

 Int. J. , Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Efficient Service Provisioning through Dynamic
Service Task Assignment in a Multi-Domain
Distributed Computing Environment

Malamati Louta
Department of Business Administration

Technological Educational Institute of Western Macedonia
Koila, Kozani, 50100, Greece, louta@telecom.ntua.gr

Department of Information and Communication Technologies
Engineering
University of Western Macedonia
Kozani, 50100, Greece

Angelos Michalas
Department of Informatics and Computer Technology

Technological Educational Institute of Western Macedonia
Fourka, Kastoria, 52100, Greece, amichalas@kastoria.teikoz.gr

Abstract: Highly competitive and open environments should encompass
mechanisms that will assist service providers in accounting for their interests,
i.e., offering at a given period of time adequate quality services in a cost
efficient manner. Assuming that a user wishes to access a specific service
composed of a distinct set of service tasks, which can be served by various
candidate service nodes, a problem that should be addressed is the assignment
of service tasks to the most appropriate service nodes. This scenario accounts
for both the user and the service provider. Specifically, service providers
succeed in efficiently managing their resources, while users implicitly exploit
in a seamless way the otherwise unutilized power and capabilities of the
provider’s network. In general, service task assignment is founded on general
and service specific user preferences, service provider’s specific service logic
deployment and current system & network load conditions. The pertinent
problem is concisely defined, optimally formulated and evaluated through
simulation experiments on a real network test bed.

Keywords: Service Provisioning, Service Task Assignment, Resource
Allocation, Intelligent Agents, Distributed Computing Environments

1 Introduction

Service provisioning in liberalised, deregulated and competitive telecommunication
market is a quite complex process since it involves various diverse actors (e.g., users,
service providers, (third party) application (content) providers, brokers, network

 Author

providers). The following are some key factors for success. First, the efficiency with
which services will be developed. Second, the quality level, in relation with the
corresponding cost, of new services. Third, the efficiency with which the services will be
operated, controlled, maintained, administered, etc. Fourth, the personalisation and
tailoring of services and applications to the user needs and preferences. The aim of this
paper is, in accordance with cost-effective QoS provision and efficient service operation
objectives, to propose enhancements to the sophistication of the functionality that can be
offered by service frameworks in open competitive communications environments.

In accordance with the service oriented architectures concept (Parlay; OSGi, 1999;
Benatallah, 2003) and exploiting advanced software paradigms (e.g., distributed object
computing (Vinoski, 1997) and intelligent mobile agents (Morreale, 1998; Jennings,
1998)), the service logic is realised by a set of autonomous co-operating components,
which interact through middleware functionality that runs over Distributed Processing
Environments (e.g., CORBA, Parlay). Limited by techno-economic reasons or
considering administrative, management and resilience/ redundancy purposes it is
assumed that each service provider deploys service components realising service logic in
different service nodes, residing in the same and/or different domains. In the context of
this paper, domains represent different network segments, thus, a hierarchical network
structure is adopted. Moreover, it can be envisaged that a service will in general comprise
a set of distinct service tasks, which could be executed by different service nodes.

Highly competitive and open environments should encompass mechanisms that will
assist service providers in accounting for their interests, i.e., offering at a given period of
time adequate quality services in a cost efficient manner, which is highly associated to
efficiently managing and fulfilling current user requests. Thus, assuming that a user
wishes to access a specific service composed of a distinct set of service tasks, which can
be served by various candidate service nodes (CSNs), a problem that should be addressed
is the allocation of service tasks to the most appropriate service nodes. In this paper, the
pertinent problem is called service task assignment. The aim of this paper is to address
the problem from one of the possible theoretical perspectives and to show the software
architecture that supports its solution and how it can be incorporated in service
architectures that run in the open environment.

This study is related to pertinent previous work in the literature, since efficient
resource utilisation, load balancing and job scheduling are topics that attract the attention
of the researchers as computational grids (interconnected networks of super-computing
centers) have become an emerging trend on high performance computing (Special Issue,
2003). Most studies in the field of resource allocation schemes aim at efficiently utillising
the otherwise unutilized powers of resources spread throughout a network. In most cases,
the problem is reduced to load balancing among specific nodes. Different global
objectives could be considered, such as minimization of mean service/task completion
time, maximization of resources utilization (e.g., CPU time), minimization of mean
response ratio (Tanenbaum, 2001).

 The contribution of this paper lies in the following areas. First, the definition and
mathematical formulation (one possible version) of the service task assignment problem,
considering a multi domain distributed computing environment. Our approach takes into
account the communication complexity introduced between the service components
involved in service provisioning process and, thus, a model for the communication cost
involved is provided. Through this work it is shown that the overall problem can be
reduced to well-known optimisation problems, which can be solved by relevant standard

 Title

algorithms. Second, the presentation of a software architecture that supports the proposed
solution and may be incorporated in service architectures that run in the open
environment.

The approach in this paper is the following. The starting point (section 2) is the
general description of the service task assignment concept, through the presentation of a
relevant business case, while the software elements required for the realisation of the
service task assignment process are identified. Additionally, our assumptions regarding
the system model are presented. Sections 3 and 4 present a concise definition,
mathematical formulation and optimal solution of the service task assignment problem,
while one possible formulation of the communication cost taken into account in our
framework is provided. Section 5 gives a set of experimental results on a network test
bed, indicative of the efficiency of the proposed service task assignment scheme. In
section 6 the related research literature is briefly revisited. Finally, in section 7
conclusions are drawn and direction for future plans are presented.

2 General Presentation of the Service Task Assignment Concept

This section starts from the description of the business case (sub-section 2.1), through
which the role and importance of the service task assignment concept can be understood.
Sub-section 2.2 provides the software architecture in terms of computational level
components that supports the proposed framework, while in sub-section 2.3 our
assumptions on the system model are given.

2.1 Description in terms of business level entities

Assume that a user wishes to access a specific service offered by a service provider. The
service is composed by a distinct set of service tasks. Each service task can be served by
various Candidate Service Nodes (CSNs), as depicted in Figure 1. The choice of the most
appropriate service node engagement for the completion of each service task (service task
assignment process) requires the realisation of the three general phases illustrated in
Figure 2.

The first general phase involves service independent tasks like user authentication,
authorisation, etc. It involves the user and an entity that will be called Default Service
Provider (DSP) residing in the Default Domain (DD). In essence, at the end of this phase
the user is enabled to request services. This phase will not be further addressed in this
paper.

At the second phase, the service task assignment process is conducted by the Service
Provider (SP) entity, which is specialised in the assistance of the service provider in the
open competitive communication environment. The SP can accomplish this by providing,
maintaining and hosting (essential parts of) the software that will conduct the service task
assignment process. In this respect, the SP is assumed to play a co-ordinating role in the
second general phase, which is the core of the service task assignment process. At this
point the user has expressed the wish to access a given service. Involved in this phase
will be the SP, the DSP, the service provider’s CSNs that could be deployed for the
provision of the service and the Network Provider related entities (NPs) in order to
handle the network resources (e.g., bandwidth) required for service provision. In general,
service task assignment is founded on general and service specific user preferences and
provider’s specific service logic deployment. It should be noted that the appropriate SP is

 Author

determined by the DSP at the end of the first general phase on the basis of the user
preferences and requirements regarding the requested service.

In the third phase of the business case the result of the service task assignment is
available, and hence the service usage can possibly start, in accordance with the specific
task assignment provided during the previous stage.

At this point, some concepts concerning the business case can be outlined.
Specifically, the scenario presented accounts for both the user and the service provider.
Specifically, service providers succeed in better managing their resources, while users
implicitly exploit in a seamless and transparent way the otherwise unutilised power and
capabilities of the provider’s network. Thus, the SP assists service providers in equitably
and efficiently distribute their resources, in essence leading to a higher level QoS service
provision to the users.

Based on the described business case we may provide the high level definition of the
pertinent design problem. This means that we should define the cost function and specify
the constraints that derive from the requirements of (primarily) the user with respect to
the service requested and the provider’s policies, in conjunction with the current load
conditions as well as the capabilities of the service nodes and the network resources
availability. The solution in our case should provide the minimum cost assignment of
service tasks to service nodes.

The user requirements may be characterised in terms of service preferences. Service
preferences yield the service tasks needed for the service provision, as well as the load
that will originate from each service task, which may be expressed in terms of an
associated with each service task, CPU time, memory and disk resources. In essence,
these values correspond to the service node CPU time, memory and disk space required
by the service task, so as it is adequately provided.

The cost function of the service task assignment problem may consist of the
following factors. First, the cost of the service nodes that need to be deployed (involved
in the solution). Second, the communication cost of components between the service
node that has primarily undertaken the execution of the service task requested and the
service nodes that may as well be involved in the accomplishment of the specific service
task (e.g., one may consider the case of a service task requiring additional processing to
data retrieved from a database server). Third, the management cost introduced due to the
assignment of service tasks constituting a service to different service nodes. The
constraints of the problem derive from the capabilities of the service nodes. These may be
expressed in terms of their maximum resources (i.e., CPU time, memory and disk space),
and probably, the maximum number of tasks they can control at the same time (e.g.,
number of parallel sessions). Regarding the network resources, the link capacity
constraint is considered.

Taking into account the aspects outlined above, a general problem statement may be
the following. Given the set of service nodes and their layout, the set of service tasks
constituting the required service, the resource requirement of each service task in terms of
CPU time, memory and disk space, the cost of deploying each service node, the current
load conditions of each service node and of the network links, find the minimum cost
assignment of tasks to service nodes (in terms of the number of nodes that need to be
deployed, the communication cost introduced during the execution of service tasks, and
the management cost imposed by the arrangement) subject to a set of constraints,
associated with the capabilities of the service nodes and the network resources
availability.

 Title

2.2 Description in terms of computational level components

Service Architectures (e.g., Parlay) comprise activities that allow user authentication,
user profile control (inspection), and service invocation. In our framework, the Default
Service Provider Agent (DSPA) is the component that enables the initial access to a
domain.

The feature that is not supported is the overall task of the service task assignment. As
a first step, this process requires a computational component that will act on behalf of the
user. Its role will be to capture the user preferences, requirements and constraints
regarding the requested service and to deliver them in a suitable form to the appropriate
service provider entity. As a second step, service task assignment requires an entity that
will act on behalf of the service provider. Each role will be to intercept user requests,
acquire and evaluate the corresponding service node and network load conditions, and
ultimately, to select the most appropriate service nodes for the realisation of the service.
Furthermore, a monitoring module is required. Monitoring module consists of a
distributed set of agents, which run on each service node of the service provider. Each
agent is responsible for monitoring the load conditions and available resources of the
service node and delivering them to the service provider related entity. Finally, a
distributed set of network provider related entities will be responsible for providing the
service provider entity with network load conditions and managing the network
connections necessary for the service provision.

The following key extensions are made so as to cover the functionality that was
identified above. First, the Service Provider Agent (SPA) is introduced and assigned with
the role of selecting on behalf of the service provider the best service task assignment
pattern. Second, the User Agent (UA) is assigned with the role of intercepting and
processing user requests and promoting the service requests to the appropriate SPA.
Third, the Service Node Agent (SNA) is introduced and assigned with the role of
promoting the current load conditions of a CSN. In essence, the distributed set of the
SNAs forms the monitoring module. Finally, the Network Provider Agent (NPA) is
introduced and assigned with the task of providing current network load conditions (i.e.,
bandwidth availability) to the appropriate SPA. In other words, the SPA interacts with the
UA in order to acquire the user preferences, requirements and constraints, analyses the
user request in order to identify the service tasks constituting the service and their
respective requirements in terms of CPU time, memory and disk space, identifies the set
of CSNs and their respective capabilities, interacts with the SNAs of the candidate
service nodes so as to obtain their current load conditions and with the NPAs so as to
acquire the network load conditions, and ultimately selects the most appropriate service
task assignment pattern for the provision of the desired service.

In more detail the interactions among the computational level components are as
follows. The UA interacts with the SPA and the SPA interacts with the SNA of each CSN
and with the NPAs handling the network resources / links among the service nodes. The
aim of the UA-SPA interactions is to supply the SPA with user preferences and
constraints, while the aim of the SPA-SNA and SPA-NPA interactions is to obtain the
corresponding load conditions of each CSN and of the respective links in order to select
at the final stage the most appropriate service task-service node deployment pattern.

The tasks outlined require a method that will enable service providers to process the
user’s request and generate a service task assignment scheme, satisfying user’s

 Author

preferences, requirements, and constraints, at the same time resulting in an efficient
resource management scheme on the service provider’s side.

2.3 System model

We consider a set of service nodes SN and a set of links L . Each service node SNni ∈

corresponds to a server, while each link Ll∈ corresponds to a physical link that
interconnects two nodes SNnn ji ∈, . Our system operates in a multi-tasking

environment, i.e., several tasks may be executed on a single service node sharing its
resources (e.g., CPU time, memory, disk space). Let iD denote a set of nodes grouped to

form a domain. In essence, domains represent different network segments. A pattern for
the physical distribution of the related software components to the service task
assignment scheme is given in Figure 3. Each SPA controls the service nodes of a
domain. Each SNA is associated with each node, while each NPA is associated with the
network elements (e.g., switches or routers) necessary for supporting service node
connectivity. The SNA, NPA role (in a sense) is to represent the service nodes or network
elements, respectively, and to assist SPA by providing information on the availability of
resources of the service nodes / network elements. Domain state information (load
conditions of the service nodes of the particular domain and link utilisation) is exchanged
between the SPA and the SNAs/NPAs residing in the specific domain, while SPAs
residing in different domains exchange their domain state info. This approach increases
scalability as it reduces the requirements in terms of computation, communication and
storage. At this point it should be noted that for simplicity reasons the network elements
needed for the service node connectivity are not depicted in Figure 3.

In the scope of this paper we consider that the service nodes constituting a specific
domain are interconnected by a local area network, while different domains are
interconnected by a wide area network. In the current version of this study we limit our
attention to the cases where a service request may be served by service nodes residing in
a single domain (the domain that is identified by the DSP), since we consider that the cost
imposed due to information transfer through the WAN links is big, diminishing the net
benefit of possible efficient resource utilisation. Thus, in our study, in case a service
request cannot be served by the service nodes of a domain, it is transferred to the SPA of
another domain in order to handle the request. However, the formal analysis of the
service task assignment problem and its optimal formulation is given in a general mode,
since the emergence of high performance backbone infrastructure and test-beds like Tera-
Grid (TeraGrid, 2003) promises remarkable network bandwidth between distant sites,
enabling thus load balancing with minimal cost.

3 Formal Problem Statement

User u wishes to use a given service s . A fundamental assumption at this point is that
service s may be decomposed in a set of distinct service tasks, which will be denoted as

)(sST . Among these service tasks, of interest to the user are those designated in the user

profile and will be denoted as),(suST (),(suST)(sST⊆).

Let’s assume the existence of multiple service nodes for the provision of service s ,
denoted by)(sSN },...,{ ||1 snn= . Each service node-jn contains a collection of

 Title

components, denoted as)(iA
jn , which inter-work with other components that may reside

in the same or in a different service node in order to accomplish each service task
)(sSTi∈ . Let

jnA and C be the total set of components residing in the jn service node

and the various service nodes in total, respectively. Hence, the following relationship
holds: CAiA

jj nn ⊆⊆)(. Each service task ()sSTi∈ may be executed on an associated

set of possible candidate service nodes, represented by the set)(iSN , (()suSTi ,∈).

Thus,)(iSN)(sSN⊆ . The service logic deployment pattern adopted by service

providers determine each of these service node sets.
Task i , ()(sSTi∈) requires for its completion consumption of)(irCPU ,)(irmem and

)(irdisk resources of service node(s) jn))((, iSNn j ∈ . A realistic assumption is that SPA

being in charge of assisting the service providers in the competitive telecommunication
market, has a solid interest in as accurately as possible identifying the resources)(ira

(where } , ,{ diskmemCPUa∈) needed for the provisioning of service task i in terms of

CPU utilization, memory and disk space. In this respect, the SPA can be the entity that
configures these values based on the service task characteristics, user preferences and
requirements, exploiting also previous experience.

Let Dc denote the cost of involving service node jn))((, iSNn j ∈ , in the service

provision. For notation simplicity it is assumed that the cost of involving a service node
in the solution is the same for all service nodes. As an alternative this cost could be taken
variant (depending on the cost of acquiring and/or maintaining the node etc.). Notation
may readily be extended.

The objective of our problem is to find a service task assignment pattern, i.e., an
assignment ()sAST of service tasks i (),(suSTi∈) to service nodes jn))((, iSNn j ∈ ,

that is optimal given the current load conditions and number of service tasks being served

by each service node jn , represented as)(j
pre

a nr and)(j
pre nk , respectively. The

assignment should minimise an objective function ()()sAsf ST, that models the overall

cost introduced due to system/network resources consumption. Among the terms of this
function there can be the overall cost due to the deployment of various service nodes to
the service provisioning process, the communication cost introduced due to the
interaction of the components

jnA residing in jn service node with the components
knA

residing in service node kn for the completion of each service task i ,))((sSTi∈∀ , as

well as the management cost)',(iicM introduced due to the assignment of

)',(ii)(2 sST∈ service tasks to different service nodes)(),(2
' sSNnn jj ∈ .

The constraints of our problem are the following. First, each service task i
(),(suSTi∈) should be assigned to only one service node jn ,))((iSNn j ∈ . Second, the

capacity constraints of each service node should be preserved. Lets assume that max
ar and

maxk represent the maximum load and the maximum number of service tasks that a
service node may handle. For notation simplicity, these parameters are assumed to be the
same for each service node jn ,))((sSNn j ∈ . Thus, the constraints are

 Author

≤)(j
post

a nr max
ar and ≤)(j

post nk maxk ,))((sSNn j ∈∀ , where)(j
post

a nr and)(j
post nk

denote the potential load conditions of service node jn , after the service task assignment

process. Notation may readily be extended. The overall problem can be formally stated as
follows.

Service Task Assignment Problem Description
Given:

(a) a user u who wants to use a service s ,
(b) the profile of user u ,
(c) the set of service tasks),(suST of service s that are of interest (relevant) to user

u (this set is formed by the service specification, the user profile and the service
provider’s related capabilities),

(d) the set of service nodes)(sSN and the set of candidate service nodes)(iSN at

which each service task i (),(suSTi∈) can be completed, according to the service

specification, the service node capabilities and the preferences of user u ,
(e) the communication cost introduced due to the interaction of the components

jnA

residing in jn service node with the components
knA residing in service node kn for the

completion of each service task i ,))((sSTi∈∀ ,

(f) the deployment cost Dc of each service node jn involved in the service

provisioning process, which derives from the assignment of service task i (),(suSTi∈)

to service node jn ()(iSNn j ∈),

(g) the management cost)',(iicM introduced due to the assignment of

)',(ii)(2 sST∈ service tasks to different service nodes)(),(2
' iSNnn jj ∈ ,

(h) the current load conditions)(j
pre

a nr for each load type a and number of service

tasks)(j
pre nk being executed on each service node jn ,)(sSNn j ∈ ,

(i) the capacity constraints of each service node max
ar and maxk ,

(j) the resources)(ira required for the completion of service task i ,))((sSTi∈∀ ,

find the best service task configuration pattern, i.e., assignment of service tasks to
service nodes ()sAST , that optimises an objective function ()()sAsf ST, that is related to

the overall cost introduced by the assignment, under the constraints ≤)(j
post

a nr max
ar and

≤)(j
post nk maxk , and that each service task is assigned to exactly one service node.

In this respect, the combination of service tasks to service nodes that yields minimum
cost will be selected.

4 Optimal Formulation

The general problem version presented is open to various solution methods. Its generality
partly lies in the fact that the objective and the constraint functions are open to alternate
implementations. Thus, the problem statement can be distinguished from the specific
solution approach adopted hereafter. In order to describe the assignment ()sAST of

service tasks to service nodes we introduce the decision variables ()jixST ,

 Title

(),(suSTi∈ ,)(iSNn j ∈) that take the value 1(0) depending on whether service task i is

(is not) executed by service node-jn . The decision variables ()jySN assume the value

1(0) depending on whether candidate service node jn ()(iSNn j ∈) is (is not) deployed

(involved in the solution). In addition, we define the set of variables ()',iizST

(()),(, 2' suSTii ∈∀) that take the value 1(0) depending on whether the service tasks i

and 'i are (are not) assigned to the same service node. The variables ()',iizST are related

to variables ()jixST , , ()jixST ,' , through the relation ()=',iizST

() ()∑ ⋅
=

)(

1
,',

iSN

j
STST jixjix , which may be turned into a set of linear constraints through the

technique of (Papadimitriou, 1982). Assignment ()sAST may be obtained by reduction to

the following 0-1 linear programming problem.
Service Task Assignment Problem:
 Minimise

()()sAsf TN, ∑ ∑ ⋅⋅+⋅⋅=
∈ ∈)(},,{

max
)

)(

)(
1()(

sSNn diskmemoryCPUa ja

j
pre

a
aSND

j nr

nr
wbjyc

∑ ∑ ⋅+
∈ ∈)()(

),(),(
sSTi iSNn

STj
j

jixniC ∑ ∑ −⋅+
∈ ∈)()('

))',(1()',(
sSTi sSTi

STM iiziic (1),

where),(jniC denotes the communication cost introduced in case jn service node

has undertaken the responsibility for the execution of service task i (),(suSTi∈),

subject to the constraints:
∑ =
∈)(

1),(
iSNn
ST

j

jix)(sSTi∈∀ (2),

∑ ⋅≤⋅+
∈)(

max)()(),()()(
sSTi

SNaSTaj
pre

a jyjrjixirnr)(sSNn j ∈∀ (3),

∑ ⋅≤+
∈)(

max)()(),()(
sSTi

SNSTj
pre jyjkjixnk)(sSNn j ∈∀ (4)

Cost function (1) penalises the aspects identified previously (i.e., cost of the service
node involved in the solution, communication cost introduced during the realisation of
each service task, and management cost of service tasks that are assigned to different
service nodes). In order for the service providers to better utilize their resources, the cost
of each service node deployment introduced in cost function (1) takes also into account
the node’s current load conditions in order to obtain a load balancing solution. Parameters
β ,)1(<β , and aw denote the relative significance of load balancing and of each

resource type a to the service provider. It is assumed that weights aw for each resource

type a are normalized to add up to 1 (i.e., 1
},,{
=∑

∈ diskmemoryCPUa
aw). Constraints (2),

guarantee that each service task will be assigned to one service node. Constraints (3) and
(4) guarantee that each service node will not have to cope with more load and service
tasks than those dictated by its pertinent capacity constraint.

Hereafter, we present a model for the overall communication cost),(jniC

introduced in case jn service node has undertaken the responsibility for the execution of

 Author

service task i (),(suSTi∈). In essence, the model covers the case in which the

components of set)(iA
jn need to interact with the components of set)(iA

kn residing in

service node kn in order to provide service task i ,))((sSTi∈ . It should be noted that

service nodes jn and kn may reside even in different domains. At this point, a major

assumption adopted in our study, is that part of
jnA components are implemented as

mobile agents, while the rest are supposed to be fixed service agent components. Let
M
n j

A and F
n j

A be the subset of components of
jnA that are implemented as mobile and

fixed agents, respectively.
The volume of messages exchanged between each pair of components (e.g.,

dependent on the number of messages and size of each message) for the accomplishment

of task i ()(sSTi∈) will be represented as)(imwv , 2),(Cvw ∈∀ and)(sSTi∈∀ . Let

),(kj nncc be the communication cost per unit message that is exchanged between

service nodes jn and kn , 2)(),(sSNnn kj ∈∀ . This factor may be proportional to the

distance (e.g., number of hops) between the two service nodes and the load conditions
(e.g., bandwidth availability) of the communication link interconnecting the two nodes.
Another factor that should be taken into account is the cost associated with the migration
of a component (implemented as a mobile agent) from one service node to another. In
this respect, let),,(kj nnwmc be the migration cost of component-w from service node

jn to service node kn , Cw∈∀ and 2)(),(sSNnn kj ∈∀ .

The overall cost for the completion of task i))((sSTi∈ can be calculated by the

following formula.
+∑ ∑ ⋅+∑ ∑ ⋅∑=

∈ ∈∈ ∈∈∀ F
jn jn

F
jn knk Aw Av

jjwv
Aw Av

kjwv
sSNn

j nnccimnnccimniC),()(),()([),(
)(

,

]),()(),,(∑ ∑ ⋅+∑
∈ ∈∈ M

jn kn
M

jn Aw Av
kkwv

Aw
kj nnccimnnwmc ,)(sSTi∈∀ (5)

In the previous formulation three main factors are identified. The first one is related
to the communication cost deriving from the fixed components and is proportional to the
messages (their number and size) that are exchanged between every pair of components

),(vw and the communication cost per unit message between different service nodes.

The second factor is associated with the migration cost of mobile agent components
between two different service nodes. This factor is dependent on the path which the
mobile agent will follow (i.e., number of hops) and the information encryption and code
execution cost, as well as the load conditions of the communication links. The last factor
is the communication cost within the same service node, which in practice may be
negligible, and in the context of this study is taken equal to zero. It is noted that only the
involved to the provisioning process components are taken into account.

Apparently, the designation of the components that will be included in sets M
n j

A and

F
n j

A by the service providers may be based on factors such as the overall communication

and migration costs as well as estimation of the respective component invocations. In our

 Title

study, the service logic deployment pattern (i.e., service components/nodes) adopted by
the service providers is known.

Based on the aforementioned analysis, the service node selection algorithm,
graphically illustrated in Figure 4, may be described as follows:

Service Node Selection Algorithm
Step 1. The UA component is acquainted with the preferences, requirements and

constraints of user u regarding service s . These are expressed by the set of the service
tasks),(suST that are of interest (relevant) to the user.

Step 2. At the end of the first general phase (user authentication & authorisation), the
DSP determines an appropriate SPA (on the basis of user requirements and preferences
with respect to the requested service) and provides the respective SPA with the UA
reference.

Step 3. The SPA obtains from the UA user preferences, requirements and constraints,
forms the set of the service tasks),(suST that are of interest to the user and retrieves

from a database the set of candidate service nodes)(iSN for the completion of each

service task i , (),(suSTi∈), the deployment cost Dc of each service node jn ,

()(iSNn j ∈) and their respective capacity constraints max
ar and maxk , and the

management cost)',(iicM ()',(ii)(2 sST∈). Additionally, the SPA computes for each

service task i (),(suSTi∈) the corresponding resources)(ira required for its

completion in terms of CPU time, memory and disk resources.
Step 4. The SPA interacts with the SNAs in order to obtain the current load conditions

)(j
pre

a nr and number of service tasks)(j
pre nk being executed on each CSN jn ,

)(sSNn j ∈ .

Step 5. The SPA estimates the communication cost),(jniC for each service task i ,

(),(suSTi∈) on the basis of equation (5), after contacting the NPAs in order to acquire

the current load conditions of the communication links.
Step 6. The SPA solves the appropriate instance of the service task assignment

problem (equations (1)-(4)).
Step 7. End.

5 Experimental Results

In this section, indicative results are provided in order to assess the proposed framework,
which allows for effective service provisioning. In order to test the performance of the
service task assignment scheme, we conducted experiments on a network test bed,
assuming a simple application executing on a single PC performing a configurable
number of queries on a database (that is, the service considered is composed of one
service task that involves execution of one service component which interacts with the
database).

Concerning the implementation issues of our experiments, the overall Service
Provisioning System (SPS) has been implemented in Java. The Voyager mobile agent
platform (The Voyager Platform) has been used for the realisation of the software
components as well as for the inter-component communication. To be more specific, the
system components (UA, SPA and the monitoring module SNAs, NPAs) have been

 Author

implemented as fixed agents and the service task constituting the service as intelligent
mobile agent, which can migrate and execute to remote service nodes.

Two sets of experiments have been performed. In the first experiment, a copy of the
database exists on each service node, thus, communication cost in practice is negligible
and is taken equal to zero. In this case, only the service node deployment cost factor is
considered and the performance of the system is tested using as decision parameter the
load conditions of the service nodes. In the second experiment the database resides only
on one of the service nodes. Thus, the communication cost is also taken into account in
the service task assignment process.

The network topology that has been adopted for both experiments consists of five
service nodes with the following configuration: two service nodes with 2GHz CPU and 2
GB RAM and three service nodes with 1GHz CPU and 1 GB RAM. All service nodes are
running the Linux Redhat OS.

The idle states of the CPUs of the service nodes are simulated to follow the Normal,
Uniform and Exponential distributions, respectively, with mean value 50,000 ms. and
maximum value 100,000 ms. In all cases, the duration in which the CPU load of the
service nodes is above 50% is 20,000 ms.

The graphical user interface of the SPA module, which implements the service task
assignment process, is given in Figure 5.

Concerning the first experiment, all service nodes reside on a 100Mbit/sec Ethernet
LAN. We have performed 100 experiments for each kind of CPU simulation with the
mobile agent realising the service logic performing tasks varying from 100 to 1000
queries (with interval 100 queries). The same experiments have also been conducted
without using our service task allocation scheme. In the latter case, service tasks are
assigned randomly to service nodes.

The mean execution time for each CPU load distribution when the service task
assignment process is applied and when the service node is selected randomly is
illustrated in Figure 6. From the obtained results, we observe a decrease of the service
completion time when the service task assignment system is used. At this point, it should
be mentioned that this performance improvement is tightly related to the number of
queries the service task needs to perform at the remote service node and the time that the
service node’s CPU is idle. It may be observed that for small and large tasks (from 100 to
300 and from 700 to 1000 queries) the improvement in performance is bigger than in
medium sized tasks (from 400 to 600 queries). It may also be derived that we have about
6% improvement for small tasks and about 9% for the large ones, while for medium sized
tasks the improvement in performance is minor. This could be explained as follows.
From Figure 6, it could be extracted that the mean time required for initialisation of the
mobile agent on a service node is 35,000 ms. Also the execution of a task consisting of
100 queries when CPU is idle is 5,500 ms. Thus, small tasks can be performed during one
slope of a CPU load (i.e., time during which CPU load is below 50%), while large tasks
require for their completion one CPU slope, one CPU peak (i.e., time during which CPU
load is above 50%) and finally another CPU slope. The completion of medium tasks
usually requires one CPU slope and one CPU peak. Thus, the application of service task
assignment process results in minor performance improvement.

Concerning the second experiment, as depicted in Figure 7, three service nodes reside
on one LAN, while the rest are located on a separate LAN. The two LANs are
interconnected via a VPN connection, which utilizes a slow Internet connection
(128Kb/sec). The SPA is located on the service node ‘Center’, while the database resides

 Title

on node C. In this experiment, the service task comprises execution of 100 queries to the
database. The service task completion time has been measured on each node and the
following results have been obtained (all in ms):

A→7200, B→7250, D→760, C→740
The same experiment has been performed 100 times applying the service task

assignment scheme. The results obtained regarding node specialization are as follows:
node C has been selected as the best service node 80% of the times, while node D has
been selected 20% of the times. The average service completion time is approximately
750ms. The application of our proposed service task assignment scheme results in a
decrease of the service completion time with respect to random service node selection
which on average is 80%. It should be noted that the aforementioned percentage is tightly
related to the data rate supported by the interconnection line.

6 Related Research

Most studies in the field of resource allocation schemes aim at efficiently utillising the
resources spread throughout a network. In most cases the problem is reduced to load
balancing among specific nodes. The design choices that the system architect has to face
are quite vast ranging from deploying centralised vs. decentralised arrival and/or control
systems, adopting static (model based) vs. dynamic (state based) schemes, considering
different resource allocation strategies/algorithms incorporating or not the task migration
concept, taking into account diverse load metrics, etc. The centralised resource allocation,
referring to the arrival configuration of the service requests and the overall control of the
service assignment scheme, provides sophisticated global control, throughput
optimisation and relieves the network from the burden of continuous load information
exchange between the system nodes in order to monitor and update their knowledge
about the current system status. However, it increases the cost endured by the service
provider due to the dedication of at least one node to the task assignment process, is quite
impractical in case large scale networks are considered due to the computational
complexity and storage burden imposed, especially when dynamic schemes are
considered, while it is referred to as introducing a single point of failure or bottleneck in
the system performance. On the other hand, the decentralised approach ensures
scalability, overloading the network with load information due to the exchange among
the nodes about the system status (Suguri, 2000).

Static schemes (Stone, 1997) use only information about the average system
behavior, ignoring current system status, thus, in general they do not respond well to
short term load imbalances among the service nodes. On the other hand, dynamic
schemes are more complex and suffer from communication and computation overhead
introduced due to current information acquisition and decision making. Learning from
experience techniques could be exploited in order to update decision parameter values
according to long term observations. For example, execution times or resource utilisation
could be logged and reused as pre-estimations for the assignment of similar tasks.

Basic service task assignment strategies comprise the following (Schmidt, 2004):
First, Round Robin, where the tasks are allocated to the nodes by simply iterating through
the nodes list. Second, Random, where the nodes to be assigned with the tasks are
selected randomly. Third, Least Loaded in accordance with which the tasks are assigned
to a specific node until a pre-specified threshold is reached. Thereafter, all subsequent
requests are transferred to the node with the lowest load and the aforementioned steps are

 Author

repeated. Fourth, Load Minimum, where the average load of the system is calculated. In
case the load of a node is higher than the average node and of the least loaded node by a
certain amount, all subsequent requests are transferred to the least loaded location.

According to the task farming paradigm (Andrews, 1991), a pool of tasks and one
worker on each node of the system is considered. Each worker repeatedly claims a task
from the pool, executes it and claims the next task. This way, the system load is
efficiently distributed to the available resources. Considering dynamic, distributed
controlled resource allocation, schemes in most cases follow three basic types (Agrawal,
1987): Sender-Initiated, where congested nodes (nodes where the load reaches a
predefined threshold) take the initiative and probe other nodes in order to determine the
most suitable node (e.g., least loaded node) for remote task execution, Receiver-Initiated,
where lightly-loaded nodes search for work in a similar manner (probe other nodes in
order to determine the node(s) that should be relieved from tasks e.g., the most loaded
node), Symmetrically-Initiated, according to which both congested and lightly loaded
nodes take the initiative. In (Lazowska 1986, Krueger 1988) the performance of these
schemes is evaluated. The sender-initiated scheme is shown to perform better in light or
moderate loaded systems, while the receiver-initiated paradigm is preferable at higher
load conditions, under the assumption that the cost of transferring a task between the
nodes is comparable for the two schemes. Both sender-initiated and symmetrically-
initiated schemes become unstable at high load conditions, especially when the cost of
probing other nodes is taken into account.

In general, many approaches have derived and encourage the necessity of adaptive
switching between strategies (Svenson, 1992) and dynamic adjustment of decision
parameters (e.g., node’s load predefined threshold, time interval upon which load
information exchange between the nodes should take place) (Xu, 1993). However,
depending on the number of nodes in the network, the load balancing technique adopted,
the network status, the time required and the complexity indroduced, the resource
allocation scheme itself may diminish the net benefit of the overall procedure. In (Eager,
1986), the relative benefits of simple versus complex load sharing policies are examined.
Using an analytical model for a homogeneous network, the authors concluded that simple
policies that require only a small amount of state information perform as well as complex
policies.

Researchers also borrow notions from economic fields (particularly, dynamic pricing
and game theory) in order to efficiently allocate network resources through the
construction of market-based systems (Chavez, 1997). In (Buyya, 2002), a computational
economy framework for resource allocation and for regulating supply and demand in grid
computing environments is proposed. Specifically, economic models (commodity market
models, posted pricing schemes, tender and auction mechanisms), system architectures
and policies for resource management are provided for computational grids and peer-to-
peer computing systems.

7 Conclusions

This paper provides a mechanism for assisting service providers in efficiently managing
and fulfilling current user requests. Specifically, one possible version of the service task
assignment problem has been addressed. Our objective is to find the best service task
assignment pattern, i.e., an assignment of service tasks to service nodes that is optimal
given the current load conditions and number of service tasks being served by each

 Title

service node. Experimental results on a real network test bed indicate that the proposed
framework produces good results in relatively simple contexts (e.g., a service, which is
composed of one service task that involves execution of one service component).
Specifically, when the load conditions of the service nodes is the only factor considered
for deciding on the most appropriate service node for the service provisioning, an overall
improvement in service completion time of about 7% is introduced (especially, for the
small and the large sized service tasks). In case the communication cost factor is
considered for determining the service node to be involved in the service provisioning
process, our scheme succeeds each time in acquiring a node requiring only local / LAN
based component interactions for service completion, minimizing, thus, network
resources consumption. What remains is to evaluate the performance of the proposed
service task assignment scheme in complex contexts.

Directions for future work include, but are not limited to the following. First, the
realisation of further wide scale trials, so as to experiment with the applicability of the
framework presented herewith. Second, the experimentation with alternate approaches
(e.g., market-based techniques) for solving the service task assignment problem.

8 References

Agrawal R. and Ezzat A. (1987) “Location Independent Remote Execution in NEST”, IEEE
Transactions on Software Engineering, vol. 13, no. 8, pp. 905-912.

Andrews G.R. (1991) “Paradigms for Process Interaction in Distributed Programs”, ACM
Computing Surveys, vol. 23, no. 1, pp. 49-90.

Benatallah B., Sheng Q., and Dumas M. (2003) “The Self-Serve Environment for Web Services
Composistion”, IEEE Internet Computing, vol. 7, no.1, pp.40-48.

Buyya R., Abramson D., Giddy J., and Stockinger H. (2002) “Economic models for resource
management and scheduling in Grid computing”, Concurrency and Computation: Practice and
Experience, vol. 14, pp. 1507-1542.

Chavez A., Moukas A., and Maes P. (1997) “Challenger: A Multi-agent System for Distributed
Resource Allocation”, Proc. 1st International Conference on Autonomous Agents.

Eager D., Lazowska E., and Zahorjan J. (1986) “Adaptive Load Sharing in Homogenous
Distributed Systems”, IEEE Transactions on Software Engineering, vol. 12, pp. 662-675.

Jennings N., Sycara K., and Wooldridge M. (1998) “A Roadmap of Agent Research and
Development”, Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, pp. 7-38.

Krueger P. and Livny M. (1988) “A Comparison of Preemptive and Non-Preemptive Load
Distributing”, Proc. 8th International Conference on Distributed Computing Systems, pp. 123-
130.

Lazowska E., Eager D. and Zahorjan J. (1986) “A Comparison of Receiver-Initiated Sender-
Initiated Dynamic Load Sharing”, Performance Evaluation, vol. 6, no. 1, pp. 53-68.

Morreale P. (1998) “Agents on the move”, IEEE Spectrum, vol. 35, no. 4, pp. 34-41.

OSGi (1999) Open Service Gateway Initiative, http://www.osgi.org

Papadimitriou C. and Steiglitz K. (1982) Combinatorial optimisation: Algorithms and complexity.
Prentice Hall, Inc.

Schmidt J., Dowdy D., Othman L. (2004) “Evaluating the Performance of Middleware Load
Balancing Strategies”, Proc. 8th International IEEE Enterprise Distributed Object Computing
Conference, pp. 135- 146.

Special Issue (2003) “Special section on grid computing”, ACM SIGMETRICS Performance
Evaluation Review, vol. 30, no. 4, pp. 12-49.

 Author

Stone H. (1997) “Multiprocessor Scheduling with the Aid of Network Flow Algorithms”, IEEE
Transactions on Software Engineering, vol. 3, no. 1, pp. 85-93.

Suguri T., Yamashita H., Kinoshita S., and Okada Y. (2000) “Load Balancing in Distributed
Autonomous Cooperative Systems”, Systems and Computers in Japan, Vol. 31, No. 6, pp. 74-
89.

Svenson A., (1992) “Dynamic Alternation between Load Sharing Algorithms”, Proc. 25th Hawaii
International Conference vol. 1, pp. 193-201.

Tanenbaum A. S. (2001) Modern Operating Systems, Englewood Cliffs, New Jersey: Prentice-Hall,
2nd ed.

The TeraGrid Project (2003) A distributed computing infrastructure for scientific research.
http://www.teragrid.org.

The Parlay Group http://www.parlay.org/

The Voyager Platform, Recursion Software Inc. http://www.recursionsw.com/

Vinoski S. (1997) “CORBA: Integrating diverse applications within distributed heterogeneous
environments”, IEEE Communications Magazine, vol. 35, no. 2, pp. 46-55.

Xu J. and Hwang K. (1993) “Heuristic Methods for Dynamic Load Balancing in a Message-Passing
Multicomputer”, Journal of Parallel and Distributed Computing, vol. 18, pp. 1-13.

ST
1

ST
2

ST
3

ST
4

SN1

User-uUser-u

Service Tasks Service Nodes

Service Provider policy on service-s

Domain 2

Domain 3

Domain 4

Domain 1

SN2

SN3

SN4

SN5

SN6

SN7

SN8

SN9

SN10

SN11

SN12

ST
1

ST
2

ST
3

ST
4

SN1

User-uUser-u

Service Tasks Service Nodes

Service Provider policy on service-s

Domain 2

Domain 3

Domain 4

Domain 1

SN2

SN3

SN4

SN5

SN6

SN7

SN8

SN9

SN10

SN11

SN12

Figure 1 User-u wishes to access service-s, which is composed of 4 different service tasks (of
interest to the user are 3 out of the 4 service tasks)

 Title

UU DSPDSP SPSP CSN1
CSN1 CSNn

CSNn

Service Independent Features
• Phase involves features such as user

authentication, authorisation, etc.
• At the end of this phase the user is

enabled to request services

Service Task Assignment Phase
• Determination of the set of candidate service nodes
• Service Node Selection for executing each service task

S
ervice Ind

epend
ent

P
hases

S
ervice T

ask
A

ssignm
ent

Start Service Usage

Start Service

UU DSPDSP SPSP CSN1
CSN1 CSNn

CSNn

Service Independent Features
• Phase involves features such as user

authentication, authorisation, etc.
• At the end of this phase the user is

enabled to request services

Service Independent Features
• Phase involves features such as user

authentication, authorisation, etc.
• At the end of this phase the user is

enabled to request services

Service Task Assignment Phase
• Determination of the set of candidate service nodes
• Service Node Selection for executing each service task

S
ervice Ind

epend
ent

P
hases

S
ervice T

ask
A

ssignm
ent

Start Service Usage

Start Service

Figure 2 Interactions among the business level entities during the service task assignment case

 Author

Figure 3 System model and physical distribution of the service task assignment related software
components

Figure 4 Service Node Selection Algorithm

SNA

D3

SPA

SPA

SNA SNA

SPA
NPA

NPA

SNA

NPA NPA

NPA

SNA

SNA

SNA SNA
SNA

SNA

D2 D1

NPA

NPA
NPA

 Title

Figure 5 Graphical User interface of the SPA module

CPU Load with Normal Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

Number of Queries

E
xe

cu
ti

on
 T

im
e

 .

Execution with
Optimization

Execution Without
Optimization

(a)

 Author

CPU Load with Uniform Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

Number of Queries

E
xe

cu
tio

n
T

im
e

.

Execution with
Optimization

Execution without
Optimization

(b)

CPU Load with Exponential Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

Number of Queries

E
xe

cu
ti
on

 T
im

e

 .

Execution with
Optimization

Execution without
Optimization

(c)

Figure 6 Execution times with and without optimisation for (a) Normal, (b) Uniform and
(c) Exponential CPU load distributions

 Title

Figure 7 Network Topology adopted for the second experiment

INTERNET LANLAN

CENTER

ROUTER ROUTER

A

B

D

C

