presented
in [9], it exhibits improved performance with respect to the downlink-to-uplink ratio determination ac-
curacy.

The remainder of this paper is organized as follows. Section 2 presents a related research literature
overview, briefly describing the mapping techniques proposed. Section 3 provides the fundamental con-
cepts underlying the RLAM scheme. Section 4 presents in detail the dynamic adaptation scheme de-
signed. Section 5 evaluates its performance, having conducted extensive simulation experiments. Finally,
Section 6 concludes this paper and highlights our future plans.

2. Related research overview

Various scheduling and mapping schemes have been proposed for both uplink and downlink data
streams in the related research literature. Downlink bandwidth distribution constitutes a challenging
issue that has attracted the attention of the researchers due to the imposed strict shaping restriction (i.e.,
the requests must be accommodated in the allocation bin forming a two-dimensional rectangular). Thus,
research efforts on downlink mapping are more frequently met than in the uplink domain, where this
restriction does not apply. Indicatively, the reader could refer to [10–18].

Simple packing algorithm (SPA) [10] is one of the earliest efforts in downlink mapping, designed to
accommodate the incoming bandwidth requests within the downlink sub-frame. The scheme involves
a top to bottom and left to right slot allocation, accommodating symbols (columns) and sub-channels
(rows) for each request in a first in first out (FIFO) discipline, until the requested number of slots is met.
If this number is not an integer multiple of the frequency or the time dimension respectively, the re-
maining unallocated space remains idle. The authors in [11] apply a persistent mapping technique using
a binary full search tree, but the final result indicates complex operation, limited to eight users. Other
attempts involve, as a first step, an initial request sorting in terms of the number of requested slots and,
as a second step, either bucket definition and accommodation [12,13], or heuristic packing algorithms.
Concerning bucket definition and accommodation, the combined bursts define buckets [12,13] that are
accommodated into the allocation bin in a column by column basis. Heuristic packet algorithms allocate
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the incoming requests in a two step procedure, conducting first a horizontal mapping and then vertical
accommodation [14]. Adaptive horizon burst mapping (AHBM) algorithm for the downlink sub-frame is
presented in [15]. It applies horizon-based allocation, creating initial pilots for the forthcoming requests.
Large requests are accommodated first, leaving minimum remaining idle space, while pilots are formed
in a right-to-left and bottom-to-top manner. In the sequel, the remaining requests are mapped based on
the pilots. In [18] the authors present a burst mapping algorithm for downlink Mobile WiMAX systems
based on a tree-map visualization algorithm. However, the so-called sqTM algorithm suffers from high
operation running time, restricting its usability only in the 5 ms frame configuration. AHBM presents
improved performance with respect to other leading schemes [10,14]. Thus, it is adopted as the main
downlink mapping technique for the rest of our study.

The operation of the uplink mapping is much simpler than the downlink one, due to the absence of
the rectangular shaping restriction. The simplest and most effective way for accommodating the uplink
requests lies on a row-by-row basis. One after the other, uplink requests are accommodated into the
uplink sub-frame, without occurrence of row cuts. Upon the accommodation of an uplink request, the
following one is sided directly next to it, without leaving gaps (i.e., idle slots). In this manner, the set
of uplink requests fill uniformly the allocation bin, until either all requests are mapped or the bin comes
full. This fixed and simple uplink mapping technique is also adopted in this study.

3. RLAM fundamentals

3.1. Basic concepts, novelty and contribution

The scope of this paper falls within the OFDMA mapping process in mobile WiMAX wireless net-
works. The efficiency of the mapping operation is of paramount importance, as requests that fail to be
mapped are returned to the scheduler delaying their transmission for at least one entire frame, induc-
ing thus network performance degradation in terms of the overall network delay, network throughput
and consumption of resources. Efficiently utilizing the available bandwidth through the OFDMA tech-
nique has attracted the attention of the research community, since the IEEE 802.16e standard does not
comprise specific mapping algorithms, leaving the solution of the mapping problem open to different
WiMAX implementations. In this paper, we endeavor to accommodate all downlink and uplink requests
to both downlink and uplink sub-frames, utilizing as much as possible the allocation space given, subject
to the rules and constraints imposed by the OFDMA technique.

IEEE 802.16e standard supports flexible and dynamic adjustment of the downlink-to-uplink ratio,
which can be varied from 3:1 to 1:1, in order to efficiently handle traffic variations. However, to the
best of our knowledge, existing mapping approaches do not exploit the aforementioned aspect, defining
static allocations that do not take into account subscribers’ demands. Thus, they may suffer from either
inefficient use of bandwidth in case of low traffic conditions or high number of unserved requests under
high traffic. Considering the fact that a wireless network may experience intense traffic changes over
time, dynamic adjustment of the downlink-to-uplink ratio constitutes a key mechanism of the mapping
process design in order to efficiently and effectively adapt to network traffic differentiation in highly
dynamic and unpredictable environments.

Our first attempt to dynamically adjust the downlink-to-uplink width ratio is found in our previous
work [15]. Specifically, AHBM involves a prediction tool based on hidden markov chains in order to re-
define the length of the downlink sub-frame in accordance with downlink traffic profiles. As a next step,
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we exploit a learning automaton [17] in order to sense the traffic conditions and accordingly determine
the most appropriate length ratio of both sub-frames in order to maximize the network performance.

In this study, we design, model and evaluate RLAM scheme that applies a reinforcement learning
technique in order to efficiently adjust the downlink-to-uplink ratio in accordance with the subscribers’
traffic, subject to OFDMA rules and constraints. Specifically, RLAM is responsible for increasing the
downlink/uplink sub-frame’s width size in terms of symbols (i.e., columns of the allocation bin) in
case the requests demand for more capacity. In the same manner, RLAM reduces the width size, if
it senses that downlink/uplink traffic tends to lower levels. This task is accomplished by efficiently
exploiting feedback received on the efficiency of the mapping operation and forming a reward/penalty
evaluative signal that drives RLAM operation in order to favor/punish previous actions (i.e., previously
selected sub-frame width sizes). The feedback comprises two important parameters: a) the unserved
slots, which refer to the cumulative number of requests that fail to get accommodated at each sub-
frame and b) the unused slots, which show the total number of wasted slots within each sub-frame.
The combination of these parameters indicate the conditions of both uplink and downlink traffic flows;
specifically, more unserved slots indicate more bandwidth needs, while the larger the number of unused
slots is the larger bandwidth wastage occurs, which, in essence, means that the corresponding direction
could be operational enough even with less network resources. At the same time, the following rules
specified by the standard should be satisfied: a) the summation of the downlink and uplink sub-frame
width values should be equal to the total frame width and b) the determination of both sub-frames width
should not violate the permissible downlink-to-uplink ratios (i.e., 1:1 to 3:1).

RLAM operates on a frame-by-frame basis, re-determining the values of both uplink and downlink
sub-frames in the context of the current frame for the forthcoming frame. RLAM accomplishes its task
in less than the frame’s length (i.e., less than 10ms for the simulation environment considered). Thus, no
time restrictions are imposed for RLAM’s application to real-time scenarios.

RLAM model is presented in a quite detailed manner, accompanied with analytical equations and
expressions, giving emphasis to its operation on handling the input and the feedback produced by the
environment and deciding on the best course of action concerning the forthcoming frame. RLAM for-
mulation is quite generic in nature and it can be easily applied to any OFDMA wireless network that
enables the dynamic reconfiguration of the downlink-to-uplink width ratio, as is the case with long term
evolution (LTE)-advanced, one of the most challenging technologies for the 4G era.

Extensive experiments were conducted in order to evaluate the performance of the proposed scheme.
In this study, we obtained and used real WiMAX multimedia traces concerning both the downlink and
uplink as input to our custom made simulator. The obtained results indicate the superiority of the pro-
posed scheme in comparison to the learning automata based solution presented in [9] with respect to the
downlink-to-uplink ratio determination accuracy.

In a nutshell, the contribution of this paper lies in the following areas. First, the design, definition
and mathematical formulation of a reinforcement learning-based adaptive mapping scheme in order to
efficiently and effectively re-configure the downlink-to-uplink width ratio on a frame-by-frame basis,
subject to OFDMA rules and constraints, in mobile WiMAX wireless networks. Second, RLAM for-
mulation is quite generic in nature and it can be readily applied to any OFDMA wireless network that
enables the dynamic reconfiguration of the downlink-to-uplink width ratio, as is the case with LTE-
Advanced, one of the most promising technologies for the 4G era. Third, the provision of indicative
evidence on the performance and the superiority of the proposed scheme, conducting extensive simula-
tion experiments and using real WiMAX multimedia traces as input to our custom made simulator.
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Fig. 1. General structure of a reinforcement learning system.

3.2. Reinforcement learning overview

Learning from experience constitutes a vital property of every component presenting a robust, au-
tonomous and adaptive behavior over long periods of time. Learning refers to an entity’s ability to take
whatever information it has gained about the stochastic environment it is deployed in, and use it in or-
der to modify/improve its own behavior. Incorporating learning capabilities in an entity’s intelligence
may lead to the development of new improved behavior and avoidance of repeating previous mistaken
actions [17]. Reinforcement learning techniques have proved to be a valuable asset for the optimization
and performance improvement of various mobile systems and wireless networks. Numerous paradigms
exploiting rigorous learning techniques in the context of wireless communication networks could be
found in the literature [19–26].

In this study, we define a mechanism for updating the downlink–to–uplink width ratio based on the
key concepts that apply to a general reinforcement learning system. The general structure of a learning
system based on evaluative reinforcement signals is depicted in Fig. 1. There is a bidirectional infor-
mation exchange between the environment and the learner. Specifically, the learner acts at each state by
selecting a specific action from a pool of possible actions and the environment reacts to the action taken
by producing a feedback. The feedback, which controls the learner’s behavior, is received by the learner
and it is appropriately processed so as to define the next action. The underlying idea is to strengthen the
action that produced favorable results in the past, and weaken it otherwise.

Having as a basis the general structure of the reinforcement learning model, we may correspond the
learner system to the mapper, which, based on history records, should at each state take the action that
would result in the reception of the maximum reinforcement signal. The environment corresponds to the
OFDMA resource allocation process (i.e., the mapping process), considering the current users’ band-
width requests in the context of each frame, the state corresponds to the size of the downlink and uplink
sub-frames, while the pool of actions is expressed by the available downlink-to-uplink width values in
accordance with the adopted coding and sub-channelization techniques. The feedback produced from the
environment leads to a reward/penalty evaluative signal (reinforcement signal) that is fed to the mapper,
supporting the learning process towards the optimal action (i.e., determination of the most appropriate
downlink-to-uplink ratio). The reward/penalty signal considers both the portion of the wasted bandwidth
as well as the amount of the bandwidth requests that fail to be served due to lack of physical resources
in the context of each single frame, concerning both the uplink as well as the downlink sub-frames.
Thus, each decision-action will be evaluated by means of the reward/penalty signal returned from the
environment. These analogies are given in Table 1.

4. RLAM formulation

Each frame has a fixed duration, hereafter denoted as FS. Each frame has a fixed height denoted by H .
Let DSFSk and USFSk denote the size (width) of the downlink and uplink sub-frames DSFk and USFk

in the context of frame (k � 1). The range of acceptable values for the downlink and uplink sub-frames
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Table 1
Analogies to reinforcement learning model

Learner Mapper
Environment OFDMA allocation process considering the current users’ bandwidth requests in the context of

each frame
State Size of the downlink and uplink sub-frame
Action Decide on the most appropriate downlink – to – uplink ratio
Reinforcement signal Reward/Penalty Signal-Function of both the portion of the wasted bandwidth as well as the amount

of the bandwidth requests that fail to be served due to lack of physical resources concerning both
downlink and uplink sub-frames

size is denoted as [DSFSmin,DSFSmax] and [USFSmin,USFSmax], respectively. At this point it should
be noted that both the downlink and uplink sub-frame acceptable size limits are defined in accordance
with [28]. Hence, assuming a frame structure comprising 42 symbols (i.e., 42 allocation columns), the
range of acceptable values for the downlink and uplink sub-frame is [DSFSmin = 21,DSFSmax = 33]
and [USFSmin = 9,USFSmax = 21], respectively. For each frame k, it stands that DFSFk + USFSk =
FS.

4.1. Determination of the downlink-to-uplink sub-frame sizes

Concerning the formation of the downlink/uplink sub-frame’s size DSFSk/USFSk in the context of
frame, k > 1 , the following Eq. (1) may be adopted. At this point it should be noted that as following
equations are applied for the determination of the size of both sub-frames; however, for notation sim-
plicity in the following we do not refer to a specific sub-frame (down-link/uplink); instead we denote
the sub-frame under consideration as SFSk.

NSFSk = NSFSk−1 +mr · l (NSFSk−1) · {rrk−1 − E [rrk−1]} (1)

where NSFSk and NSFSk−1 are the normalized downlink/uplink sub-frame sizes in the context of frame
k and k − 1, after and before the updating procedure, respectively. The NSFSk value for all frames
belongs to [0, 1] range and is given as follows:

NSFSk =
(SFSk − SFSmin)

(SFSmax − SFSmin)
(2)

It may be observed that the NSFSk value for SFSmin equals to 0 and the NSFSk value for SFSmax equals
to 1. For k = 1, NSFSk for the downlink sub-frame assumes the normalized minimum acceptable value
(that is equal to 0), while, due to the fact that the sum of the downlink and uplink sub-frames should
be equal to FS, NSFSk for the uplink assumes the normalized maximum acceptable value (that is equal
to 1). rrk−1 is a (reward/penalty) function reflecting whether the downlink/uplink sub-frame size is
adequate for servicing current requests, without however wasting unallocated slots. Thus, in the context
of this study, reward function rrk−1 is dependent on two factors, that is slots unused (denoted as UnUS)
and slots unserved (denoted as UnSS) during the previous frame k − 1, i.e., UnUSk−1 and UnSSk−1,
respectively. The rrk−1 function may be implemented in several ways. Without loss of generality, it was
assumed that the rrk−1 values range from −1 to 1.

−1 � rrk−1 � 1 (3)

The mathematical description of the rrk−1 function will be given subsequently. In general, the larger the
rrk−1 value, the worse the performance of the downlink/uplink sub-frame is with respect to the unserved
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and unused slots and therefore the bigger (positive or negative) the influence on the next downlink/uplink
sub-frame size.
E [rrk−1] is the mean (expected) value of the rrk−1 variable. Factor mr (mr ∈ (0, 1]) determines the

relative significance of the new outcome with respect to the old one. In essence, this value determines
the memory of the system. Small mr values mean that the memory of the system is large. l (NSFSk−1)
is a function of the size of the normalized downlink/uplink sub-frame in the context of frame k − 1 and
is introduced in order to keep the normalized downlink/uplink sub-frame size within the range [0, 1] (the
respective downlink/uplink sub-frame sizes belong within the range [SFSmin, SFSmax]). In the current
version of this study,

l (NSFSk−1) = [1− exp (1− NSFSk−1)] / (1− e) (4)

for which it stands l (NSFSk−1) → 1 and l (NSFSk−1) → 0.
It should be noted that bad performance (or at least deterioration of previous performance) of a specific

downlink/uplink sub-frame leads to an alternate sub-frame size (bigger or smaller) due to the modifica-
tion introduced by the {rrk−1 − E [rrk−1]} factor.

4.2. Mathematical description of the reward function

As already mentioned, reward function rrk−1 is dependent on two factors, slots unused UnUSk−1 and
slots un-served UnSSk−1 in the context of the downlink/uplink sub-frames during the previous frame
k − 1, respectively. We consider the following weighted additive expression for estimating the reward
function rrk−1:

rrk−1 (UnUSk−1,UnSSk−1) = wunused · rrk−1 (UnUSk−1) +wunserved · rrk−1 (UnSSk−1) (5)

where rrk−1 (UnUSk−1) is the part of the reward function that depends on the slots unused and
rrk−1 (UnSSk−1) is the part of the reward function dependent on the slots unserved in the context of
downlink/uplink sub-frames of frame k − 1, respectively. A wide range of functions may be defined
simply by introducing different specifications of the rrk−1 (UnUSk−1) and rrk−1 (UnSSk−1) functions.
However, rrk−1 (UnUSk−1) and rrk−1 (UnSSk−1) functions should satisfy the following constraint:

−1 � rrk−1 (UnUSk−1) � 0 � rrk−1 (UnSSk−1) � 1 (6)

Function rrk−1 (UnUSk−1) should be decremental, while the following constraints should also be satis-
fied:

rrk−1 (UnUSk−1 = UnUSmin = 0) = 0 (7)

rrk−1 (UnUSk−1 = UnUSmax = SFSmax ·H) = −1 (8)

In a similar manner, function rrk−1 (UnUSk−1) should be incremental, while the following constraints
should also be satisfied:

rrk−1 (UnSSk−1 = UnSSmin = 0) = 0 (9)

rrk−1 (UnSSk−1 = UnSSmax = SFSmax ·H) = 1 (10)
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4.2.1. Formulation of the unused slots-related reward family of functions
We restrict our attention to two families of functions that satisfy the constraints presented in the pre-

vious section: exponential and polynomial. Other functions could be defined as well.

rrk−1 (UnUSk−1) = −
(

UnUSk−1

UnUSmax

)1/θ

(11)

rrk−1 (UnUSk−1) = − 1

1− e
·
[
1− exp

(
UnUSk−1

UnUSmax

)1/θ
]

(12)

Expressions (11) and (12) provide a formal model of the exponential and polynomial families of func-
tions, respectively. These families of functions represent an infinite number of different reward/penalty
policies, one for each value of θ. Parameter θ has been included in order to highlight the different patterns
of reward/penalty modification with respect to the adopted rate of concession. For example, Boulware
policy [29] may be adopted, according to which the reward function is almost the same and equal to
0, until the unused slots reach their maximum value UnUSmax = SFSmax · H , whereupon concedes
to the reservation value (−1). Otherwise, Conceder policy [30] may be exploited, according to which
reward function assumes its reservation value (−1) even with small increase in the number of unused
slots. It should be mentioned that function rrk−1 (UnUSk−1) expressed by Eqs (11) and (12) satisfy
constraints (7) and (8).

4.2.2. Formulation of the unserved slots-related reward family of functions
The unserved slots-related reward family of functions may be modeled in a similar manner to the

unused slots-related reward family functions. The downlink/uplink sub-frame size is expected to be-
come progressively bigger in case the number of unserved slots increases, reaching its maximum value
SFSmax (in case only the number of unserved slots is considered) when the UnSSk−1 factor assumes its
maximum value (that is UnSSk−1 = UnSSmax = SFSmax · H). Expressions (13) and (14) provide a
formal model of reward/penalty function rrk−1 (UnSSk−1), for polynomial and exponential families of
functions, respectively.

rrk−1 (UnSSk−1) =

(
UnSSk−1

UnSSmax

)1/θ

(13)

rrk−1 (UnUSk−1) =
1

1− e

[
1− exp

(
UnSSk−1

UnSSmax

)1/θ
]

(14)

It should be mentioned that function rrk−1 (UnSSk−1) expressed by Eqs (13) and (14) satisfy constraints
(9) and (10). Hereafter, the expressions (11) and (13) are adopted in order to express the formulation of
the unused and the unserved slots-related feedback functions.

4.2.3. Definition of the weighting factors
The weighting factors wunused and wunserved provide the relative significance of the two factors (i.e.,

slots unused UnUSk−1 and slots unserved UnSSk−1 in the context of the downlink/uplink sub-frames
of frame k − 1, respectively) to the determination of the reward factor rrk−1 (UnUSk−1,UnSSk−1).
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The number of unused slots UnUSk−1 represents the wasted bandwidth and tends to reduce the down-
link/uplink sub-frame size, while the number of unserved slots UnSSk−1 symbolizes the additional band-
width that downlink/uplink sub-frame needs and tends to increase the downlink/uplink sub-frame size
of the next frame.

The values of the weighting factors belong in the [0, 1] range, while their sum is equal to 1 (i.e.,
wunused+wunserved = 1). For fairness reasons, we may assume that equal significance is attributed to both
factors (that is wunused +wunserved = 0.5). In the more general case, any value in the [0, 1] range could be
assumed. However, in the definition of the weighting factors, the mapping algorithm deficiencies should
be taken into account. Specifically, the mapping algorithm may spend a larger portion of the allocation
space in order to accommodate a specific number of requested slots, leading, thus, to unused slots.
This phenomenon could be attributed to the rectangular shaping restriction that the standard applies.
For example, let us assume that the total downlink requests are 450 slots and the mapping algorithm
binds 500 slots within the downlink sub-frame. The extra 50 slots are wasted in order to accommodate
the requested 450 slots in a rectangular shape. The number of unused slots that are provided due to
inefficiencies of the mapping process should not drive for decreasing the sub-frame size (or at least not
with the same significance).

Hence, in the light of the aforementioned aspects, we define the utilization factor of the mapping
process concerning both directions (downlink and uplink), denoted hereafter as uf , as follows:

uf =
TotalRequestedSlots

TotalBindedSlots
(15)

Considering uf = 0.8 for the downlink sub-frame, the downlink mapping process is 80% effective (i.e.,
it needs 100 slots to accommodate 80 requested slots). Consequently, the utilization factor expresses the
number of unused slots that are needed for serving a specific number of unserved slots in average.

Finally, the weighting factors incorporating the utilization factor are defined as follows:

wunused =
0.5 + uf/2

2
(16)

wunserved =
0.5 + 1− uf/2

2
. (17)

As it may be observed, a small utilization factor (i.e., a large number of unused slots as a result of an
inefficient mapping process) leads to a decrease in the significance attributed to the number of unused
slots, lessening, thus, the impact of the number of the unused slots to the formation of the sub-frame
sizes in the context of the next frame.

4.3. Re-adjustment of the downlink-uplink sub-frame sized

Up to this point, the downlink and uplink sub-frame sizes (DSFSk and USFSk, respectively) are deter-
mined in the context of each frame k independently, applying Eqs (1)–(17). The range of their acceptable
values is [DSFSmin,DSFSmax] and [USFSmin,USFSmax] for the downlink and uplink sub-frames, re-
spectively. However, as already noted, for each frame k, the following constraint should be satisfied
DSFSk + USFSk = SF . Considering DSFSk and USFSk, we may identify three distinct cases. Accord-
ing to the first case, the summation of the downlink and uplink sub-frame sizes is equal to the frame size,
thus, the aforementioned constraint holds. In this case, our scheme forms the frame k in accordance with
the downlink DSFSk and uplink USFSk. sub-frame sizes, as determined in Sub-section 4.1. In the second
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Table 2
Example: Ten random requests

MS1 134 slots
MS2 121 slots
MS3 42 slots
MS4 99 slots
MS5 151 slots
MS6 15 slots
MS7 80 slots
MS8 112 slots
MS9 33 slots
MS10 22 slots

and third case, the summation of the downlink and uplink sub-frame sizes is not equal to the frame size
(being bigger and less, respectively), thus, in both cases, the two sub-frames need to be re-adjusted in
order to meet the frame requirements. Our scheme provides for a balanced re-adjustment of both sub-
frames for fairness reasons, while, when necessitated, it takes into account the traffic requests originated
in both directions. The final downlink and uplink sub-frame sizes for the formation of the frame k are
the output of the re-adjustment phase. The re-adjustment algorithm applied is described as follows:

Re-adjustment Algorithm
Step 1: IF DSFSk + USFSk �= SF
Step 2: IF DSFSk + USFSk < SF

Step 3: DSFSk = DSFSk +
SF−(DSFSk+USFSk)

2 and USFSk = USFSk +
SF−(DSFSk+USFSk)

2
Step 4: IF mod ((SF − (DSFSk + USFSk)) , 2) �= 0
Step 5: IF UnSSk−1,Downlink > UnSSk−1,Uplink)
Step 6: DSFSk = DSFSk + 1
Step 7: ELSE
Step 8: USFSk = USFSk + 1
Step 9: END_IF
Step 10: END_IF
Step 11: ELSE_IF (DSFSk + USFSk > SF)
Step 12: DSFSk = DSFSk +

SF−(DSFSk+USFSk)
2 and USFSk = USFSk +

SF−(DSFSk+USFSk)
2

Step 13: IF mod ((SF − (DSFSk + USFSk)) , 2) �= 0
Step 14: IF (UnSSk−1,Downlink > UnSSk−1,Uplink
Step 15: USFSk = USFSk − 1
Step 16: ELSE
Step 17: DSFSk = DSFSk − 1
Step 18: END_IF
Step 19: END_IF
Step 20: END_IF
Re-adjustment algorithm defines the final downlink and uplink sub-frame sizes for each frame k.

Initially, it examines if the summation of the two sub-frames (as specified in accordance with Eqs (1)
and (2)) exceeds or is less than the frame size. In the former case, it adds the half difference to each
direction, while in the latter case it reduces the half difference from each direction in order for the final
allocation to yield the required frame size. Additionally, the algorithm checks whether the difference is
an odd number, in which case it adds the unity to the direction with the most unserved slots considering
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Fig. 2. The final form of the allocation bin.

the former case or subtracts the unity from the direction with the less unserved slots considering the
latter case.

4.4. Numerical example

RLAM, in the context of each frame, re-determines the length size of each sub-frame for the forth-
coming frame. To be more specific, for each frame, the most appropriate downlink and uplink sub-frame
sizes are defined by selecting one of the states that correspond to the available downlink and uplink
width values (i.e., assuming frame’s length equal to 10 ms, the available states are 13). The transition
to the most appropriate state for the forthcoming frame is decided by the learner module on the basis
of a reward/penalty evaluative signal (reinforcement signal) produced by the learner, which takes into
account the feedback returned from the environment concerning the output of the mapping operation
for the current frame. Considering that our aim is to accommodate all downlink/uplink requests utiliz-
ing as much as possible the allocation space given, feedback comprises both the portion of the wasted
bandwidth (i.e., unused slots) as well as the amount of bandwidth that fails to be served due to lack of
physical resources (i.e., unserved slots) in the context of the current frame, concerning both the uplink
as well as the downlink sub-frames, for the currently selected downlink and uplink sub-frame sizes.

In order to help the reader better comprehend all aspects of RLAM operation, in the following we
provide an illustrative example of the application of the proposed scheme. Due to space limitations, we
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restrict our attention to the application of RLAM to the downlink sub-frame; RLAM is applied in the
same manner to the uplink sub-frame.

Let us suppose that ten MSs are connected to the BS. The scheduler informs the mapper about the
allocation requests of each MS. Let us consider frame duration equal to 10 ms. In the context of frame k,
Table 2 shows ten randomly chosen requests to be accommodated into an 30 × 27 downlink sub-frame
(810 slots), where the downlink bin’s height is 30 and the width is 27. Thus, for the frame k it stands that
the downlink sub-frame’s size is 27 columns and the uplink sub-frame’s size is 15 columns: DSFSk = 27
and USFSk = 15.

The final downlink allocation bin’s form is depicted in Fig. 2. AHBM algorithm [15] has been adopted
for the accommodation of requests in the downlink sub-frame. It should be noted that the standard uplink
mapping scheme is considered regarding the uplink sub-frame.

As a first step, the reward/penalty reinforcement signal should be estimated. According to Eq. (5), the
reward signal is a function of two important parameters: the number of unserved slots and the number
of unused slots that indicate the conditions of the downlink traffic flow; more unserved slots indicate
more bandwidth needs, while the larger the number of unused slots is bandwidth wastage occurs. As
it may be observed from Fig. 2, the final downlink allocation results in 47 unused (idle) slots (i.e., 1
slot due to the accommodation of MS5, 12 slots due to the accommodation of MS2, 2 slots due to the
accommodation of MS8, 15 slots as a result of the accommodation of MS4, 13 slots as a result of the
accommodation of MS3, 1 slot due to the accommodation of MS7, 1 slot due to the accommodation of
MS1, 2 slots due to the accommodation of MS10), while the requests of MS6 and MS9 could not be
mapped in the current downlink sub-frame due to the lack of physical resources, resulting, thus, in 48
unserved slots. Thus, UnUSk = 47 and UnSSk = 48. At this point it should be noted that all unused
slots in the final downlink allocation’s bin result due to inefficiencies of the mapping process, attributed
to the OFDMA rectangular shaping restriction that the standard applies to the downlink sub-frame. In
the specific example considered, there are no unused slots due to unallocated region.

In accordance with Eqs (11) and (13), respectively, we estimate the reward factor rrk (UnUSk) con-
cerning the unused slots and the reward factor rrk (UnSSk) concerning the unserved slots. Specifically,
rrk (UnUSk) = −47/810 = −0.058 and rrk (UnSSk) = 48/810 = 0.059. θ parameter is taken equal
to 1. Concerning the determination of the weighting factors wunused (UnUSk) and wunused (UnSSk) that
provide the relative significance of the two reward factors rrk (UnUSk) and rrk (UnSSk), respectively,
we first estimate the utilization factor uf Eq. (15). Hence:

uf =
TotalRequestedSlots

TotalBindedSlots
=

763

810
= 0, 942

Then, in accordance with Eqs (16) and (17), respectively, the weighting factors wunused. and wunserved are
estimated. Specifically, wunused = 0, 4855 and wunserved = 0, 5145. Applying now Eq. (5) we estimate
reward factor rrk (UnUSk,UnSSk) = 0, 0022.

Finally, in order to determine the downlink sub-frame’s size for the forthcoming frame k+1, we apply
Eq. (1), where:

NSFSk =
(SFSk − SFSmin)

(SFSmax − SFSmin)
=

(27− 21)

(33− 21)
= 0, 5

mr = 0, 9, l (NSFSk) = 0, 378.

Thus, NSFSk = 0, 501 and DSFSk = 27. As it may be observed, in the current example, RLAM
maintains the same size for the downlink sub-frame of the forthcoming frame k + 1 (i.e., 27 symbols).
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This is attributed to the fact that only small difference exist between the two parameters that drive the
operation of RLAM: the number of unserved and the number of un-used slots.

RLAM following exactly the same procedure estimates the size of the uplink sub-frame for the forth-
coming frame k + 1. As a final step, RLAM checks whether the summation of the downlink and uplink
sub-frame width values (rule that is imposed by the standard) is equal to the total frame width (i.e.,
FS = DSFSk + USFSk = 42). In case this rule is not satisfied, the re-adjustment algorithm is applied,
which for fairness reasons it adds/subtracts half the difference to each direction in order for the final
allocation to acquire the required frame size. In case the difference is odd number, the direction with the
most unserved slots is favored.

5. Evaluation results

In this section, our aim is to provide evidence on the efficiency of the proposed adaptive scheme.
To this respect, we conducted extensive simulation experiments considering real WiMAX multimedia
traffic traces in order to evaluate its performance. In the following, as a first step, we describe in a
detailed manner the simulation environment built for evaluation purposes. In the sequel, the performance
of the proposed RLAM scheme on acquiring the most appropriate downlink-to-uplink width ratio is
estimated. Additionally, RLAM’s performance with respect to the downlink and uplink sub-frames’ size
configuration is compared with an automata-enhanced scheme presented in [9]. Finally, we study the
RLAM’s effectiveness in comparison to static schemes which operate by setting a predefined and fixed
width ratio.

5.1. Evaluation environment

The performance evaluation experiments have been conducted in a simulation environment that has
been designed and implemented in Matlab. The implemented scenario, i.e., the WiMAX testbed where
the packet traces were captured, includes a Mobile WiMAX access network comprising a BS and mul-
tiple MSs. The physical characteristics of the testbed wireless network are in accordance with the IEEE
802.16e network specifications. The well-known partially used sub-channelization (PUSC) mode (the
most common frequency diversity mode for practical mobile communications environments) is adopted.
According to this technique, 30 different channels are associated to the downlink and the uplink sub-
frames. Moreover, the duration of the whole frame is set equal to 10 ms, which correspond to 45 OFDMA
symbols. Three symbols are reserved for control purposes (one symbol for Preamble, and two symbols
for the MAP and FCH fields) and are excluded from the available for allocation purposes bandwidth
slots.

The WiMAX BS was configured to support a 10 ms frame length. Considering that the downlink-to-
uplink width ratio may vary from 1:1 to 3:1, for a frame of 10 ms, it stands that 21 to 33 symbols are
assigned to the downlink sub-frame and 21 to 9 symbols are destined to the uplink sub-frame, consid-
ering a 1:1 and a 3:1 downlink-to-uplink width ratio, respectively. Accordingly, the downlink sub-frame
defines a rectangular allocation space of 630 (30 × 21) slots, under 1:1 ratio, to 990 (30 × 33) slots,
under 3:1 ratio, while the uplink sub-frame defines a rectangular allocation space of 630 (30 × 21) slots,
under 1:1 ratio, to 270 (30 × 9) slots, under 3:1 ratio, since the allocation bin is constructed by 30 chan-
nels. In Fig. 3, the learner – state – action model is graphically illustrated, for the considered simulation
environment.
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Fig. 3. The learner-state-action model.

Real WiMAX traffic traces, captured from both downlink and uplink data flows, were obtained and
provided as input to our custom-made simulator. An aggregate traffic of 10 minutes was captured, using
the Wireshark capture tool [31]. Specifically, four different traffic sessions were captured, with each ses-
sion generating a unique packet stream. The first stream belongs to a Real Media Streaming application,
running over multiple MSs via a single BS, using the transmission control protocol (TCP). The session
lasted for 3 minutes. Afterwards, a file upload stream from a MS to the BS with 2 minutes duration
took place using the file transfer protocol (FTP). The third stream represents a VoIP session between
the BS and a MS via the user datagram protocol (UDP) and lasts for 3 minutes. Lastly, the well-known
peer-to-peer software utorrent [32] was used to capture a file download from the BS to a connected MS.
The stream duration was 2 minutes. Hence, a total connection time of 10 minutes was realized, whereas
four different services and protocols were considered.

Regarding the streaming application, the downstream row generated an average traffic of 0.038
Mbit/sec per MS and the average packet size was 1372 Bytes, while the upstream direction produced
an average traffic of 0.001 Mbit/sec per MS and the average packet size was 68 Bytes. The FTP session
lasted for 2 minutes, it generated an average upstream (downstream) traffic of 10 Mbit/sec (0.7 Mbit/sec),
and the average upstream (downstream) packet size was 1380 Bytes (67 Bytes). Concerning the VoIP
application, each participating MS (upstream direction) produced an average traffic of 0.068 Mbit/sec
and the average packet size was equal to 162 Bytes. The downstream direction, generated by the BS,
produced an average traffic of 0.047 Mbit/sec, while the average packet size was equal to 126 Bytes. Fi-
nally, the utorrent download session lasted for 2 minutes, it generated an average downstream (upstream)
traffic of 8 Mbit/sec (0.5 Mbit/sec), and the average downstream (upstream) packet size was 1360 Bytes
(67 Bytes).

It is considered that a request (per frame) length may vary from 1 to 267 slots, which approximately
corresponds to 1600 Bytes under QPSK-1/2 status (minimum operational channel conditions), regarding
the downlink and the uplink direction. The queue length for each direction was set equal to 100 MB.
The BS comprises a logical queue, which stores the traffic requests generated by each MS.
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Table 3
Simulation assumptions

Channel mode PUSC
Frame Length 10 ms
Preamble Size 1 Symbol
MAP, FCH Sizes 2 Symbols
Downlink sub-frame Symbols 21 to 33 (1:1 to 3:1 ratio)
Uplink sub-frame Symbols 21 to 9 (1:1 to 3:1 ratio)
Downlink sub-frame capacity 630 to 990 slots (1:1 to 3:1 ratio)
Uplink sub-frame capacity 630 to 270 slots (1:1 to 3:1 ratio)
Downlink Queue Length 100 MB
Uplink Queue Length 100 MB

Table 4
Wireless channel parameters

Probability Modulation and coding Bits per slot
0.05 Outage 0
0.15 QPSK-1/2 48
0.2 QPSK-3/4 72
0.3 16QAM-1/2 96
0.3 16QAM-3/4 144

Bandwidth (in bytes) is associated with OFDMA slots in accordance with the selected modulation and
coding schemes. WiMAX supports adaptive modulation and coding, taking into account current radio
channel conditions. Specifically, the BS determines the most appropriate modulation and coding schemes
to be applied based on the ranging signal power, which is indicative of the current channel conditions
experienced by the MS. In the following, for each frame, the MSs’ requests in bytes are associated with
slots based on specific probabilities [33,34]. For example, it is assumed that a MS receives QPSK-1/2
channel status with probability equal to 0.15. In this way, since each request for the downlink or the
uplink direction is randomized according to the specific probabilities, mobility is taken into account in
our scenarios, with the MSs continuously changing their position with respect to the BS.

Additionally, on stimulating the realism of the simulation environment, we consider that a MS may
experience outage if its channel condition is too bad, with probability equal to 0.05. Table 3 depicts
the main simulation assumptions, Table 4 shows the adopted wireless channel parameters, and Table 5
summarizes the traffic captured and service details.

For evaluation purposes the following schemes have been implemented: A) the proposed adaptive
RLAM scheme, B) the Learning – Automata based scheme presented in [9], C) the Fixed 1:1 scheme,
keeping the downlink-to-uplink ratio static to 1:1, D) the Fixed 2:1 scheme, maintaining the downlink-
to-uplink ratio equal to 2:1, and E) the Fixed 3:1 scheme, defining a static 3:1 ratio. For all implemented
schemes, both the downlink and uplink directions are considered, while the AHBM algorithm [15] is
adopted as the mapping algorithm concerning the downlink sub-frame and the standard uplink mapping
scheme is considered regarding the uplink sub-frame, as described in Section 2.

5.2. RLAM performance evaluation

In this sub-section, extensive experiments are performed in order to provide evidence on the perfor-
mance of the proposed scheme. The performance metric considered is the average error rate with respect
to the optimal size of the downlink and uplink sub-frames in the context of each frame, which is defined
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Table 5
Traffic and service details

Incorporated
service

Duration Rate Average packet size

Real media
Streaming

3 sec 0.038 Mbit/sec in Downstream and 0.001
Mbit/sec in Upstream

1372 Bytes in Downstream and 68 Bytes in
Upstream

FTP uploading 2 sec 0.7 Mbit/sec in Downstream and 10 Mbit/
sec in Upstream

67 Bytes in Downstream and 1380 Bytes in
Upstream

VoIP 3 sec 0.047 Mbit/sec in Downstream and 0.068
Mbit/
sec in Upstream

162 Bytes in Downstream and 126 Bytes in
Upstream

uTorrent
Downloading

2 sec 8 Mbit/sec in Downstream and 0.5 Mbit/sec
in Upstream

1360 Bytes in Downstream and 67 Bytes in
Upstream

Fig. 4. The impact of the θ (theta) parameter to the downlink sub-frame width determination

as follows.

average_error_rate =

∑Total_Frame
i=1

|SFSi−Optimali|
SFSmax−SFSmin

Total_Frames

where the parameter Total_Frames represents the total number of simulated frames and the parameter
Optimali expresses the optimal downlink/uplink width for frame i, where 1 � i � Total_Frames. The
optimal value, Optimali, is defined upon the completion of the mapping process concerning the frame
i, knowing at that time the bandwidth demands for both directions. Since the simulation experiments
last for 10 min and the frame duration is equal to 10 ms, it may be easily concluded that the parameter
Total_Frames is equal to 60000 frames.

The first set of experiments aims at studying the impact of parameter θ (theta) to the RLAM’s perfor-
mance. To this respect, different values are considered for the parameter θ (i.e., θ = {0.5, 1.5, 20, 50}),
while the respective results are illustrated in Fig. 4. In this experiment, the memory factor m is fixed,
equal to 0.9 and the number of connected MSs is considered static and equal to 10.

As it may be observed from Fig. 4, θ values larger than 2 negatively influence the RLAM’s perfor-
mance. Specifically, considering θ = 5, 20, and50 results in sub-frames’ width estimations that include
a significant error element. This is attributed to the fact that when a large θ value is assumed, the model
is less sensitive to the influence of the UnUSk−1 and UnSSk−1 parameters, as minor modifications to
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Fig. 5. The impact of the memory factor to the downlink sub-frame width determination.

their values drive the reward parameter towards quickly approaching its reservation value (i.e., rr tends
to zero). To be more specific, large θ values decrease the rr in case it is larger than zero (i.e., rr2 is
larger than rr1), and it increase the rr in case it is negative (i.e., rr1 is larger than rr2). This ‘senseless’
behavior produces estimations not accurate enough and degrades the network performance. On the other
hand, the linear selection of the θ parameter (θ = 1) seems to be the most appropriate one, achieving
better performance than θ = 0.5 and θ = 2, because the rr1 and the rr2 parameters are linearly (i.e.,
smoothly) varied offering more accurate width estimations, adequately following traffic variations.

The second set of experiments (Fig. 5) studies the impact of the memory factor mr. Five different
values are considered (i.e., mr = {0.6, 0.7, 0.8, 0.9, 1}). Since the memory factor expresses the sig-
nificance attributed to the latest downlink-to-uplink width adjustment, as the parameter mr decreases,
the memory of the system is strengthened. In such a case, due to the small value of mr, the algorithm
takes into consideration the previous sub-frames’ width value to a greater extend. From Fig. 5, it may
be observed that the adaptive algorithm seems to be capable of instantly adapting to the networks dy-
namics, independently of the considered value of the memory factor, since all variations present almost
the same performance. However, the values of 0.9 and 1 seem to be the most appropriate ones for the
determination of the memory factor. At this point it should be noted that due to space limitations the
results depicted in Figs 4 and 5 concern the downlink sub-frame. The uplink sub-frame related results
are easily inferred since the two sub-frame sizes are complement and are readily available.

From the obtained results, we reach to the following conclusion. The proposed RLAM scheme is
quite accurate presenting an error rate below 15%. The error level seems to increase upon changing the
bandwidth demands of the two directions, since the model necessitates some time to adapt to the new
traffic situation, which is the case for the time periods between the 3rd and the 4th minutes, between the
5th and the 6th minutes, and between the 8th and the 9th minutes. Upon adapting to the traffic change
(e.g., between the second and the third minutes), the model presents a quite accurate behavior, reducing
the mean error rate up to 5%.

Consequently, the model’s error rate occurring only under extreme traffic conditions may be consid-
ered acceptable.

5.3. Learning performance

In this section, we compare the RLAM’s performance against the learning-automata based model pre-
sented in [9]. The learning automaton operation involves the following tuning parameters. First, the L
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Fig. 6. Performance comparison of RLAM and various Automaton versions in terms of average error rate.

parameter, which governs the convergence speed of the learning process, and second, the α parameter,
which prevents the state probabilities from receiving the zero value. We thoroughly compare the per-
formance of the two schemes by implementing and experimenting on three versions of the automaton.
The first version assumes L = 0.001, the second one considers L = 0.01, and the third version sets
L = 0.1. The parameter α is stable and taken equal to 10−4 for all considered versions. Our model has
been evaluated assuming θ = 1, and mr = 0.9. Furthermore, the number of connected MSs is taken
equal to 10 and the simulation time is 10 min (i.e., 60000 frames).

Figure 6 graphically illustrates the obtained average error rate with respect to the optimal sub-frames
width value for both schemes. Initially, and during the first three minutes, the error rate remains low, as
both models provide a good solution in a quite straightforward manner; the optimal downlink-to-uplink
width ratio is obvious and equal to 2:1 (27 symbols for downlink, opposed to 15 symbols for uplink
direction), since the downlink flow is much more demanding than the uplink. After the 3rd minute,
the error rate increases. This is attributed to the fact that the ftp file upload service demands much
more bandwidth for the uplink direction. As a consequence, the learning process necessitates some time
to reach to the most appropriate decision and adapt to the current traffic conditions. The next error
rate fluctuation happens after the 5th minute, where the VoIP application initiates. Here, the optimal
ratio is the 1:1, granting 21 symbols for each direction. Both techniques, i.e., the proposed RLAM and
the automaton, suffers from a temporary error rate increase, however the proposed model keeps it at
minimum levels. Once, the traffic relation tilts in favor of the downlink flow, i.e., upon the beginning
of the 8th minute, the error rate decreases; the optimal ratio becomes now 3:1, i.e., 33 symbols for the
downlink sub-frame and 9 for the uplink one and the most appropriate sub-frames configuration is easily
acquired. From the results obtained considering all schemes, it may easily be observed that the RLAM
exceeds the automaton in estimation accuracy, since it presents reduced average error rate compared to
all versions of the automaton scheme, i.e., regardless of the parameter L. The superiority of the RLAM
scheme lies in its sophisticated adaptive nature; it takes into account sub-frames’ configuration history
values, attributing to them however different significance in accordance with the memory factor, and
exploits the utilization factor, which expresses the number of unused slots that are needed for serving
a specific number of unserved slots in average, in order to address the inefficiencies of the mapping
process. Thus, the estimation procedure becomes more precise.
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Fig. 7. Average number of idle slots per frame with respect to the total number of connected MSs (both directions).

Fig. 8. Average number of unserved MSs per frame with respect to the total number of connected MSs (both directions).

5.4. Network performance

In this sub-section, we study the effectiveness of the model designed compared against three schemes
that keep static the downlink-to-uplink width sub-frame ratio to a predefined value. Furthermore, the
performance of the scheme proposed is examined against the automaton efficiency assuming the most
effective L. To this respect, five different schemes have been implemented and compared in the simula-
tion experiments conducted: a) RLAM, the adaptive model proposed, which is capable of adjusting the
ratio from 3:1 to 1:1 on a frame-by-frame basis, b) the Fixed 1:1, which keeps the ratio stable and equal
to 1:1, c) the Fixed 2:1, which maintains a fixed ratio of 2:1, d) the Fixed 3:1, which defines a predefined
and static ratio of 3:1, and e) the learning automaton considering L = 0.1 and α = 10−4 . Our model
has been evaluated assuming θ = 1, and mr = 0.9.

Three main performance metrics have been considered: a) the average number of idle slots per frame,
which indicates the utilization and efficiency of the mapping process, b) the average number of unserved
MSs, which expresses the portion of MSs that fail to be accommodated concerning both the downlink
and uplink sub-frames due to lack of resources, and c) the average number of unserved slots, which
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Fig. 9. Average number of unserved slots per frame with respect to the total number of connected MSs (both directions).

denotes the total number of slots that fail to find allocation space in both sub-frames due to lack of
resources.

The results are illustrated in Figs 7, 8, and 9, which depict the average number of idle slots, the average
number of unserved MSs, and the average number of unserved slots, respectively. From the obtained re-
sults, it may easily be observed that our model is capable of a) keeping the portion of the wasted (frame)
allocation space low, in terms of slots, b) reducing the mean number of the MSs that fail to find accom-
modation space per frame, and c) increasing the service ratio of the system by reducing the portion of
bandwidth requests that return to the scheduler. To be more specific, as depicted in Fig. 7, our model
presents the lowest mean number of idle slots compared to all other fixed schemes up to ten connected
MSs, by effectively exploiting the available bandwidth, even though the differences between the vari-
ous algorithms are marginal. This is attributed to our scheme’s efficiency concerning the determination
of the most appropriate downlink-to-uplink ratio and, thus, to the efficient distribution of the available
OFDMA columns to the direction that needs them more. However, when the number of the connected
MSs increases, the RLAM sacrifices bandwidth to efficiently support the subscribers’ requests. In other
words, more bandwidth is assigned to the downlink direction where the shaping rule applies, in order to
increase the number of served MSs per frame, a performance metric that is the most important in a wire-
less access network. This argument is verified by the results obtained in Fig. 8. It is clearly depicted that
the model proposed achieves a reduced number of unserved MSs as the number of the connected MSs
increases. Hence, it provides improved service ratio compared to the considered fixed schemes, which
sacrifice the service capability to save bandwidth. Similar results are graphically illustrated in Fig. 9;
Adopting RLAM, more bandwidth requests in terms of slots are successfully allocated per frame com-
pared to the fixed schemes. As expected, the novel adaptive model allows for a more flexible bandwidth
management, offering multiple benefits to the mobile WiMAX network. Contrary to the static schemes
that maintain a predetermined and fixed downlink-to-uplink sub-frame width ratio, the adaptive model
is able to adjust the ratio in accordance with the traffic dynamics. Moreover, the learning mechanism
of the RLAM presents notable improvements in the network performance compared to the automaton’s
learning procedure, fact that indicates the superiority of the scheme proposed concerning the enhanced
learning framework.

In a nutshell, the obtained simulation results indicate the superiority of the adaptive scheme pro-
posed under realistic conditions including real WiMAX traces and multiple services; it is the most effi-
cient one with respect to estimation accuracy, network resources utilization, and bandwidth management
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compared against the considered static schemes. Finally, RLAM succeeds in considerably reducing the
portion of the requests that are returned back to the scheduler in terms of slots, increasing, thus, the
network service rate.

6. Conclusions

In this paper, RLAM, a novel adaptive model has been presented, efficiently determining the downlink-
to-uplink width ratio on a frame by frame basis, following in quite accurate manner the traffic dynamics
in mobile WiMAX access networks. The model exploits a rigorous reinforcement learning based model
in order to effectively estimate the most appropriate sub-frames size configuration in the context of each
frame. The learning module designed takes into account past width values and adjusts the forthcoming
downlink and uplink sub-frame width, considering the portion of the wasted bandwidth as well as the
amount of the bandwidth requests that fail to be served due to lack of physical resources. Extensive
simulation results show that the model proposed offers an accurate learning framework, keeping the
average error rate below 15%. Additionally, it exhibits improved performance with respect to other
learning schemes, e.g., learning automata, and it provides significant benefits in the wireless network
performance in terms of service ratio and resources utilization compared to fixed mapping schemes,
which maintain a predefined and fixed ratio. Our future plans involve the experimentation of the proposed
scheme in LTE wireless networks.
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