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Abstract-This paper introduces an adaptive spectrum sensing 

method for cognitive radio wireless networks. The proposed 

method enhances previously proposed random-based sensing 

policies, effectively selecting the licensed channels to be sensed 
by accurately estimating channels' availability, resulting, thus, 

to high system's resources utilization. The core mechanism of 

the adaptive method is an enhanced learning automaton, which 

efficiently interacts with the environment and provides 

accurate decisions on selecting the channel to be sensed on 

behalf of the secondary users. A thorough description of the 

introduced method is provided, while the performance of the 

enhanced sensing policies is verified through extensive 

simulation experiment. 

Keywords-cognitive radio; learning automata; multi-channel 
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I. INTRODUCTION 

One of the most challenging research issues to be 
addressed by both academia and industry is the 
accommodation of the ongoing developed wireless standards 
and products in the quite overcrowded, existing spectrum. 
The unlicensed frequency bands have been almost 
exhausted; however, substantial allocations of the spectrum 
remain idle or underutilized [1]. The concept of dynamic 
spectrum allocation comes in the light as one of the most 
flexible solutions to efficiently address this deficiency [2]. 

In essence, dynamic spectrum allocation involves two 
groups of users that may access and use the spectrum 
resources. Primary users, also known as licensed users, have 
the right to utilize spectrum channels; however, access 
opportunities are allowed to secondary users, also known as 
unlicensed users, when the related resources remain 
unoccupied by the primary users. In order to achieve this, 
secondary users should be able to dynamically change 
channels, adapting their transmission and reception 
configuration on demand. The cognitive radio concept 
satisfies this requirement, supporting dynamic alteration of 
the transmission frequency, modulation, data rate, and 
transmission power, mainly using software-defined radio 
(S DR) technology [1]. 

The cognitive radio concept involves several access 
issues. Thus, it entails a Media Access Control ( MAC) 
protocol in order to practically operate. Generally speaking, a 
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rigorous MAC protocol undertakes the following 
responsibilities: a) allows the secondary users to be aware of 
the cognitive radio configuration, i.e., number and 
capabilities of the licensed channels, synchronization details, 
and physical layer features, b) defines the way of exchanging 
messages (among the secondary users), c) defines the access 
framework of delivering data, e.g., CS MA, and d) 

incorporates an effective sensing policy. 
In this paper our focus is laid on the sensing policy, since 

it constitutes one of the key players for the optimization of 
the network performance. In particular, the performance of 
the whole MAC protocol dramatically depends on the 
sensing outcome, as successful sensing processes lead to 
effective spectrum utilization. Different from the existing 
approaches, we design an adaptive sensing policy, capable of 
identifying the individual availability of each licensed 
channel. To this end, a powerful as well as simple learning 
tool is employed: the Learning Automata ( LA) [3]. Each 
secondary user is enhanced with a learning automaton, which 
assists her accurately estimating an image of the channels' 
state. The overall aim is to take effective decisions regarding 
the selection of the licensed channels to be sensed. 
Moreover, the adaptive strategy is extended so as to 
beneficially replace the random channel selection in 
environments where the neighboring users are aware of the 
sender's channel selection. The performance of the proposed 
policy is evaluated and compared against similar sensing 
schemes operating in random fashion. Extensive assessment 
results are presented, providing evidence of the superiority of 
the proposed adaptive policy, improving channel availability 
sensing by approximately 30%. 

The remainder of this paper is organized as follows. An 
overview of related research works is provided in Section I I. 
In Section I I I, we describe the considered system 
architecture, while in Section I V  the detailed adaptive 
method are presented in a detailed manner. Section V is 
dedicated to performance evaluation. We conclude the paper 
in Section V I. 

I I. RELATED WORK 

A multitude of MAC strategies and sensing policies can 
be found in the literature. In [4] the Random Sensing Policy 
(RSP) and the Negotiation-based Sensing Policy (NSP) are 
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Figure I. Cognitive system architecture with three licensed channels. 

introduced. Both mechanisms operate in such a way that the 
information obtained by the sensing process is broadcasted 
in the most efficient way. However, the core procedure 
behind those mechanisms involves a random selection 
process. Specifically, having organized time into timeslots 
and mini-slots, in the context of the RSP, each secondary 
user randomly selects a single licensed channel to sense at 
the beginning of each timeslot. Afterwards, each secondary 
user reports the channel state by broadcasting a beacon in the 
corresponding mini-slot. This way, the RSP scheme allows 
the secondary users to be aware of the sensed channels in a 
timeslot basis. The deficiency of this approach lies in the 
common channel sensing case, where two or more secondary 
users select the same channels to perform sensing. Given that 
the target of a sensing policy is to maximize the channel set 
being sensed, the phenomenon of sensing common channels 
degrades the policy's performance, especially when the 
number of secondary users is equal or less than the number 
of licensed channels. To this end, the NSP extends the RSP 
mechanism adopting a corrective action in order to maximize 
the number of sensed channels per times lot exploiting the 
Request To Send and Clear To Send (RTS/CTS) handshake 
scheme. In particular, a special byte denoting the sensed 
channel information is injected into the RTC ICTS packets, 
therefore the rest secondary users are aware of the channel 
sensed by the sender during the current timeslot. As a result, 
secondary users that decided to sense the same channel 
change their decision and chooses a different channel in the 
following times lot, while all others remain at their selections. 

In [5] the authors focus on the realization of cognitive 
networking using typical radio transceiver technologies. The 
core mechanism involves random sensing with probabilistic 
access. Nevertheless, the sensing policy implies random 
channel selection. 

[6] refers to a MAC protocol that does not necessitate the 
usage of a dedicated common control channel for the 
exchange of control packets between secondary users. The 
proposed protocol requires synchronization among all nodes. 
At the beginning of each slot, every node tunes to the 
respective channel the slot represents and listens to that 
channel. The performance of the proposed model is 
compared against a common control channel based protocol 
considering throughput and network connectivity 
performance metrics. However, the specific protocol 
demands synchronization of each user in order to adequately 
operate. 

In [7] two important issues associated with MAC-layer 
sensing are addressed in cognitive radio networks: a) when 

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 

scanning of the availability of licensed channels should be 
performed and b) in which order these channels should be 
sensed in order firstly to maximize the discovery of spectrum 
holes in licensed channels to be exploited by secondary 
users. Concerning the sensing period optimization scheme 
proposed, the authors consider proactive sensing taking into 
account both the number of discovered opportunities and the 
sensing overhead cost. Similar sensing approaches are 
adopted in [8-10]. 

A common shortcoming of the sensing schemes found in 
the literature is the random manner in which channels to be 
sensed are selected. This means that the main decision of the 
sensing policy neglects specific access characteristics of each 
channel. Hence, in most cases, a static or a predefined way of 
examining the licensed channels is adopted, resulting in 
network performance degradation. Aiming to cover this gap, 
we propose an adaptive sensing policy, exploiting learning 
automata. 

I I I. SYSTEM ARCHITECTURE 

The cognitive wireless system under study considers a 
multi-channel licensed spectrum, in which the set of primary 
users has access to w different (licensed) channels. Fig. 1 
illustrates the system architecture with three licensed 
channels. All network entities are synchronized to a common 
clock; time is organized into timeslots, where the beginning 
and ending point of each timeslot is predefined, identical for 
each channel, and known to any participating network entity. 
As time passes, each channel becomes available or 
unavailable instantly upon the beginning of each timeslot. 
Furthermore, we consider a simple, dedicated, and flexible 
control channel for message exchange between the 
secondary users. Control and licensed channels are 
considered synchronized with a common clock. In addition, 
each user is equipped with a couple of transceivers, one for 
accessing the control channel and the other for sending and 
receiving in data channels. The first transceiver is devoted to 
operating over the control channel, while the second consists 
of a S DR module. Thus, each user is capable of tuning to any 
of the w licensed data channels. 

The control channel is primarily used for coordination; it 
is further divided into two phases, the reporting phase and 
the negotiation phase. During the reporting phase, the 
secondary users broadcast critical information about the 
availability of the licensed channels in a cooperative way. At 
the beginning of each timeslot, each secondary user senses 
one of each existing data channels in order to infer about its 
availability. The information obtained by this action is 
broadcasted to all secondary users, using the control channel 
as follows. The reporting phase is further divided into w 

periodical mini-slots. Hence, there is an opportunity for each 
secondary user to inform the rest users about the availability 
of the licensed channel sensed. To this end, secondary users 
that sensed channel's j availability broadcast a beacon during 
the jth mini-slot over the control channel. In this way, the 
secondary users cooperate in order to obtain as much as 
possible information regarding the current status of the 
licensed channels. Afterwards, the secondary users that wish 
to send data packets contend each other during the 
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negotiation phase, if at least one data channel is available 
during the current times lot. The negotiation takes place 
employing conventional hand-shake methods such as RTS 
and CTS message exchange between the sender and the 
receiver, using the control channel, without violating the 
ongoing times lot duration. 

I V. ADAPTIVE SENSING POLICIES 

A. Motivation 

The sensing policy entails a set of aspects that should be 
carefully considered and addressed so as to operate in an 
efficient way. First, in order to gain complete information 
about their environment, the secondary users have to sense 
the whole spectrum, i.e., all licensed channel. Second, the 
secondary users ensure that all licensed channels were 
monitored, since no beacon message is sent if the data 
channel is sensed occupied. It becomes evident that if the 
number of secondary users is less than the number of 
channels, secondary users receive an incomplete image of 
the channel state. On the other hand, the set of secondary 
users may choose common channels to sense for the same 
timeslots, leaving other channels unmonitored. In the light of 
the aforementioned issues, a rigorous, efficient, and simple 
sensing policy is required in order to ensure an effective 
exploitation of the licensed channels' availability. 

B. Learning Automata 

A learning automaton constitutes a finite state machine 
that interacts with a stochastic environment and aims to 
perceive the optimal action offered by the environment via a 
learning process. Inheriting its basic aspects from the 
reinforcement learning field, LA act based on specific 
features that affect the environment. Specifically, the 
automaton chooses an action from a finite set of possible 
actions, while its decisions are updated based on feedback 
received from the environment concerning the impact of 
each selected action to the environment. A considerable 
number of research fields adopt LA as the main adaptive 
tool, such as pattern recognition, data networking, and 
scheduling [11]. LA could enhance the decision module in 
the current problem. The transceiver of each secondary user 
is enhanced with an automaton, which is responsible for 
choosing a licensed channel to be sensed in the beginning of 
each timeslot. The action pool is defined by the set of 
licensed channels. For each secondary user, the automaton 
decides on a channel for the current timeslot. The 
environment reacts by sending back feedback, which is 
defined as the result of the sensing process, i.e., the 
availability of the chosen channel. The automaton receives 
the feedback and updates its history, which is realized by a 
probability vector, expressing the availability probability of 
each channel. In this way, the automaton creates a whole 
image of the spectrum, allowing the S DR receiver to sense 
the channels that are more likely to be available. 

C. Optimality Determination 

Ideally, a sensing policy should yield the optimal number 
of spectrum opportunities for the secondary users, i.e., the 
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optimal number of licensed channels sensed available. The 
determination of this optimal number involves the number of 
licensed channels as well as the number of the participating 
secondary users. Assuming that the number of channels is 
denoted by w and the number of secondary users is denoted 
by n, Algorithml provides the optimal number of available 
licensed channels sensed during a timeslot. The logic behind 
the algorithm is quite simple. If the number of secondary 
users is equal or larger than the available channels during 
each timeslot, denoted by s (s ::; w ), then the optimal 
number of sensed channels being available is s, since users 
could monitor all possible channels. On the contrary, in case 
the number of users is not large enough to cover the possible 
pool of channels, the optimal number of channels sensed 
available is equal to n. 

Algorithml: Optimality Determination 
1: n: Number of secondary users. 
2: 0: Optimal average number of available licensed 

channels. 
3: For each timeslot t = 1,2, ... , q 
4: s � number of available channels 
5: H n � s 
6: 0 = 0 + s 
7: Else 
8: 0 = 0 + n 

9: End_H 
10: End_For 

11: 
o 

0=
q 

D. Model Formulation 

In this sub-section we provide the formulation of the 
proposed adaptive model including the definition of the 
action pool, the probability vector, and the feedback vector. 
Each learning automaton operates independently on behalf of 
each secondary user. Upon the beginning of each times lot, 
each secondary user chooses one of the w possible actions, 
determining the licensed channel to be sensed at the current 
times lot. Let A = {av az, ... , awl i = 1,2, ... , n denote the 
pool of the w possible actions. The decision at each timeslot 
is supported by an availability probability vector, which 
represents the probability for selecting one of the possible 
actions from the A set. The probability vector at timeslot t is 
defined as follows: pet) = {Pl(t),PZ(t), ... ,Pw(t)},o::; 
p(t) ::; 1. Each action taken by the automaton is followed by 
a feedback, originated from the environment, as a reaction to 
the channel selection. In essence, the feedback refers not 
only to the channel selected by the corresponding secondary 
user, but it reflects the behavior of all licensed channels of 
the spectrum. According to the sensing architecture, each 
secondary user broadcasts a beacon in case the channel 
sensed is available. Hence, the feedback encloses the status 
information of all licensed channels, informing the secondary 
user about the status of the spectrum during the current 
timeslot. Thus, the feedback received by each secondary user 
is defined as a notification vector at timeslot t as follows: 
F(t) = {Fl (t),Fz(t), ... ,Fw(t)} , where each element may 

take a logical value, i.e., true or false in case the licensed 
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channel 1,2, ... , w is available or either not available or not 
monitored, respectively. For instance, if the value of Fz( 4) is 
true, it means that the second channel is sensed available. 
The feedback is delivered by each user at the end of the 
reporting phase. The learning nature of the automaton lies in 
the probability vector update. Algorithm2 gives the 
probability vector update process in detail. Upon the 
reception of the feedback provided by the environment at 
each timeslot t, the automaton updates the probability vector. 
Initially, the automaton of each secondary user sets the 
availability probability vector equal to l/w, which means 
that initially each channel is selected uniformly. Thereupon, 
and at each timeslot t, the set of licensed channels that are 
sensed available is updated (V (t)). For each licensed channel 
the corresponding feedback is examined. If the feedback 
implies availability, the probability of the examined licensed 
channel is increased, receiving a reward, otherwise it is 
decreased, receiving a penalty. The magnitude of the 
increase is governed by two factors (L,b), where the 
parameter b is employed in order to prevent reaching zero 
probabilities; parameter L controls the convergence speed of 
the learning process. The lower the L value, the more 
accurate the estimation held by the automaton-a fact, 
however, that comes at the expense of the convergence 
speed. Furthermore, the reward and the penalty define the 
level of the increment and the decrement respectively, of the 
channel's availability probability. The reward is expressed as 
the summation of the probability of each channel sensed 
unavailable (or not sensed at all), divided by the number of 
channels found available (line 9 of Algorithm2). 
Accordingly, a small penalty is imposed to each unavailable 
channel, expressed as a portion of its probability (line 11 of 
Algorithm2). 

Algorithm2: Availability Probability Update 
1: w: Number of licensed channels. 
2: L,b: Speed of the automaton convergence, 

L,bE(O,I). 

3: pJ1) = 2., i = 1,2, ... , w. 
w 

4: For each times lot t = 1,2, ... , q 
5: Vet) = {V1(t), Vz(t), ... , Vs(t)},s � w 

V (t) � The set of licensed channels 
sensed available. 

6: For each channel i = 1,2, ... , w 
7: If Fi(t) == true 

8: Pi(t + 1) = Pi(t) + L·LY�V(t)(py(t)-b)
. s 

9: Else 
10: Pi(t + 1) = Pi(t) - L . (Pi(t) - b). 
11: End_If 
12: End_For 
13: End_For 

E. Main Operation 

The operation of the proposed adaptive method is given 
in this sub-section. Algorithm3 describes the Adaptive 
Sensing Policy (ASP) and Algorithm4 provides the steps of 
the Adaptive Negotiation-based Sensing Policy (ANSP). 
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According to ASP, each secondary user selects a licensed 
channel to sense based on the corresponding availability 
probability vector (line 8). The probability vector is 
normalized, so as the summation of the availability 
probabilities is equal to 1. In the sequel, a generated random 
number in [0,1) produces the selected licensed channel. This 
step is introduced in order to avoid having all secondary 
users select the same licensed channel to sense. The update 
of the probability vector takes place at the end of the 
reporting phase, upon receiving the feedback vector in 
accordance with Algorithm2. 

Algorithm3: Adaptive Sensing Policy 
1: n: Number of secondary users. 
2: w: Number of licensed channels. 
3: pet) � Availability probability vector. 
4: F(t) � Feedback vector. 
5: For each cognitive cycle 
6: For each secondary user 
7: I/Reporting Phasell 
8: Choose a licensed channel based on pet). 
9: j = 1,2, ... , w � the selected channel to sense 
10: Send a beacon at j-th mini-slot if the channel 

sensed is available. 
11: Receive the feedback and update the 

availability probability vector. 
12: I/Negotiating Phasell 
13: Employ RTS/CTS messages to enable 

communication. 
14: End_For 
15: End_For 

The ANSP is more efficient than ASP, since, during the 
negotiation phase, secondary users are enabled to overhear 
the RTS sender and change their channel selection in case 
they selected for data transmission the same channel as the 
sender (lines 15-22). This is accomplished through the usage 
of the special byte in the RTS/CTS messages. Specifically, if 
a secondary user perceives that possesses the same channel 
selection with the RTS sender (line 17), instantly chooses a 
different channel from the set channels that returned a 
negative feedback during the reporting phase (lines 18-19). 

Algorithm4: Adaptive Negotiation-based Sensing Policy 
1: n: Number of secondary users. 
2: w: Number of licensed channels. 
3: pet) � Availability probability vector. 
4: F(t) � Feedback vector. 
5: For each cognitive cycle 
6: For each secondary user 
7: I/Reporting Phasell 
8: j = 1,2, ... , w � the selected channel to sense 
9: Send a beacon at j-th mini-slot if the channel 

sensed available. 
10: Receive the feedback and update the 

availability probability vector. 
11: I/Negotiating Phasell 
12: Overhear the RTS/CTS message exchange and 

determine the channel selected by the sender. 
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13: z = 1,2, . . .  , w f- the sender's channel 
selection. 

14: Ifj==z 

15: Ret) f- the set of licensed channels 
having not true feedback. 

16: Choose a different channel from the Ret) 

17: Else 
set and name it j. 

18: Keep the same channel selection 
19: End_If 
20: End_For 
21: End_For 

V. PERFORMANCE EVALUATION 

In order to evaluate the performance of the proposed 
schemes, a simulation model was developed using Matlab. 
As a first step, the accuracy of the proposed adaptive method 
was assessed. In this way, the automaton ability on 
accurately estimating the channel availability probabilities 
was examined. Second, the proposed ASP was compared 
against the random-based RSP [4] in order to provide 
evidence of the performance improvements introduced due 
to the adaptive nature of our proposed policy. Finally, 
assuming that the usage of the special byte in RTS/CTS 
messages is feasible, informing thus the secondary users 
about the channel selected for data transmission by the RTS 
sender, the proposed ANSP was compared against NSP [4], 
so as to infer the efficiency of the proposed method. 

Three main scenarios were considered. Specifically, in 
the first scenario the assumed wireless system consisted of 
three licensed channels having availability probabilities 0.7, 
0.4, and 0.1. The simulation took place for 10000 timeslots. 
In this scenario, it was assumed that the special byte into the 
RTS/CTS messages, indicating the licensed channel selected 
for data transmission by the RTS sender, is not used, so the 
secondary users are not able to know the sensing intention of 
each sender. Regarding the automaton configuration, the 
parameter L was set to 0.01, holding a typical value of 
convergence speed [3], while the parameter b was chosen 
equal to 10-5. Figures 2 and 3 illustrate the learning 
accuracy of the enhanced automaton when the number of 
secondary users is 10 and 20 respectively. In essence, figures 
show the automaton performance on estimating the 
availability probabilities of each licensed channel. 
Undoubtedly, as illustrated in the figures, the automaton 

creates a quite adequate image of the channel availability 
probabilities, since the error rate is fairly limited. In general 
the error rate is below 5%. Moreover, it is observed that the 
error level of the automaton tends to increase as the actual 
availability probability decreases. The rationale behind this 
lies in the way the reporting phase is operating. In particular, 
a channel that is often active, i.e., its availability probability 
is low, produces a small amount of beacons by the secondary 
users during its corresponding mini-slot. Hence, the 
automaton receives a questionable feedback regarding this 
channel, causing a false probability update. However, the 
operation of the automaton is deemed as accurate, since the 
noticed error rate is limited. 

In the second scenario, the proposed method is evaluated 
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Figure 2. Learning accuracy of the automaton with 10 users. 
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Figure 3. Learning accuracy of the automaton with 20 users. 
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Figure 5. ASP performance with 30 licensed channels. 
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in comparison with the RSP scheme. The number of 
participating secondary users was varied from 1 to 30, while 
the number of licensed channels was set 20 and 30, as Fig. 4 
and 5 depict. Again, the simulation lasted for 10000 
timeslots. The available probabilities were chosen uniformly 
and independently. In this scenario the number of available 
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Figure 7. ANSP performance with 30 licensed channels. 
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channels sensed by the applied policy is examined, compared 
against the determined optimal channel number in 
accordance with Algortihml. The performance of the 
proposed scheme is verified in both figures; the automaton 
acts beneficially, offering more channels sensed available 
than the RSP scheme, independently of the number of the 
connected 
secondary users. The improvements reach almost 30% (i.e., 
30% more available channels are identified), a critical 
advantage that potentially leads to 30% more efficient 
spectrum exploitation. As expected, the performance of both 
schemes is improved as the number of secondary users 
exceeds the number of licensed channels, a fact that reflects 
the wireless architecture: the more the users the more the 
sensed available channels. 

In the third scenario, we assess the proposed scheme in 
comparison with the NSP scheme. The operation of both 
schemes entails the usage of the special byte into the 
RTS/CTS messages. In this case, the secondary users are 
aware of the channel selected for data transmission by the 
sender of the RTS message, thus, the optimal state could be 
reached after a period of time, if the number of secondary 
users is equal to or larger than the number of licensed 
channels. During the negotiation phase it is assumed that a 
single secondary user, uniformly selected, gains access to 
send data packets. The available probabilities were chosen 
uniformly and independently, while the simulation lasted for 
10000 timeslots. In Fig. 6 the cognitive system consists of 20 
channels, while in Fig, 7 it includes 30 channels. As it may 
be observed, a) both schemes converge to the optimal value 
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when the number of users exceeds the number of licensed 
channels, and b) the adaptive scheme offers the asset of 
identifying more available channels than the NSP scheme 
when the number of users is less than the number of 
channels. This merit, stemming from the adaptive nature of 
the LA, allows for a more effective exploitation of the 
available spectrum. 

V I. CONCLUSIONS 

We designed and evaluated a novel adaptive sensing 
method for cognitive radio wireless networks. The novelty of 
this work lies in the enhancement of sensing policies with 
learning from experience concepts. By incorporating a 
learning automaton, users that seek opportunities for 
accessing the existing licensed channels operate more 
efficiently compared to random-based strategies. Having 
conducted extensive experiments, we demonstrated the 
performance of the proposed schemes. Specifically, a) the 
accuracy of the proposed method was identified, and b) 
considerable improvements are provided in terms of the 
number of available licensed channels sensed. 
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