
1 of 34

Use of Agent Technology in Service and Retailer Selection in a

Personal Mobility Context

Didoe Prevedourou1, Kostas Zygourakis1, Sofoklis Efremidis1,

George Stamoulis2, Dimitrios Kalopsikakis2, Anna Kyrikoglou2, Vassilios Siris2,

Miltos Anagnostou3, Lia Tzifa3, Tenia Louta3, Panagiotis Demestichas3, Nikos Liossis3,

Andreas Kind4,

Kirsi Valtari5, Henryka Jormakka5, Tony Jussila5

1 INTRACOM S.A.

2 Institute of Computer Science, Foundation for Research and Technology Hellas

3 National Technical University of Athens

4 NEC Europe Ltd., CCRLE Berlin

5 VTT Information Technology

Abstract

The chapter reports on work and key results of the ACTS Project MONTAGE that

aims to exploit agent technology in support of personal mobility. In particular, agents

are implemented to enable selection on behalf of users of the most beneficial service

offer among those by multiple retailers, on the basis of user preferences, encoded in

the user profile, and market offerings made by retailers. A framework for agent

intelligence to support service and retailer selection is proposed and justified.

Enterprise, analysis and computational models of the envisaged personal mobility

context that offers the capability of agent supported service and retailer selection, are

provided.

Keywords: Personal Mobility, TINA, Mobile Agents, Retailer Selection

2 of 34

1. Introduction

In the emerging open telecommunication market, services are traded as commodities between

users and service providers/retailers. Users will be offered customized and diverse services

from virtually everywhere in the world. Service competition enables them to select the most

appropriate and reasonably priced service offered in the market at the price of additional

complexity.

The chapter addresses personal mobility in a context of multiple competing and federated

service providers. The service selection capability of a user should not be invalidated by his/her

roaming in a number of service provision domains. Selection may be based on various criteria,

e.g., preferred service content, desired QoS, affordable cost, etc. The chapter shows how

mobile intelligent agents can be exploited in this context. A user is assumed to roam between

domains without having a fixed association to a terminal. A TINA extension that supports

mobility is the targeted architecture.

Mobile intelligent agents are software components having no fixed locus of operation.

Typically, a mobile agent is initialized and sent off to a remote site in order to perform a

specific task asynchronously. In multi-agent systems, pursuing the task involves co-operation,

collaboration and negotiation with other software agents. A certain degree of autonomy and

intelligence allows the agent to operate also in unpredictable or changing environments.

Autonomy and intelligence can be enhanced by the agent’s ability to learn from experience.

Especially in the context of personal mobility, using an active modeling paradigm can help

(from a software engineering point of view) to handle the increasing functional complexity

involved with service creation and deployment. For instance, access specific functionality, like

finding the most appropriate service, can be encapsulated in a mobile agent and sent to where

services are actually offered by service retailers. The service creation and deployment process

3 of 34

can therefore be focused on the service key features. The problems of distributed service

offerings can be kept transparent to the service creation and selection process.

Besides the software engineering advantages of enhanced encapsulation, mobile agent

technology offers further technical benefits. These technical advantages are reduced

communication cost, reduced bandwidth usage, the possibility of using remote interfaces and

the support for off-line computation.

This chapter is organized as follows: Section 2 presents an enterprise and an analytical model

of the problem addressed. A multi-provider context in which a user can access and use services

from various retailers in several domains is considered. Section 3 proposes a framework of

agent intelligence to support service and retailer selection on behalf of the user. A schema for

service offering and retailer selection is proposed and both the optimal and a heuristic

algorithm to support the schema are described. Section 4 provides the computational view of

the considered personal mobility context by defining the computational entities involved in it

and their interactions during access and service sessions. Service offering and retailer selection

is part of the access session. Section 5 concludes the chapter.

2. Enterprise and Analytical Models

The TINA1 business model [6], shown in Figure 1, introduces the business roles and their

inter-relationships, as they have been considered in the MONTAGE work. The ACTS project

DOLMEN [1] has specialized the concept of Retailer to Home and Visited Retailer, and this

specialization has been adopted by MONTAGE. For a given service, the Home Retailer is the

one with whom the Consumer has a subscription contract. The Visited Retailer is the one with

whom the consumer/user can establish an access session for using a service. In the following,

the terms consumer and user are used interchangeably.

1 The Telecommunications Information Networking Architecture (TINA) is an open architecture for future telecommunications

and information services. TINA involves a set of principles, rules, and guidelines for constructing, deploying, and operating

services.

4 of 34

Connectivity
Provider

Broker

Consumer Retailer
3Pty

3Pty

TConTCon

RtR

Bkr

BkrBkrBkrBkr

CSLN LNFed

ConSConSTCon

Ret 3pty Service
Provider

Figure 1. TINA business model.

In an antagonistic market more than one retailer may serve an area currently visited by a user.

Therefore more than one retailer can offer a desired service and assume a visited retailer role.

A user has certain requirements (like, QoS, cost, etc.) for a service, which are encoded in the

user profile, whereas visited retailers have certain offers for the provided services. The

selection of the most appropriate retailer and corresponding service offering that matches the

user requirements as close as possible to the desired service is a challenging issue. The aim is

to satisfy the user preferences as closely as possible, and in this respect to offer the user a

virtual home environment irrespectively of his/her location. Agents can be employed for this

purpose for helping the user select the most appropriate retailer.

Figure 2 shows an analysis model for the context under consideration. A user subscribes for a

service type to a home retailer. The subscription is governed by a contract that contains

various user preferences for the service at hand. The user makes use of a service by getting

involved in a service session. The service session is controlled by a retailer, while the user

preferences define the characteristics of the session. In the considered service provision

scenario, a user having subscribed for a service to a home retailer, can make use of the service

by contacting a visited retailer that has federation agreements with the home retailer. In this

case, it is the visited retailer that actually controls the service session.

5 of 34

Several agents can be involved in the realization of the aforementioned scenario: A mobile user

agent, called User Agent Access (UAA), carrying the user profile as part of its data, migrates

from the home retailer domain to the visited domain. Since the user profile contains fields that

may be dynamically changed by the user during an access session, the mobile agent completes

its knowledge on the user’s preferences for a particular service, by contacting the user. Then

another mobile agent, called Subscribed User Agent (SUA), is created in the visited domain

and gets “educated” on the user’s preferences for a specific service. Then the SUA gets

replicated to the nodes of all visited retailers that offer the service requested by the user and

have federation agreements with the user’s home retailer, and interacts and negotiates with

Retailer Agents (RA) that promote the offerings of the visited retailers. Based on the results of

the negotiations with the RAs, the SUA decides on the most appropriate retailer for service

provision. Upon selection of the retailer, TINA-like access and service sessions are realized.

The selected retailer has control of the sessions.

Contract

Retailer

User

Home
Retailer

Visited
Retailer

Visited
Domain

Service

uses

Session
User

Preferences defines
characteristics

subscribes to

contains

located at

controls

federates with

provided by administers

Figure 2. Information Model.

Realization of the scenario involves development of agents representing users and retailers.

Such agents exhibit autonomy, intelligence, negotiations and inference capabilities. Involved

6 of 34

agents are made mobile in cases mobility is needed and justified on the basis of design criteria

like temporal and spatial locality of communication, loose coupling and component size in

accordance with [4].

3. A framework of agent intelligence for service offering and retailer selection

Agents select retailers on behalf of users on the basis of users preferences on services encoded

in their user profile and of service and charge offers made by retailers. This selection is part of

the access session (detailed in section 4) the result of which being that an association is

established between the user and the selected retailer.

Motivation for an agent-based approach is twofold: the selection task may prove very

complicated for the user, while it is more natural for the user to be represented by his own

agent during the selection process rather than resort to the recommendations of the retailers.

This is even more advantageous for the user if the algorithm of agent-based selection is further

enhanced so that the agent continuously “learns” the parameters characterizing the preferences

of the user. It should also be noted that our approach is not based on knowledge (by the User

Agent) of the structure of tariffs, neither of the service combinations actually offered by the

Visited Retailers; the User Agent is only based on a certain method for describing them.

3.1 User profile

The user profile specifies the services the user is subscribed to at a particular retailer, and for

each service, what is the acceptable service quality, what is an acceptable/agreed cost, when

the service shall be used and what limitations may be imposed to the service provision. It

contains the entities shown in Table 1 (the notions of Utility and Net Benefit are introduced in

section 3.2).

7 of 34

Information
entity

Parameters Units of
expression

Entity description

Service
identification

type / category

name

description / keyword

content specification

Predefined text

Predefined text

User defined text

User defined text

Provides the means by
which the desired service
can be identified.

Service
media
presentation

medium type

preference level

encoding quality level

Predefined text

Predefined text

Predefined text

Denotes the combination
of media preferred and
QoS levels per medium, as
perceived by the user, for
the selected service.

Charge
framework of
service

charge range

charge minimization

net benefit optimization

utility optimization

Currency range

Lowest charge

Best offer

Any charge

Delineates the cost the
user can afford for the
usage of a service.

Usage
framework of
service

contiguous use

periodic use

scheduled use

“ad hoc” use

duration

Time

Time interval

Time

Default choice

Time

Provides an outlook on
service usage in respect to
time, frequency and
duration.

Constraints
on service
provision

Retailer

connectivity provider

integrity

confidentiality

User defined text

User defined text

Probability

Probability

Defines certain user
defined criteria for service
selection and limitations
imposed on service
provision.

Table 1. User profile.

The service identification is a necessity for the agent in order to know for what item it will

interact. The identification may be a well-defined service name (e.g., e-mail) or a broader

category in which the desired service belongs (e.g., Information Content Services) or a

keyword describing the service (e.g., in category “Messaging Services” with keywords “News

Group” & “Relay Chat”).

The service media presentation provides the agent information on how the user desires the

provision of the selected service.

8 of 34

The cost framework denotes how much a user is willing to pay for the provision of the service.

It can be declared in terms of charge range, absolute charge, maximum or minimum charge

limits. Optionally can be trusted to the agent ability to cater for the best charging offer.

The usage framework surmises the service usage in respect to time, frequency and duration

from the user’s point of view. This information can be utilized by an agent as an additional

negotiation item for the best offer on service provision. The service usage can be contiguous

(e.g., for one hour, 8− 9 am), periodic (e.g., used every other hour from 10:30 to 14:30),

scheduled (e.g., 1st and 15th of each month) or non predictable.

The constraints define certain user limitations to the service provision. A user may demand a

particular retailer and/or connectivity provider. For the usage of the service the user can

demand specific probability of surviving an attack (integrity in the use of the service) and

specific probability of confidentiality. A user may also request a higher or lower importance

level in the service provision, by altering the priority rank (e.g., for a service “Stock Updates”

a user can request highest priority on the data delivery). The constraint list is not exhaustive

and may comprise additional items.

3.2 Retailer and service offering selection schema

When selecting a retailer for a particular service provision, on behalf of a user, the agents aim

to make such a selection so as to optimize the selection criterion specified in the user profile.

While the “Charge Minimization” criterion is self-explanatory, the other two deserve some

further explanation, which is presented below.

The Net Benefit for a user wishing to use a Service is given by:

Net Benefit(Service) = Utility(Service) – Charge(Service)

where the utility function Utility(⋅) has been introduced to encode user preferences for a

service, such that Utility(z) > Utility(z’) if and only if the combination of offered service

9 of 34

features z is preferred to z’. It is intuitively clear that the maximum utility subject to budget

constraints, i.e., under the restriction that the total expenditure does not exceed a certain

amount b, is attained when the expenditure equals the budget constraint. However, in certain

cases, it is more appropriate to assume that saving some money may also be important to the

user. In such case, the objective of the user agent is to select such a combination of visited

retailer and service options offered that the maximum of the Net benefit be attained; the

corresponding selection criterion is “Net Benefit Maximization”. If charge is of no concern at

all to the user, then the “Utility Maximization Criterion” applies.

Ideally, the utility function is an ordered sequence of the possible service combinations. In

other words, we should have a value of user preference for each service conjunction. In such a

case, we would be able to deduce if, for example, a user prefers the service combination A =

(video in low quality, audio in high quality) than the service combination B = (audio in high

quality, text). This would happen if the value of the utility function of the user for the

combination A, u(A), would be higher than u(B). The main issue about the utility function is

the implied ordering according to the user’ s preferences, not the specific values of utilities.

Compiling an exhaustive ordered sequence of all possible service combinations is difficult to

deal with, for several practical reasons. Consider the case of a service that depends on many

parameters and grades of freedom. Then, the number of possible service combinations would

be very large, making the problem of computing the utility function multidimensional.

Furthermore, the cost and the delay for the transport of the utility function within the migrated

user agent increases, since the large number of combinations implies a big size of the utility

function.

Even if the problem of complexity were solved, we would still have to deal with that of

extensibility. In other words, there is no practical way to manage the utility function when

more services (features) are introduced into the set of already existing ones. To be more

specific, when a new parameter for a service or a totally new service is added, we would have

10 of 34

to find the user preferences regarding the new service combinations relatively to the already

existing ordered combinations. The only way to do this in practice would be to re-compute the

utilities of all possible service combinations after the enhancement, and then ask the user to

give a value of his preference for each combination. This means that we should make many

questions to the user in order to determine the exact order of his preferences. Furthermore, the

questions to the user must be intelligent enough to deduce the correct ordering of his

preferences. The point is that there is no mechanical way to find the appropriate questions.

Below, we present an approximation of the utility function that is appropriate for our

purposes.

3.2.1 An approximation of the utility function

One of the main difficulties in specifying a utility function associated to a vector of goods

(such as the service considered) is the inter-relation among such goods regarding the induced

level of satisfaction. In our case, we can assume that the contributions of independent media to

the utility are additive, and we can thus adopt a simple linear-weighted model for the utility

function. This model differs from the ideal model in its philosophy. Indeed, in the ideal model,

we try to specify the exact ordering of the user’s preferences for all service combinations, by

making many arbitrary questions to the user. This is not very easy to implement correctly in

practice. So, in our approach, we make a few specific questions to the user in order to

determine his utility function for each service parameter. Then we use a simple way (addition)

to combine the utilities for each service parameter, resulting in the utility of each service

combination. Note that this way of combining the individual utilities is heuristic, yet reasonable

as explained above. These assumptions are such that the benefit of the user is close enough to

the ideal one, and can lead to a utility function that is appropriate for demonstrating agent-

based service and retailer selection.

11 of 34

The parameters that are of interest in the calculation of the utility function are those that are

relevant to the media presentation of the service and not the content selection. Individual

utilities of different media are combined by computing their weighted sum. The individual

utilities are produced by taking into account the preference of the user for each medium

(“required”, “desired”, etc.) and the levels of QoS per medium (i.e., of the encoding quality

levels in the user profile). They are combined through the weighted sum of the form

∑=
media

mediummedium QoSUpreferenceoflevelWSectionsofNumberServiceUtility)(*)__(*)__()(

where we have also included the number of content sections as a multiplicative factor.

The weight of each medium Wmedium expresses the desire of the user for it. We define different

weights for different grades of freedom. Particularly, we have:

Level of Preference Weight

Required 3

Desired 2

Don’t care 1

Excluded −

Justification of the ordering of the weights is straightforward. Notice that “excluded” media are

ignored in the calculation of the utility. However, they are taken into account prior to this

calculation, in the definition of the feasible service combinations.

The utility function of QoS per medium indicates the increasing desire of the user for the

increasing (better) QoS. Therefore, it is an increasing function. However, the shape of this

utility function may vary. In particular, it is assumed that there are two classes of utility

functions depending on whether the service is elastic (best effort) or guaranteed. In the case of

the elastic services, the shape of the utility function is approximated as increasing and concave;

see Figure 3.

12 of 34

Figure 3. Utility for elastic services as a function of bandwidth.

The concavity of the utility function for elastic services (e.g., Web like services) is explained

by the fact that the increment of the user satisfaction is decreasing as the QoS (bandwidth) is

increasing. In other words, an additional unit of bandwidth makes more difference when the

previously allocated bandwidth is small.

On the other hand, the utility function for guaranteed services is approximated as an increasing

function such as that depicted in Figure 4, which is similar to a step function. The step form of

the utility function for guaranteed services (e.g., video conferencing) is justified by the fact that

there is a threshold below of which the user is not satisfied at all and above of which, his

satisfaction is almost constant.

Figure 4. Utility for guaranteed services as a function of bandwidth.

13 of 34

Specification of Utility per medium on the basis of QoS

The utility of QoS per medium can be specified as the product:

order(medium) * umedium(level_of_QoS)

In the above expression, the term order(medium) is the order of magnitude that is defined for

each medium. This is used to translate the values of QoS utility that are given for the levels of

a medium into values that are logical, relatively to the corresponding values of the other media.

The orders of magnitude are meaningfully defined on the basis of studies regarding user utility

[3], as well as of the relative orders of magnitude among the costs of the media. For example,

the audio is about 500 times more expensive than text and video is about 7 times more

expensive than audio. Specifically, taking the text as of unary order of magnitude, the

following orders of magnitude are defined:

Medium Order of magnitude

Video/Audio Colored 3000

Black/White 1000

Audio 500

Still Picture 200

Text 1

The second factor of the above product, umedium(level_of_QoS), defines the utility of a QoS

level of a medium relatively to the utilities of the other levels of the same medium. This

definition is based on the shape of the utility function, as discussed previously. Additionally, in

order to have a common base of comparing the utilities of QoS levels for different media, we

make the following assumptions:

1. The utility of the minimum acceptable QoS level equals to 1 for all the media. This is a

reasonable assumption to make, since the minimum acceptable level selected by the user

for each medium is expected to have the same utility (per medium) for the user.

14 of 34

2. The utility of levels that are lower than the minimum acceptable QoS level equals to 0 for

all the media. This assumption is straightforward: the non-acceptable levels have zero

utility for the user.

3. The utility of levels higher than the minimum acceptable QoS level is greater than 1 and

increasing. Ideally, this increase should be in accordance to the utility curve of the QoS

for the particular medium and for the particular user. To avoid defining a complicated

process to estimate this increase, we assume that: if the QoS goes one level up, the utility

is multiplied by 1.40; for one more level up (if possible), it is multiplied by 1.25; and for

one more level (if possible), by 1.15. This is motivated from the utility curves of Figure 3

and Figure 4, by the following argument: It is assumed for a user of guaranteed service

that the minimum acceptable QoS level is at the saddle point (where the second derivative

of the utility changes its sign); thus, regardless of the service category, the “acceptable”

part of the utility function is concave, i.e., has diminishing marginal increase of utility.

introducing the above multiplier, a user accepting “low_quality” has double the utility if

provided with “excellent_quality”, which is justified by the asymptotic value of the curve

of Figure 4.

4. In the case of text, the provision of text is the minimum acceptable requirement (one

level). That is why the utility for the “level” of text medium is 1.

We now present an example to clarify the above definitions. Suppose that a user has selected a

service combination of the following media and levels of QoS:

• Video/Audio with minimum acceptable QoS level of “very good quality”.

• Audio with minimum acceptable QoS level of “excellent quality”.

• Text (no QoS levels defined for text)

According to the above definitions, we would have:

15 of 34

40.1)"_("
1)"__("

0)"_(")"_("

/

/

//

=
=

==

qualityexcellentu
qualitygoodveryu

qualitygooduqualitylowu

audiovideo

audiovideo

audiovideoaudiovideo

1)"_("
0)"__(")"_(")"_("

=
===

qualityexcellentu
qualitygoodveryuqualitygooduqualitylowu

audio

audioaudioaudio

1)__(=QoSoflevelutext

3.3 A heuristic for efficient offer selection by the SUA-replicas

In this section, we describe an algorithm that a user agent uses in order to find a good offer by

the corresponding retailer. The best offer is the service combination, offered by the retailer,

that optimizes the selection criterion of the user. In the case of “Utility Maximization” or

“Charge Minimization”, the selection of the best offer is trivial. Indeed, consider first the case

of “Utility Maximization”. By monotonicity, the service combination that has the maximum

utility is the most demanding one. That is the one that contains all the media required by the

user, even those that the user only “desires” or “doesn’t care” about; moreover, the QoS level

would be the highest possible for each medium. Thus, each SUA-replica has only to get offers

for this service combination, and then compare them and select the least expensive one.

Similarly, for the case of “Charge Minimization”, by monotonicity, the cheapest service

combination is the least demanding one. That is the one that contains only the media required

by the user, excluding those that the user only “desires” or “doesn’t care” about; moreover, the

QoS level would be the minimum acceptable for each medium. Thus, each SUA-replica has

only to get offers for this service combination, and then compare them and select the least

expensive one. The selection is more complicated and interesting when the “Net Benefit

Maximization” parameter is used. This case is treated in detail below.

The philosophy of the heuristic for net benefit maximization

An optimal algorithm for the net benefit maximization would be an exhaustive one.

Specifically, the user agent would ask the retailer for the cost of all the possible service

16 of 34

combinations, calculate the utility of the user for each one and finally compute the net benefits.

Then the user agent would return the combination that maximizes the net benefit. This

exhaustive algorithm is optimal in terms of finding the optimal solution of the problem.

However, the delay of finding the best solution may not be acceptable by the user. That is why

we tried to find a heuristic that finds a “good” service combination (possibly a sub-optimal

one) as fast as possible.

The heuristic starts its execution at a particular service combination and moves to

“neighboring” combinations of the initial combination, step-by-step, as long as the computed

net benefit increases. The heuristic stops if the computed net benefit is considered “good

enough” for the user or does not improve.

Note that the heuristic has to maximize the net benefit subject to the following trade-off. The

utility should be high enough to satisfy the requirements of the user and please him adequately,

but then the charge also increases; on the other hand, as the charge decreases, so does user

utility, since a less pleasing service is offered. Our approach is utility-oriented; for example,

out of two service combinations that have the same net benefit, we prefer the combination with

the largest utility.

The priority of the utility is accomplished by beginning the searching for the maximum net

benefit from the service combination that has the maximum utility. By monotonicity, the

combination that has the maximum utility is the most demanding one, that is the one that

contains all the media required by the user, even those that the user only “desires” or “doesn’t

care” about; moreover, the QoS level would be the highest possible for each medium. In the

sequential steps of the heuristic, the utility is decreased as long as the net benefit improves. The

utility is decreased in elementary steps, that is the combination that is considered in each step is

the combination that has the next lower utility than that in the previous step. We assume that if

an elementary decrement of utility does not cause a significant increment of the net benefit,

then it does not worth continuing negotiation. This assumption may lead to a sub-optimal

17 of 34

selection of the best combination that is expected to be near the optimal one in most of the

cases. However, the selection is produced fast enough.

Additional speed-up of the algorithm can be attained as follows: The algorithm can decide that

a certain net benefit is “good enough” so the procedure of the algorithm can stop and return

this net benefit, instead of searching for a better one. If the algorithm could make such a

decision, it would make it substantially faster. In order to deal with the above problem, it is

supposed that the SUA keeps a history of the past optimal selections for the specific user. In

this way, the SUA can compute the average of the selected net benefit, which will also be

passed to the replicas. This average can be used to find a threshold (e.g., at a certain distance

above the average) above of which a net benefit is accepted as “good enough”.

3.3.1 Conceptual description of the heuristic

The heuristic starts by computing the combination S with the maximum utility. The SUA-

replica gives this combination to the RA in order to take a charge offer. Afterwards, it

computes the net benefit of this combination, as the utility of the combination minus the cost. If

the computed net benefit is “good enough”, then the algorithm returns the corresponding

combination. Otherwise, the heuristic computes all the neighbor combinations of S in order to

check if the net benefit increases when decreasing the utility.

The utility decreases when either the quality of service of a certain medium decreases or a

single medium is excluded from the combination. Note that only “desired” and “don’t care”

media can be excluded. Based on the above observations, first-order and second-order

neighbors of a certain combination can be defined. A first-order neighbor of Combination A is

a Combination B in which the quality of service of a single medium is decreased by one level.

Note that this neighbor is defined as long as the minimum acceptable level of QoS is not

violated. On the other hand, a second-order neighbor of Combination A is a Combination B

from which a single medium is excluded.

18 of 34

1. First, the first-order neighbors of S are defined. If all first-order neighbors are already

considered (or if there are no such neighbors), the algorithm moves to step 2. Otherwise,

the first-order neighbor with the least utility decrease (compared to the utility of S) is

selected, and its associated net benefit is compared to that of S. If there is a substantial

increment in the net benefit, the algorithm “moves” to that neighbor combination and the

heuristic is repeated recursively starting therefrom. Otherwise, the algorithm continues

with the first-order neighbor with the next smaller utility decrease.

2. The second-order neighbors of S are considered. If all second-order neighbors are already

considered (or if there are no such neighbors), the algorithm “moves” to step 3.

Otherwise, the second-order neighbor with the least utility decrease (compared to the

utility of S) is selected, and its associated net benefit is compared to that of S. If there is a

substantial increment in the net benefit, the algorithm “moves” to that neighbour

combination and Step 2 is repeated recursively starting therefrom. Otherwise, the

algorithm continues with the second-order neighbor with the next smaller utility decrease.

3. Return S. End of the algorithm.

Note that, in the proposed heuristic it is not required to compute all the utilities of all the

possible combinations of required media and QoS levels. This is because the heuristic starts by

computing the utility of the “widest” combination, which “contains” the rest combinations. So

the utility of a neighbor can be calculated, by simply adjusting the utility of the “dropped”

parameter (QoS or medium). It should also be noted that starting from the “widest” possible

combination, considering first-order neighbors first, and selecting neighbors with the least

utility decrease first are all consistent with the utility-oriented feature of our approach.

Also note that if the total charge equals the sum of charges per medium, then selecting the

QoS_level for each medium separately so as to maximize the net benefit per medium, and then

finding the best combination of media can attain the maximum net benefit. However, this

approach is restricting, in the sense that it requires that the SUA knows how the Visited

19 of 34

Retailers charge, while it does not leave room for non-additive charging; e.g., a Visited Retailer

may wish to offer a discount to “excellent” quality video/audio or to a specific service

combination in order to attract more users.

4. Computational View

The present section provides a computational specification of the personal mobility context

considered. We assume that a user has subscribed to a set of services offered by one or more

retailers. Due to administrative, historical or techno-economical reasons, a retailer offers

services to users inside a domain, which can be seen as either a home or a visited domain

depending on the user location. A retailer with whom the user has a subscription contract is

called home retailer. The home retailer maintains for each user a profile and a set of service

subscription data. Part of the subscription data is service specific, while the rest can adapt to

user preferences and circumstances. Therefore, each time a user desires a service the

associated parameters (e.g., QoS parameters) may be different than those of previous times,

thus requiring a new search for the most preferred retailer to offer the service.

We assume that for a given service usage the user is away from his/her home domain and

wishes to use a service. While in the visited domain the user registers to a specific terminal that

can support the same or a similar service. The terminal is supported by a number of retailers

and the user must establish an association with the most appropriate retailer for the particular

service use. The communication from visited domain to the user's home domain is often

expensive. A design goal has been to minimize end to end communication from the current

(visited domain) location to home domain. This has led to a design, in which user agent

functionality in foreign domains is carried out by visiting mobile agents.

In this personal mobility context and in accordance to the presented, in section 3.2, schema, the

main points of the approach proposed for agent-based service and visited retailer selection are

as follows:

20 of 34

1. The subscribed user agent (SUA) gets the user profile and appropriate information to

enable it to compute the utility of specific service combinations

2. The SUA gets replicated to the candidate visited retailer nodes.

3. The visited retailer is assumed to have no additional information on this user’s preferences

stored.

4. The SUA replica at a visited retailer interacts and negotiates with the retailer agents (RA)

asking one-by-one questions regarding the charge of a fully specified service combination.

5. The retailer agent offers to the user agent the best possible tariff for the service

combination requested.

6. The SUA-replica assesses the net benefit and decides whether this constitutes a

satisfactory choice or not; in the former case negotiation is completed, while in the latter

case the SUA-replica proceeds with a new question, which is influenced by the outcome of

the negotiation so far.

7. The results of the negotiations are returned to the “parent” SUA residing at the Default

Retailer Domain. Thereafter a decision is made on the most appropriate retailer for the

specific service usage.

Clearly in Step 4 a series of questions is posed and provides a case justifying (in accordance

with [4]) agent mobility; indeed, the remote dialogue between a non-mobile SUA and the RA

would take considerably more time.

The successful application of mobility with SUAs has two important requirements as regards

the speed-up of the overall service selection:

1. The invocation latency of the SUA replicas incurred by unregistering/registering,

serializing/de-serializing as well as transmitting the serialized agent code and state does

not outweigh the actual negotiation time.

21 of 34

2. The data exchange between the SUA replicas and other components in the default retailer

domain is much smaller than the data exchange in conjunction with negotiation between

the SUA replicas and the retailer agents.

Beside the speed-up of the service selection process, it can be noted that the implementation of

the SUA component is much simplified using mobility. Replication and migration turns out to

be simpler to engineer than a multi-threaded (or otherwise multiplexed) client/server approach

when dealing with the several retailers at the same time.

Figure 5 visualizes the overall design of personal mobility support in MONTAGE. It shows

the different retailer domains present and highlights the different phases of action: access

establishment, service selection, service session, and access termination. Service selection is

part of the access session.

login and authentication;
retrieval of user profile

list services

select a service offer

start service

collect data for learning

logout
save learning data

 in user profile

Default
Retailer

User
Domain

Home
Retailer

Visited
Retailer

Service Selection

Service Session

Access Establishment

Access Termination

Figure 5. Access and service session scenarios integrating agent based retailer selection.

4.1 Computational components

In this section the software modules essential for supporting mobility in the presented scenario

are specified. Implementation decisions and details are described as well.

22 of 34

To clarify the role of each module, a roadmap of software domains is presented in Figure 6.

The figure gives an overall picture of the involved stakeholders and of the software modules

and agents that are active in each domain. Objects sketched with a dotted line are implemented

as mobile agents, the rest of the objects are stationary. The arrows in the figure mark the

movement of agents between domains.

user domain

home
 retailer

default
retailer

service
 provider

visited
 retailer

selected
retailer

UAP

PA

UAA

SUA

UAH

UAS

IA

IA

IA

IA

SUA

SUA UAS

SF

SSM

SSA

SSA

RA

RA

RA

RA

CA

UAA

Figure 6. Software components located at MONTAGE domains.

The stationary computational objects of Figure 6 have been defined in the DOLMEN project

[1] and are briefly introduced in the following, while the mobile agents defined in subsequent

sections have been introduced in the context of the MONTAGE project.

• The User Application (UAP) models a variety of applications and programs in the user

domain. A UAP represents one or more of these applications and programs in the TINA

computational model. An access session UAP (as-UAP) allows a consumer to gain access

to services.

• The Provider Agent (PA) represents the retailer in the consumer domain. The capabilities of

PA support setting up a trusted relationship between the user and the retailer by interacting

with the IA. Furthermore, it conveys requests for creating or joining a service session.

23 of 34

• The Initial Agent (IA) is the initial access point to a domain. The IA supports capabilities to

authenticate the requesting domain and set up a trusted relationship between the domains

(an access session) by interacting with the PA and also to establish an access session,

allowing also the requesting domain to remain anonymous.

• The user agent home (UAH) is a stationary component residing in the home domain. It is

responsible for authentication of the user and the provision of facilities for managing and

updating the user profile and information of subscription in the database of the home

retailer. The UAH is created when the Initial Agent (IA), in the home domain notices a

login attempt and it is equipped with the user’s profile and subscription information.

4.2 Mobile agents

In this section the functionality of the agents introduced in MONTAGE project is defined.

The following is a description of the data structures used in the definition of the functionality.

It can be helpful as a reference when the arguments of the methods in the components

definitions are analyzed.

 module Data_Structures {

 struct AuthInfo {
 string name;
 string password;
 };

 struct ServiceItem {
 string id;
 string name;
 string ssUApClassName;
 };
 typedef sequence<ServiceItem> ServiceList;

 struct Property {
 string propertyName;
 any value;
 };
 typedef sequence<Property> PropertyList;

 /* The definitions of Property and PropertyList are
 aligned with the respective definition of the
 user’s profile.
 */
 };

24 of 34

4.2.1 User Agent Access (UAA)

The UAA is created by UAH when the user’s home retailer notices his/her login attempt with

correct information from another domain. The UAA contains the relevant parts of the user

profile and also the information of the services the user has subscribed. After the creation it

migrates to the domain of the default retailer to handle the user’s interest and provide him the

feeling of home. In a later phase the UAA is also responsible for the creation of the Subscribed

User Agent (SUA), to handle the negotiations with candidate retailers for the service provision.

 interface UAA {

 void userContext (
 in Data_Structures::PropertyList paramList);
 Data_Structures::ServiceList subscribInfoReq();
 Data_Structures::PropertyList getProfile();
 void updateProfile (
 in Data_Structures::PropertyList paramList);
 void selectRetailer (
 in long requestId,
 in string serviceName,
 in data_Structures::PropertyList paramList);
 };

The method userContext is used to transmit type-independent information from the user

side PA component to the UAA. This information could contain information like terminal

settings needed in defining the capabilities of service provision.

The method subscribInfoReq is invoked by the PA and provides the user with

information on subscribed services. In general a service is presented as a struct of three strings

and when there are several of them they are presented using the IDL [5] notation of sequence.

It is further assumed that this method occurs after the authentication, so no further means of

providing user account or password is required. Using this method the migrated agent may be

asked for the user’s subscribed services and present them to the user at the terminal.

The method getProfile is similar to the previous one, this time the operation is on the user

profile containing personal information and possibly service specific data. A profile is

presented as a struct of a string telling the property name and then the CORBA type any, to

25 of 34

allow various representations for the actual property. Once again several of them are presented

as a sequence.

The method updateProfile is a counterpart for the getProfile. It provides the user

with the facilities of updating his personal information, like for instance the password used or

the preferred level of service quality. The return value tells whether the update, involving

access to a database, was successful or not and the properties to be updated are given as

arguments. These provide also means for educating the SUA to make better service selections

in the future.

When the user has selected the service he wants to use, the negotiation phase begins for finding

a service offering and retailer featuring the preferred QoS parameters and associated charge.

This is initiated with the method selectRetailer . Since it is the first half of a request-

response pair, the first argument is a unique integer to identify the pair in order to avoid

confusion in a multi-user environment. The second argument is a string presenting the name of

the service and the last provides in a general fashion the associated parameters to be used in

the search for the service.

4.2.2 Subscribed User Agent (SUA)

After the User Agent Access (UAA) has been migrated from the home domain to the default

retailer domain and the user has been requested to update the service profile carried in the

UAA, a Subscribed User Agent (SUA) is created. The SUA is initialized with the user profile,

including the usage context (i.e., terminal equipment and connectivity) and the service profile

(i.e., specification of service invocation).

The SUA creates one replica of itself for each retailer that offers the requested service in the

visited retailer domain and that has a federation with the user's home retailer. The SUA

replicas negotiate with Retailer Agents in the visited retailer domains in order to receive an

appropriate service offer. On receipt of an acceptable offer each SUA replica informs the

26 of 34

initial SUA at the default domain about the offer and then terminates its execution without any

further migration. The initial SUA at the default domain selects the best offer and then

determines the corresponding retailer for service provision.

Since the actual negotiation between SUA replicas and RAs can be done locally without

communication over a network connection, the selection process is significantly faster

compared with centralized peer-to-peer communication. The selection process is furthermore

increased in speed since SUA replicas negotiate in parallel.

A particular interest in the SUA implementation derived from the required integration of

CORBA and mobile agent technologies. An agent platform independent solution was found

that does not require explicit CORBA support by the agent platform. The solution uses a

CORBA and a mobile agent server running in each visited retailer domain. After the operation

findBestVisitedRetailer() has been invoked on the initial SUA in the default

retailer domain, SUA replicas are created and sent off to the selected retailer domains using the

agent migration platform. The SUA replicas arrive at the agent server and then access the

retailer agent via the local CORBA name server. The RA reference is then used to invoke the

negotiate operation. When an appropriate offer is returned with negotiate, an SUA replica calls

takeOffer() on the initial SUA. The reference of the initial SUA are stored with the SUA

replicas before migration to the visited retailer domains.

The SUA is specified as follows:

27 of 34

 interface SUA {
 void findBestVisitedRetailer(
 in listOfEligibleVisitedRetailers retailers,
 in UserProfile userInfo,
 in string providerAgent);
 void takeOffer(
 in ServiceProfile offers,
 in RetailerInfo retailer,
 in double netBenefit,
 in long offerId);
 };

4.2.3 User Agent Selected (UAS)

This component is used after the service selection has been completed. It is the agent

representing the user in the selected domain providing it the security content of the user. It has

to contain only data for the specific service, the user wants to use. Since this data is known by

the UAA, it creates it with the needed data and after that the UAS may migrate to the selected

domain. In the creation the UAS have to be provided with the reference to the PA component in

the default domain, so that later communication is possible.

 interface UAS {
 void serviceSessionRequest(
 in long requestId,
 in Data_Structures::PropertyList ParamList);
 };

The interface contains only one method, serviceSessionRequest intended to be used

when the access and negotiation phases are over. The first argument is a unique integer

identifying the associated request-response pair. In the system structure it is assumed that the

SUA presents a selection of the possibilities for providing the service for the user. The user

may then choose one from the list and the associated QoS parameters are transmitted as a

parameter in the serviceSessionRequest method.

4.3 Interactions between the modules

In the following, the involvement of the introduced computational objects and mobile agents is

indicated in terms of Message Sequence Charts [2] modeling the envisaged access and service

sessions.

28 of 34

4.3.1 Login sequence

The purpose of this session is to authenticate the user and grant him an access to the services

to which he has a subscription at home retailer. Figure 7 describes the required operations,

which proceed as follows:

HOME Domain

IA

UAA

IA

UAH

UAP PA

start

accessSessionRequestResponse

accessSessionRequest

userContext

securityInfo

securityInfo

securityInfoResponse
securityInfoResponse

User Domain Default Domain

Note that the UAA was
initially created in the home
domain. This reflects the
situation after the migration.

UAAMigrate

create

create

Figure 7. Login sequence.

1. The end-user requests to login into the default retailer. After filling his password,

username and home retailer’s name (e.g., username@retailername), the user presses

“login” button. An appropriate User Application (UAP) at his terminal invokes

start() operation on the Provider Agent (PA).

2. The PA sends accessSessionRequest() to the Initial Agent (IA) residing at the

default retailer domain.

3. The IA at the default domain, after resolving the name of the IA at the home domain,

sends securityInfo() request to it.

4. The actual authentication takes place at the home retailer. The IA (home) creates a User

Agent Home (UAH) which has an access to the part of the database maintained by the

home retailer containing the user’s data.

29 of 34

5. On the IA request securityInfo(), the UAH authenticates the user.

6. The response securityInfoResponse() , is forwarded back to the default retailer.

7. In case of positive authentication, the UAH creates an User Agent Access (UAA).

8. The UAA migrates to the default domain, carrying part of the UserProfile data (S_info).

S_info contains the data related to the subscribed services.

9. The UAA returns a reply (accessSessionRequestResponse()) to the PA. This

reply includes also the UAA object reference.

10. The PA and the UAA exchange relevant information about the terminal being used

(userContext()).

11. The UAP sends clSubscribInfoReq() to the PA. The request is forwarded to the

UAA. As a result of this operation, the user is provided with the list of subscribed

services and additionally two buttons “profile” and “setPreferences” appear to the user

terminal screen.

12. When user optionally presses button “profile”, clGetProfile() request is send by

the UAP to the PA.

13. The request is forwarded to the UAA. As a result the user obtains personal requirements

on the services and service specific data.

14. By pressing “setPreferences” button, the user has an option to change his personal

preferences (e.g., language being used, the time that he wants the service to be delivered

etc) for the required services. Request clUpdateProfile() is sent to the PA.

15. The request is forwarded to the UAA as updateProfile(). The UAA updates its

data containing the user’s preferences.

The Access Session phase is finished.

30 of 34

4.3.2 Service selection sequence

The purpose of the selection phase is to choose the retailer which provides the best offer for the

service requested by the user. The phase starts as soon as the user has chosen the required

service from the list of subscribed services and follows as described below.

1. The UAP sends clSelectRetailer() request to the PA. The request as

selectRetailer() is forwarded to the UAA.

2. The UAA creates a Subscribed User Agent (SUA), an agent which will be responsible for

negotiations with retailers and for the choice of a retailer offering the optimal service.

3. The SUA replicates itself and migrates in parallel to each candidate visited retailer

domain where it negotiates with the Retailer Agent (RA). The list of all federated retailers

has been known to the UAA.

4. SUA replicas (in the visited domains) send to the SUA that resides in the default retailer

domain information of the services offered by the retailers that they visit.

5. The SUA at the default retailer domain makes the decision on the most appropriate offers

and sends selectionMadeResponse() to the UAA.

6. The UAA sends selectRetailerResponse() to the PA. The selection phase

ends.

31 of 34

IA UAA

SUA

UAP PA

clUpdateProfile

clGetProfile

clSelectRetailer

clSubscribInfoReq

updateProfile

getProfile

subscribInfoReq

selectRetailerResponse

selectRetailer

SelectionMade(SSM)

User Domain Default Domain

create

RA

RA
SUA replication

Selected RA

Figure 8. Service selection sequence.

4.3.3 Service session sequence

The purpose of this session is the provision of the requested service by the selected retailer to

the user. An advantage offered by TINA is that the user within the scope of one Access

Session can activate a number of Service Sessions.

IA UAA UAP PA

notify

startServiceclStartService

serviceSessionRequestResponse (java.Applet .applet or an IOR)

serviceSessionRequest

User Domain Default Domain

Migratecreate Selected RAUAS

UAS

A lightweight UAS was
created in the default domain.
This is the situation after
the migration.

migrateUAS

Figure 9. Service session sequence.

1. The UAP sends clStartService() request to the PA.

32 of 34

2. The request is forwarded (startService()) to UAA at the default domain. The

object reference of the IA at the selected domain is already known to the UAA.

3. The UAA creates at the default domain a User Agent Selected (UAS) - an agent that will

represent the user at the selected domain. The UAS is, in some sense, a subset of UAA

 it contains information about only one service subscribed by the user, the selected

service.

4. The UAS migrates to the selected domain.

5. The communication between the selected retailer and the user starts. The UAS notifies

PA about its ability of providing the service.

6. The PA sends serviceSessionRequest() to the UAS in the selected domain.

7. The service is delivered to the user (serviceSessioRequestResponse()).

8. The UAS migrates back to the default domain, carrying the information about user

preferences obtained during service session. The UAS forwards the data to UAA and

terminates itself.

4.3.4 Logout sequence

The final phase of the interaction between the user and retailers is presented in the Logout

Sequence.

33 of 34

HOME Domain

IA

UAA

UAA IA UAH UAP PA

logout

clLogout

Default DomainUser Domain

Migrate

The UAA migrates back
home and updates the user
profile. After that the
UAA and UAH are killed.

Figure 10. Logout sequence.

1. The service is completed, the user wants to logout from the terminal. The UAP sends

clLogout() request to the PA.

2. The PA forwards this information to the UAA at the default domain as logout().

3. UAA migrates back to the home domain, carrying the information about user preferences

obtained since the user logged-in to the default retailer.

4. The UAA delivers the data to UAH. Then UAA terminates.

5. The UAH updates the user profile in the database at the home domain.

6. The UAH is destroyed.

5. Concluding Remarks

In this chapter, we have overviewed an approach for supporting personal mobility and

beneficial service selection by means of intelligent mobile agents. The objective of the agents

that are employed for the selection of the most appropriate retailer is to maximize a net benefit

function, which depends on the user preferences and the cost for providing the service. The

interactions that take place between users and retailers are also presented, namely, the

34 of 34

scenarios for logging in, service selection, service session, and logging out. Sample interfaces,

as specified in IDL, of certain agents and computational objects are also presented.

A prototype implementation of the described scenario has been developed in Java with Voyager

[7] as the agent platform, and application of mobility with User Agents is being validated. The

most important subjects of the validation, together with the conditions that may justify mobility

of the UAs as a means for making the overall service selection process more efficient involve

migration cost of the UA-replicas, temporal and spatial locality of communication and ease

of implementation using mobile agents. Validation of the intelligence framework by means of

analysis and simulation experiments is presently under way. The first results are very

promising, since they reveal that the proposed algorithm for service-offer selection often makes

the optimal selection or a near-optimal one.

6. References

[1] AC036-DOLMEN project deliverable ASD3, Open Service Architecture for Mobile

and Fixed Network Environment, 1998.

[2] ITU-T Z.120 Recommendation, Message Sequence Charts, March 1993.

[3] K. Jack, Video Demystified: A Handbook for the Digital Engineer, Second Edition,

High Text Publications Inc.

[4] A. Kind et al., Towards the Seamless Integration of Mobile Agents into Service

Creation Practice, to appear in Proceeding of IS&N’99.

[5] OMG, The Common Object Request Broker: Architecture and Specification, version

2.0, July 1995.

[6] TINA-C, TINA Business Model and Reference Points Version 4.0, May 1997.

[7] Voyager, http://www.objectspace.com

