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Abstract: Highly competitive and open environments should encompass 
mechanisms that will assist service providers in accounting for their interests, 
i.e., offering at a given period of time adequate quality services in a cost 
efficient manner. Assuming that a user wishes to access a specific service 
composed of a distinct set of service tasks, which can be served by various 
candidate service nodes, a problem that should be addressed is the assignment 
of service tasks to the most appropriate service nodes. This scenario accounts 
for both the user and the service provider. Specifically, service providers 
succeed in efficiently managing their resources, while users implicitly exploit 
in a seamless way the otherwise unutilized power and capabilities of the 
provider’s network. In general, service task assignment is founded on general 
and service specific user preferences, service provider’s specific service logic 
deployment and current system & network load conditions. The pertinent 
problem is concisely defined, optimally formulated and evaluated through 
simulation experiments on a real network test bed. 
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1 Introduction 

Service provisioning in liberalised, deregulated and competitive telecommunication 
market is a quite complex process since it involves various diverse actors (e.g., users, 
service providers, (third party) application (content) providers, brokers, network 
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providers). The following are some key factors for success. First, the efficiency with 
which services will be developed. Second, the quality level, in relation with the 
corresponding cost, of new services. Third, the efficiency with which the services will be 
operated, controlled, maintained, administered, etc. Fourth, the personalisation and 
tailoring of services and applications to the user needs and preferences. The aim of this 
paper is, in accordance with cost-effective QoS provision and efficient service operation 
objectives, to propose enhancements to the sophistication of the functionality that can be 
offered by service frameworks in open competitive communications environments. 

In accordance with the service oriented architectures concept (Parlay; OSGi, 1999; 
Benatallah, 2003) and exploiting advanced software paradigms (e.g., distributed object 
computing (Vinoski, 1997) and intelligent mobile agents (Morreale, 1998; Jennings, 
1998)), the service logic is realised by a set of autonomous co-operating components, 
which interact through middleware functionality that runs over Distributed Processing 
Environments (e.g., CORBA, Parlay). Limited by techno-economic reasons or 
considering administrative, management and resilience/ redundancy purposes it is 
assumed that each service provider deploys service components realising service logic in 
different service nodes, residing in the same and/or different domains. In the context of 
this paper, domains represent different network segments, thus, a hierarchical network 
structure is adopted. Moreover, it can be envisaged that a service will in general comprise 
a set of distinct service tasks, which could be executed by different service nodes.  

Highly competitive and open environments should encompass mechanisms that will 
assist service providers in accounting for their interests, i.e., offering at a given period of 
time adequate quality services in a cost efficient manner, which is highly associated to 
efficiently managing and fulfilling current user requests. Thus, assuming that a user 
wishes to access a specific service composed of a distinct set of service tasks, which can 
be served by various candidate service nodes (CSNs), a problem that should be addressed 
is the allocation of service tasks to the most appropriate service nodes. In this paper, the 
pertinent problem is called service task assignment. The aim of this paper is to address 
the problem from one of the possible theoretical perspectives and to show the software 
architecture that supports its solution and how it can be incorporated in service 
architectures that run in the open environment. 

This study is related to pertinent previous work in the literature, since efficient 
resource utilisation, load balancing and job scheduling are topics that attract the attention 
of the researchers as computational grids (interconnected networks of super-computing 
centers) have become an emerging trend on high performance computing (Special Issue, 
2003). Most studies in the field of resource allocation schemes aim at efficiently utillising 
the otherwise unutilized powers of resources spread throughout a network. In most cases, 
the problem is reduced to load balancing among specific nodes. Different global 
objectives could be considered, such as minimization of mean service/task completion 
time, maximization of resources utilization (e.g., CPU time), minimization of mean 
response ratio (Tanenbaum, 2001).  

 The contribution of this paper lies in the following areas. First, the definition and 
mathematical formulation (one possible version) of the service task assignment problem, 
considering a multi domain distributed computing environment. Our approach takes into 
account the communication complexity introduced between the service components 
involved in service provisioning process and, thus, a model for the communication cost 
involved is provided. Through this work it is shown that the overall problem can be 
reduced to well-known optimisation problems, which can be solved by relevant standard 
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algorithms. Second, the presentation of a software architecture that supports the proposed 
solution and may be incorporated in service architectures that run in the open 
environment. 

The approach in this paper is the following. The starting point (section 2) is the 
general description of the service task assignment concept, through the presentation of a 
relevant business case, while the software elements required for the realisation of the 
service task assignment process are identified. Additionally, our assumptions regarding 
the system model are presented. Sections 3 and 4 present a concise definition, 
mathematical formulation and optimal solution of the service task assignment problem, 
while one possible formulation of the communication cost taken into account in our 
framework is provided. Section 5 gives a set of experimental results on a network test 
bed, indicative of the efficiency of the proposed service task assignment scheme. In 
section 6 the related research literature is briefly revisited. Finally, in section 7 
conclusions are drawn and direction for future plans are presented. 

 
2 General Presentation of the Service Task Assignment Concept 

This section starts from the description of the business case (sub-section 2.1), through 
which the role and importance of the service task assignment concept can be understood. 
Sub-section 2.2 provides the software architecture in terms of computational level 
components that supports the proposed framework, while in sub-section 2.3 our 
assumptions on the system model are given.  

 

2.1 Description in terms of business level entities 

Assume that a user wishes to access a specific service offered by a service provider. The 
service is composed by a distinct set of service tasks.  Each service task can be served by 
various Candidate Service Nodes (CSNs), as depicted in Figure 1. The choice of the most 
appropriate service node engagement for the completion of each service task (service task 
assignment process) requires the realisation of the three general phases illustrated in 
Figure 2. 

The first general phase involves service independent tasks like user authentication, 
authorisation, etc. It involves the user and an entity that will be called Default Service 
Provider (DSP) residing in the Default Domain (DD). In essence, at the end of this phase 
the user is enabled to request services. This phase will not be further addressed in this 
paper.  

At the second phase, the service task assignment process is conducted by the Service 
Provider (SP) entity, which is specialised in the assistance of the service provider in the 
open competitive communication environment. The SP can accomplish this by providing, 
maintaining and hosting (essential parts of) the software that will conduct the service task 
assignment process. In this respect, the SP is assumed to play a co-ordinating role in the 
second general phase, which is the core of the service task assignment process. At this 
point the user has expressed the wish to access a given service. Involved in this phase 
will be the SP, the DSP, the service provider’s CSNs that could be deployed for the 
provision of the service and the Network Provider related entities (NPs) in order to 
handle the network resources (e.g., bandwidth) required for service provision. In general, 
service task assignment is founded on general and service specific user preferences and 
provider’s specific service logic deployment. It should be noted that the appropriate SP is 
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determined by the DSP at the end of the first general phase on the basis of the user 
preferences and requirements regarding the requested service. 

In the third phase of the business case the result of the service task assignment is 
available, and hence the service usage can possibly start, in accordance with the specific 
task assignment provided during the previous stage. 

At this point, some concepts concerning the business case can be outlined. 
Specifically, the scenario presented accounts for both the user and the service provider. 
Specifically, service providers succeed in better managing their resources, while users 
implicitly exploit in a seamless and transparent way the otherwise unutilised power and 
capabilities of the provider’s network. Thus, the SP assists service providers in equitably 
and efficiently distribute their resources, in essence leading to a higher level QoS service 
provision to the users. 

Based on the described business case we may provide the high level definition of the 
pertinent design problem. This means that we should define the cost function and specify 
the constraints that derive from the requirements of (primarily) the user with respect to 
the service requested and the provider’s policies, in conjunction with the current load 
conditions as well as the capabilities of the service nodes and the network resources 
availability. The solution in our case should provide the minimum cost assignment of 
service tasks to service nodes.  

The user requirements may be characterised in terms of service preferences. Service 
preferences yield the service tasks needed for the service provision, as well as the load 
that will originate from each service task, which may be expressed in terms of an 
associated with each service task, CPU time, memory and disk resources. In essence, 
these values correspond to the service node CPU time, memory and disk space required 
by the service task, so as it is adequately provided.  

The cost function of the service task assignment problem may consist of the 
following factors. First, the cost of the service nodes that need to be deployed (involved 
in the solution). Second, the communication cost of components between the service 
node that has primarily undertaken the execution of the service task requested and the 
service nodes that may as well be involved in the accomplishment of the specific service 
task (e.g., one may consider the case of a service task requiring additional processing to 
data retrieved from a database server). Third, the management cost introduced due to the 
assignment of service tasks constituting a service to different service nodes. The 
constraints of the problem derive from the capabilities of the service nodes. These may be 
expressed in terms of their maximum resources (i.e., CPU time, memory and disk space), 
and probably, the maximum number of tasks they can control at the same time (e.g., 
number of parallel sessions). Regarding the network resources, the link capacity 
constraint is considered. 

Taking into account the aspects outlined above, a general problem statement may be 
the following. Given the set of service nodes and their layout, the set of service tasks 
constituting the required service, the resource requirement of each service task in terms of 
CPU time, memory and disk space, the cost of deploying each service node, the current 
load conditions of each service node and of the network links, find the minimum cost 
assignment of tasks to service nodes (in terms of the number of nodes that need to be 
deployed, the communication cost introduced during the execution of service tasks, and 
the management cost imposed by the arrangement) subject to a set of constraints, 
associated with the capabilities of the service nodes and the network resources 
availability.  
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2.2 Description in terms of computational level components 

Service Architectures (e.g., Parlay) comprise activities that allow user authentication, 
user profile control (inspection), and service invocation. In our framework, the Default 
Service Provider Agent (DSPA) is the component that enables the initial access to a 
domain.  

The feature that is not supported is the overall task of the service task assignment. As 
a first step, this process requires a computational component that will act on behalf of the 
user. Its role will be to capture the user preferences, requirements and constraints 
regarding the requested service and to deliver them in a suitable form to the appropriate 
service provider entity. As a second step, service task assignment requires an entity that 
will act on behalf of the service provider. Each role will be to intercept user requests, 
acquire and evaluate the corresponding service node and network load conditions, and 
ultimately, to select the most appropriate service nodes for the realisation of the service. 
Furthermore, a monitoring module is required. Monitoring module consists of a 
distributed set of agents, which run on each service node of the service provider. Each 
agent is responsible for monitoring the load conditions and available resources of the 
service node and delivering them to the service provider related entity. Finally, a 
distributed set of network provider related entities will be responsible for providing the 
service provider entity with network load conditions and managing the network 
connections necessary for the service provision.  

The following key extensions are made so as to cover the functionality that was 
identified above. First, the Service Provider Agent (SPA) is introduced and assigned with 
the role of selecting on behalf of the service provider the best service task assignment 
pattern. Second, the User Agent (UA) is assigned with the role of intercepting and 
processing user requests and promoting the service requests to the appropriate SPA. 
Third, the Service Node Agent (SNA) is introduced and assigned with the role of 
promoting the current load conditions of a CSN. In essence, the distributed set of the 
SNAs forms the monitoring module. Finally, the Network Provider Agent (NPA) is 
introduced and assigned with the task of providing current network load conditions (i.e., 
bandwidth availability) to the appropriate SPA. In other words, the SPA interacts with the 
UA in order to acquire the user preferences, requirements and constraints, analyses the 
user request in order to identify the service tasks constituting the service and their 
respective requirements in terms of CPU time, memory and disk space, identifies the set 
of CSNs and their respective capabilities, interacts with the SNAs of the candidate 
service nodes so as to obtain their current load conditions and with the NPAs so as to 
acquire the network load conditions, and ultimately selects the most appropriate service 
task assignment pattern for the provision of the desired service. 

In more detail the interactions among the computational level components are as 
follows. The UA interacts with the SPA and the SPA interacts with the SNA of each CSN 
and with the NPAs handling the network resources / links among the service nodes. The 
aim of the UA-SPA interactions is to supply the SPA with user preferences and 
constraints, while the aim of the SPA-SNA and SPA-NPA interactions is to obtain the 
corresponding load conditions of each CSN and of the respective links in order to select 
at the final stage the most appropriate service task-service node deployment pattern. 

The tasks outlined require a method that will enable service providers to process the 
user’s request and generate a service task assignment scheme, satisfying user’s 
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preferences, requirements, and constraints, at the same time resulting in an efficient 
resource management scheme on the service provider’s side. 

 

2.3 System model 

We consider a set of service nodes SN  and a set of links L . Each service node SNni ∈  

corresponds to a server, while each link Ll∈  corresponds to a physical link that 
interconnects two nodes SNnn ji ∈, . Our system operates in a multi-tasking 

environment, i.e., several tasks may be executed on a single service node sharing its 
resources (e.g., CPU time, memory, disk space). Let iD  denote a set of nodes grouped to 

form a domain. In essence, domains represent different network segments. A pattern for 
the physical distribution of the related software components to the service task 
assignment scheme is given in Figure 3. Each SPA controls the service nodes of a 
domain. Each SNA is associated with each node, while each NPA is associated with the 
network elements (e.g., switches or routers) necessary for supporting service node 
connectivity. The SNA, NPA role (in a sense) is to represent the service nodes or network 
elements, respectively, and to assist SPA by providing information on the availability of 
resources of the service nodes / network elements. Domain state information (load 
conditions of the service nodes of the particular domain and link utilisation) is exchanged 
between the SPA and the SNAs/NPAs residing in the specific domain, while SPAs 
residing in different domains exchange their domain state info. This approach increases 
scalability as it reduces the requirements in terms of computation, communication and 
storage. At this point it should be noted that for simplicity reasons the network elements 
needed for the service node connectivity are not depicted in Figure 3. 

In the scope of this paper we consider that the service nodes constituting a specific 
domain are interconnected by a local area network, while different domains are 
interconnected by a wide area network. In the current version of this study we limit our 
attention to the cases where a service request may be served by service nodes residing in 
a single domain (the domain that is identified by the DSP), since we consider that the cost 
imposed due to information transfer through the WAN links is big, diminishing the net 
benefit of possible efficient resource utilisation. Thus, in our study, in case a service 
request cannot be served by the service nodes of a domain, it is transferred to the SPA of 
another domain in order to handle the request. However, the formal analysis of the 
service task assignment problem and its optimal formulation is given in a general mode, 
since the emergence of high performance backbone infrastructure and test-beds like Tera-
Grid (TeraGrid, 2003) promises remarkable network bandwidth between distant sites, 
enabling thus load balancing with minimal cost. 

 
3 Formal Problem Statement 

User u  wishes to use a given service s . A fundamental assumption at this point is that 
service s  may be decomposed in a set of distinct service tasks, which will be denoted as 

)(sST . Among these service tasks, of interest to the user are those designated in the user 

profile and will be denoted as ),( suST  ( ),( suST )(sST⊆ ).  

Let’s assume the existence of multiple service nodes for the provision of service s , 
denoted by )(sSN },...,{ ||1 snn= . Each service node-jn  contains a collection of 
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components, denoted as )(iA
jn , which inter-work with other components that may reside 

in the same or in a different service node in order to accomplish each service task 
)(sSTi∈ . Let 

jnA and C  be the total set of components residing in the jn  service node 

and the various service nodes in total, respectively. Hence, the following relationship 
holds: CAiA

jj nn ⊆⊆)( . Each service task ( )sSTi∈  may be executed on an associated 

set of possible candidate service nodes, represented by the set )(iSN , ( ( )suSTi ,∈ ). 

Thus, )(iSN )(sSN⊆ . The service logic deployment pattern adopted by service 

providers determine each of these service node sets. 
Task i , ( )(sSTi∈ ) requires for its completion consumption of )(irCPU , )(irmem  and 

)(irdisk  resources of service node(s) jn ))(( , iSNn j ∈ . A realistic assumption is that SPA 

being in charge of assisting the service providers in the competitive telecommunication 
market, has a solid interest in as accurately as possible identifying the resources )(ira  

(where } , ,{ diskmemCPUa∈ ) needed for the provisioning of service task i  in terms of 

CPU utilization, memory and disk space. In this respect, the SPA can be the entity that 
configures these values based on the service task characteristics, user preferences and 
requirements, exploiting also previous experience.  

Let Dc  denote the cost of involving service node jn ))(( , iSNn j ∈ , in the service 

provision. For notation simplicity it is assumed that the cost of involving a service node 
in the solution is the same for all service nodes. As an alternative this cost could be taken 
variant (depending on the cost of acquiring and/or maintaining the node etc.). Notation 
may readily be extended.  

The objective of our problem is to find a service task assignment pattern, i.e., an 
assignment ( )sAST  of service tasks i  ( ),( suSTi∈ ) to service nodes jn ))(( , iSNn j ∈ , 

that is optimal given the current load conditions and number of service tasks being served 

by each service node jn , represented as )( j
pre

a nr  and )( j
pre nk , respectively. The 

assignment should minimise an objective function ( )( )sAsf ST,  that models the overall 

cost introduced due to system/network resources consumption. Among the terms of this 
function there can be the overall cost due to the deployment of various service nodes to 
the service provisioning process, the communication cost introduced due to the 
interaction of the components 

jnA  residing in jn  service node with the components 
knA  

residing in service node kn  for the completion of each service task i , ))(( sSTi∈∀ , as 

well as the management cost )',( iicM  introduced due to the assignment of 

)',( ii )(2 sST∈  service tasks to different service nodes )(),( 2
' sSNnn jj ∈ .  

The constraints of our problem are the following. First, each service task i  
( ),( suSTi∈ ) should be assigned to only one service node jn , ))(( iSNn j ∈ . Second, the 

capacity constraints of each service node should be preserved. Lets assume that max
ar  and 

maxk  represent the maximum load and the maximum number of service tasks that a 
service node may handle. For notation simplicity, these parameters are assumed to be the 
same for each service node jn , ))(( sSNn j ∈ . Thus, the constraints are 
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≤)( j
post

a nr max
ar and ≤)( j

post nk maxk , ))(( sSNn j ∈∀ , where )( j
post

a nr  and )( j
post nk  

denote the potential load conditions of service node jn , after the service task assignment 

process. Notation may readily be extended. The overall problem can be formally stated as 
follows. 

Service Task Assignment Problem Description  
Given: 

(a) a user u  who wants to use a service s ,  
(b) the profile of user u , 
(c) the set of service tasks ),( suST  of service s  that are of interest (relevant) to user 

u  (this set is formed by the service specification, the user profile and the service 
provider’s related capabilities), 

(d) the set of service nodes )(sSN  and the set of candidate service nodes )(iSN  at 

which each service task i  ( ),( suSTi∈ ) can be completed, according to the service 

specification, the service node capabilities and the preferences of user u , 
(e) the communication cost introduced due to the interaction of the components 

jnA  

residing in jn  service node with the components 
knA  residing in service node kn  for the 

completion of each service task i , ))(( sSTi∈∀ , 

(f) the deployment cost Dc  of each service node jn  involved in the service 

provisioning process, which derives from the assignment of service task i ( ),( suSTi∈ ) 

to service node jn  ( )(iSNn j ∈ ), 

(g) the management cost )',( iicM  introduced due to the assignment of 

)',( ii )(2 sST∈  service tasks to different service nodes )(),( 2
' iSNnn jj ∈ , 

(h) the current load conditions )( j
pre

a nr  for each load type a  and number of service 

tasks )( j
pre nk  being executed on each service node jn , )(sSNn j ∈ , 

(i) the capacity constraints of each service node max
ar and maxk , 

(j) the resources )(ira  required for the completion of service task i , ))(( sSTi∈∀ , 

find the best service task configuration pattern, i.e., assignment of service tasks to 
service nodes ( )sAST , that optimises an objective function ( )( )sAsf ST,  that is related to 

the overall cost introduced by the assignment, under the constraints ≤)( j
post

a nr max
ar  and 

≤)( j
post nk maxk , and that each service task is assigned to exactly one service node. 

In this respect, the combination of service tasks to service nodes that yields minimum 
cost will be selected.  

 
4 Optimal Formulation 

The general problem version presented is open to various solution methods. Its generality 
partly lies in the fact that the objective and the constraint functions are open to alternate 
implementations. Thus, the problem statement can be distinguished from the specific 
solution approach adopted hereafter. In order to describe the assignment ( )sAST  of 

service tasks to service nodes we introduce the decision variables ( )jixST ,  
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( ),( suSTi∈ , )(iSNn j ∈ ) that take the value 1(0) depending on whether service task i  is 

(is not) executed by service node-jn . The decision variables ( )jySN  assume the value 

1(0) depending on whether candidate service node jn  ( )(iSNn j ∈ ) is (is not) deployed 

(involved in the solution). In addition, we define the set of variables ( )',iizST  

( ( ) ),(, 2' suSTii ∈∀ ) that take the value 1(0) depending on whether the service tasks i  

and 'i  are (are not) assigned to the same service node. The variables ( )',iizST  are related 

to variables ( )jixST , , ( )jixST ,' , through the relation ( )=',iizST  

( ) ( )∑ ⋅
=

)(

1
,',

iSN

j
STST jixjix , which may be turned into a set of linear constraints through the 

technique of (Papadimitriou, 1982). Assignment ( )sAST  may be obtained by reduction to 

the following 0-1 linear programming problem. 
Service Task Assignment Problem: 
 Minimise  

( )( )sAsf TN, ∑ ∑ ⋅⋅+⋅⋅=
∈ ∈)( },,{

max
)

)(

)(
1()(

sSNn diskmemoryCPUa ja

j
pre

a
aSND

j nr

nr
wbjyc  

∑ ∑ ⋅+
∈ ∈)( )(

),(),(
sSTi iSNn

STj
j

jixniC ∑ ∑ −⋅+
∈ ∈)( )('

))',(1()',(
sSTi sSTi

STM iiziic  (1), 

where ),( jniC  denotes the communication cost introduced in case jn  service node 

has undertaken the responsibility for the execution of service task i  ( ),( suSTi∈ ),  

subject to the constraints: 
∑ =
∈ )(

1),(
iSNn
ST

j

jix     )(sSTi∈∀    (2), 

∑ ⋅≤⋅+
∈ )(

max )()(),()()(
sSTi

SNaSTaj
pre

a jyjrjixirnr  )(sSNn j ∈∀      (3), 

∑ ⋅≤+
∈ )(

max )()(),()(
sSTi

SNSTj
pre jyjkjixnk  )(sSNn j ∈∀   (4) 

Cost function (1) penalises the aspects identified previously (i.e., cost of the service 
node involved in the solution, communication cost introduced during the realisation of 
each service task, and management cost of service tasks that are assigned to different 
service nodes). In order for the service providers to better utilize their resources, the cost 
of each service node deployment introduced in cost function (1) takes also into account 
the node’s current load conditions in order to obtain a load balancing solution. Parameters 
β , )1( <β , and aw  denote the relative significance of load balancing and of each 

resource type a  to the service provider. It is assumed that weights aw  for each resource 

type a  are normalized to add up to 1 (i.e., 1
},,{
=∑

∈ diskmemoryCPUa
aw ). Constraints (2), 

guarantee that each service task will be assigned to one service node. Constraints (3) and 
(4) guarantee that each service node will not have to cope with more load and service 
tasks than those dictated by its pertinent capacity constraint. 

Hereafter, we present a model for the overall communication cost ),( jniC  

introduced in case jn  service node has undertaken the responsibility for the execution of 
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service task i  ( ),( suSTi∈ ). In essence, the model covers the case in which the 

components of set )(iA
jn  need to interact with the components of set )(iA

kn  residing in 

service node kn  in order to provide service task i , ))(( sSTi∈ . It should be noted that 

service nodes jn  and kn  may reside even in different domains. At this point, a major 

assumption adopted in our study, is that part of 
jnA  components are implemented as 

mobile agents, while the rest are supposed to be fixed service agent components. Let 
M
n j

A  and F
n j

A  be the subset of components of 
jnA  that are implemented as mobile and 

fixed agents, respectively. 
The volume of messages exchanged between each pair of components (e.g., 

dependent on the number of messages and size of each message) for the accomplishment 

of task i  ( )(sSTi∈ ) will be represented as )(imwv , 2),( Cvw ∈∀  and )(sSTi∈∀ . Let 

),( kj nncc  be the communication cost per unit message that is exchanged between 

service nodes jn  and kn , 2)(),( sSNnn kj ∈∀ . This factor may be proportional to the 

distance (e.g., number of hops) between the two service nodes and the load conditions 
(e.g., bandwidth availability) of the communication link interconnecting the two nodes. 
Another factor that should be taken into account is the cost associated with the migration 
of a component (implemented as a mobile agent) from one service node to another. In 
this respect, let ),,( kj nnwmc  be the migration cost of component-w  from service node 

jn  to service node kn , Cw∈∀  and 2)(),( sSNnn kj ∈∀ .  

The overall cost for the completion of task i  ))(( sSTi∈  can be calculated by the 

following formula. 
+∑ ∑ ⋅+∑ ∑ ⋅∑=

∈ ∈∈ ∈∈∀ F
jn jn

F
jn knk Aw Av

jjwv
Aw Av

kjwv
sSNn

j nnccimnnccimniC ),()(),()([),(
)(

,  

]),()(),,( ∑ ∑ ⋅+∑
∈ ∈∈ M

jn kn
M

jn Aw Av
kkwv

Aw
kj nnccimnnwmc ,  )(sSTi∈∀   (5) 

In the previous formulation three main factors are identified. The first one is related 
to the communication cost deriving from the fixed components and is proportional to the 
messages (their number and size) that are exchanged between every pair of components 

),( vw  and the communication cost per unit message between different service nodes. 

The second factor is associated with the migration cost of mobile agent components 
between two different service nodes. This factor is dependent on the path which the 
mobile agent will follow (i.e., number of hops) and the information encryption and code 
execution cost, as well as the load conditions of the communication links. The last factor 
is the communication cost within the same service node, which in practice may be 
negligible, and in the context of this study is taken equal to zero. It is noted that only the 
involved to the provisioning process components are taken into account. 

Apparently, the designation of the components that will be included in sets M
n j

A  and 

F
n j

A  by the service providers may be based on factors such as the overall communication 

and migration costs as well as estimation of the respective component invocations. In our 
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study, the service logic deployment pattern (i.e., service components/nodes) adopted by 
the service providers is known. 

Based on the aforementioned analysis, the service node selection algorithm, 
graphically illustrated in Figure 4, may be described as follows: 

Service Node Selection Algorithm 
Step 1. The UA component is acquainted with the preferences, requirements and 

constraints of user u  regarding service s . These are expressed by the set of the service 
tasks ),( suST  that are of interest (relevant) to the user.  

Step 2. At the end of the first general phase (user authentication & authorisation), the 
DSP determines an appropriate SPA (on the basis of user requirements and preferences 
with respect to the requested service) and provides the respective SPA with the UA 
reference. 

Step 3. The SPA obtains from the UA user preferences, requirements and constraints, 
forms the set of the service tasks ),( suST  that are of interest to the user and retrieves 

from a database the set of candidate service nodes )(iSN  for the completion of each 

service task i , ( ),( suSTi∈ ), the  deployment cost Dc  of each service node jn , 

( )(iSNn j ∈ ) and their respective capacity constraints max
ar and maxk , and the 

management cost  )',( iicM  ( )',( ii )(2 sST∈ ). Additionally, the SPA computes for each 

service task i ( ),( suSTi∈ ) the corresponding resources )(ira  required for its 

completion in terms of CPU time, memory and disk resources. 
Step 4. The SPA interacts with the SNAs in order to obtain the current load conditions 

)( j
pre

a nr  and number of service tasks )( j
pre nk  being executed on each CSN jn , 

)(sSNn j ∈ . 

Step 5. The SPA estimates the communication cost ),( jniC  for each service task  i , 

( ),( suSTi∈ ) on the basis of equation (5), after contacting the NPAs in order to acquire 

the current load conditions of the communication links. 
Step 6. The SPA solves the appropriate instance of the service task assignment 

problem (equations (1)-(4)). 
Step 7.  End. 
 

5 Experimental Results 

In this section, indicative results are provided in order to assess the proposed framework, 
which allows for effective service provisioning. In order to test the performance of the 
service task assignment scheme, we conducted experiments on a network test bed, 
assuming a simple application executing on a single PC performing a configurable 
number of queries on a database (that is, the service considered is composed of one 
service task that involves execution of one service component which interacts with the 
database).  

Concerning the implementation issues of our experiments, the overall Service 
Provisioning System (SPS) has been implemented in Java. The Voyager mobile agent 
platform (The Voyager Platform) has been used for the realisation of the software 
components as well as for the inter-component communication. To be more specific, the 
system components (UA, SPA and the monitoring module SNAs, NPAs) have been 
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implemented as fixed agents and the service task constituting the service as intelligent 
mobile agent, which can migrate and execute to remote service nodes. 

Two sets of experiments have been performed. In the first experiment, a copy of the 
database exists on each service node, thus, communication cost in practice is negligible 
and is taken equal to zero. In this case, only the service node deployment cost factor is 
considered and the performance of the system is tested using as decision parameter the 
load conditions of the service nodes. In the second experiment the database resides only 
on one of the service nodes. Thus, the communication cost is also taken into account in 
the service task assignment process. 

The network topology that has been adopted for both experiments consists of five 
service nodes with the following configuration: two service nodes with 2GHz CPU and 2 
GB RAM and three service nodes with 1GHz CPU and 1 GB RAM. All service nodes are 
running the Linux Redhat OS.  

The idle states of the CPUs of the service nodes are simulated to follow the Normal, 
Uniform and Exponential distributions, respectively, with mean value 50,000 ms. and 
maximum value 100,000 ms. In all cases, the duration in which the CPU load of the 
service nodes is above 50% is 20,000 ms.  

The graphical user interface of the SPA module, which implements the service task 
assignment process, is given in Figure 5. 

Concerning the first experiment, all service nodes reside on a 100Mbit/sec Ethernet 
LAN. We have performed 100 experiments for each kind of CPU simulation with the 
mobile agent realising the service logic performing tasks varying from 100 to 1000 
queries (with interval 100 queries). The same experiments have also been conducted 
without using our service task allocation scheme. In the latter case, service tasks are 
assigned randomly to service nodes. 

The mean execution time for each CPU load distribution when the service task 
assignment process is applied and when the service node is selected randomly is 
illustrated in Figure 6. From the obtained results, we observe a decrease of the service 
completion time when the service task assignment system is used. At this point, it should 
be mentioned that this performance improvement is tightly related to the number of 
queries the service task needs to perform at the remote service node and the time that the 
service node’s CPU is idle. It may be observed that for small and large tasks (from 100 to 
300 and from 700 to 1000 queries) the improvement in performance is bigger than in 
medium sized tasks (from 400 to 600 queries). It may also be derived that we have about 
6% improvement for small tasks and about 9% for the large ones, while for medium sized 
tasks the improvement in performance is minor. This could be explained as follows. 
From Figure 6, it could be extracted that the mean time required for initialisation of the 
mobile agent on a service node is 35,000 ms. Also the execution of a task consisting of 
100 queries when CPU is idle is 5,500 ms. Thus, small tasks can be performed during one 
slope of a CPU load (i.e., time during which CPU load is below 50%), while large tasks 
require for their completion one CPU slope, one CPU peak (i.e., time during which CPU 
load is above 50%) and finally another CPU slope. The completion of medium tasks 
usually requires one CPU slope and one CPU peak. Thus, the application of service task 
assignment process results in minor performance improvement. 

Concerning the second experiment, as depicted in Figure 7, three service nodes reside 
on one LAN, while the rest are located on a separate LAN. The two LANs are 
interconnected via a VPN connection, which utilizes a slow Internet connection 
(128Kb/sec). The SPA is located on the service node ‘Center’, while the database resides 
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on node C. In this experiment, the service task comprises execution of 100 queries to the 
database. The service task completion time has been measured on each node and the 
following results have been obtained (all in ms): 

A→7200, B→7250, D→760, C→740  
The same experiment has been performed 100 times applying the service task 

assignment scheme. The results obtained regarding node specialization are as follows: 
node C has been selected as the best service node 80% of the times, while node D has 
been selected 20% of the times. The average service completion time is approximately 
750ms. The application of our proposed service task assignment scheme results in a 
decrease of the service completion time with respect to random service node selection 
which on average is 80%. It should be noted that the aforementioned percentage is tightly 
related to the data rate supported by the interconnection line. 
 

6 Related Research 

Most studies in the field of resource allocation schemes aim at efficiently utillising the 
resources spread throughout a network. In most cases the problem is reduced to load 
balancing among specific nodes. The design choices that the system architect has to face 
are quite vast ranging from deploying centralised vs. decentralised arrival and/or control 
systems, adopting static (model based) vs. dynamic (state based) schemes, considering 
different resource allocation strategies/algorithms incorporating or not the task migration 
concept, taking into account diverse load metrics, etc. The centralised resource allocation, 
referring to the arrival configuration of the service requests and the overall control of the 
service assignment scheme, provides sophisticated global control, throughput 
optimisation and relieves the network from the burden of continuous load information 
exchange between the system nodes in order to monitor and update their knowledge 
about the current system status. However, it increases the cost endured by the service 
provider due to the dedication of at least one node to the task assignment process, is quite 
impractical in case large scale networks are considered due to the computational 
complexity and storage burden imposed, especially when dynamic schemes are 
considered, while it is referred to as introducing a single point of failure or bottleneck in 
the system performance. On the other hand, the decentralised approach ensures 
scalability, overloading the network with load information due to the exchange among 
the nodes about the system status (Suguri, 2000).  

Static schemes (Stone, 1997) use only information about the average system 
behavior, ignoring current system status, thus, in general they do not respond well to 
short term load imbalances among the service nodes. On the other hand, dynamic 
schemes are more complex and suffer from communication and computation overhead 
introduced due to current information acquisition and decision making. Learning from 
experience techniques could be exploited in order to update decision parameter values 
according to long term observations. For example, execution times or resource utilisation 
could be logged and reused as pre-estimations for the assignment of similar tasks.  

Basic service task assignment strategies comprise the following (Schmidt, 2004): 
First, Round Robin, where the tasks are allocated to the nodes by simply iterating through 
the nodes list. Second, Random, where the nodes to be assigned with the tasks are 
selected randomly. Third, Least Loaded in accordance with which the tasks are assigned 
to a specific node until a pre-specified threshold is reached. Thereafter, all subsequent 
requests are transferred to the node with the lowest load and the aforementioned steps are 
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repeated. Fourth, Load Minimum, where the average load of the system is calculated. In 
case the load of a node is higher than the average node and of the least loaded node by a 
certain amount, all subsequent requests are transferred to the least loaded location. 

According to the task farming paradigm (Andrews, 1991), a pool of tasks and one 
worker on each node of the system is considered. Each worker repeatedly claims a task 
from the pool, executes it and claims the next task. This way, the system load is 
efficiently distributed to the available resources. Considering dynamic, distributed 
controlled resource allocation, schemes in most cases follow three basic types (Agrawal, 
1987): Sender-Initiated, where congested nodes (nodes where the load reaches a 
predefined threshold) take the initiative and probe other nodes in order to determine the 
most suitable node (e.g., least loaded node) for remote task execution, Receiver-Initiated, 
where lightly-loaded nodes search for work in a similar manner (probe other nodes in 
order to determine the node(s) that should be relieved from tasks e.g., the most loaded 
node), Symmetrically-Initiated, according to which both congested and lightly loaded 
nodes take the initiative. In (Lazowska 1986, Krueger 1988) the performance of these 
schemes is evaluated. The sender-initiated scheme is shown to perform better in light or 
moderate loaded systems, while the receiver-initiated paradigm is preferable at higher 
load conditions, under the assumption that the cost of transferring a task between the 
nodes is comparable for the two schemes. Both sender-initiated and symmetrically-
initiated schemes become unstable at high load conditions, especially when the cost of 
probing other nodes is taken into account.  

In general, many approaches have derived and encourage the necessity of adaptive 
switching between strategies (Svenson, 1992) and dynamic adjustment of decision 
parameters (e.g., node’s load predefined threshold, time interval upon which load 
information exchange between the nodes should take place) (Xu, 1993). However, 
depending on the number of nodes in the network, the load balancing technique adopted, 
the network status, the time required and the complexity indroduced, the resource 
allocation scheme itself may diminish the net benefit of the overall procedure. In (Eager, 
1986), the relative benefits of simple versus complex load sharing policies are examined. 
Using an analytical model for a homogeneous network, the authors concluded that simple 
policies that require only a small amount of state information perform as well as complex 
policies.  

Researchers also borrow notions from economic fields (particularly, dynamic pricing 
and game theory) in order to efficiently allocate network resources through the 
construction of market-based systems (Chavez, 1997). In (Buyya, 2002), a computational 
economy framework for resource allocation and for regulating supply and demand in grid 
computing environments is proposed. Specifically, economic models (commodity market 
models, posted pricing schemes, tender and auction mechanisms), system architectures 
and policies for resource management are provided for computational grids and peer-to-
peer computing systems. 

 
7 Conclusions 

This paper provides a mechanism for assisting service providers in efficiently managing 
and fulfilling current user requests. Specifically, one possible version of the service task 
assignment problem has been addressed. Our objective is to find the best service task 
assignment pattern, i.e., an assignment of service tasks to service nodes that is optimal 
given the current load conditions and number of service tasks being served by each 
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service node. Experimental results on a real network test bed indicate that the proposed 
framework produces good results in relatively simple contexts (e.g., a service, which is 
composed of one service task that involves execution of one service component). 
Specifically, when the load conditions of the service nodes is the only factor considered 
for deciding on the most appropriate service node for the service provisioning, an overall 
improvement in service completion time of about 7% is introduced (especially, for the 
small and the large sized service tasks). In case the communication cost factor is 
considered for determining the service node to be involved in the service provisioning 
process, our scheme succeeds each time in acquiring a node requiring only local / LAN 
based component interactions for service completion, minimizing, thus, network 
resources consumption. What remains is to evaluate the performance of the proposed 
service task assignment scheme in complex contexts. 

Directions for future work include, but are not limited to the following. First, the 
realisation of further wide scale trials, so as to experiment with the applicability of the 
framework presented herewith. Second, the experimentation with alternate approaches 
(e.g., market-based techniques) for solving the service task assignment problem. 
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Figure 1 User-u wishes to access service-s, which is composed of 4 different service tasks (of 
interest to the user are 3 out of the 4 service tasks) 
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Figure 2 Interactions among the business level entities during the service task assignment case 
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Figure 3 System model and physical distribution of the service task assignment related software 
components 

 

Figure 4  Service Node Selection Algorithm 
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Figure 5 Graphical User interface of the SPA module 
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CPU Load with Uniform Distribution
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CPU Load with Exponential Distribution
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(c ) 

Figure 6 Execution times with and without optimisation for (a) Normal, (b) Uniform  and 
(c) Exponential CPU load distributions 
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Figure 7 Network Topology adopted for the second experiment   
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