1. GENERAL

SCHOOL	ENGINEERI	NG			
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING				
LEVEL OF STUDIES	UNDER GRADUATE				
COURSE CODE	1102 SEMESTER 2nd				
COURSE TITLE	PROGRAMMING METHODOLOGIES AND TECHNOLOGIES				
INDEPENDENT TEACHI	NG ACTIVITII	ES			
if credits are awarded for separ	ate compone	ents of the	WEEKLY		
course, e.g. lectures, laboratory ex	•	•	TEACHING	G CREDITS	
are awarded for the whole of the			HOURS		
teaching hours and the	-				
		Lectures	2	6	
Laboratory			2		
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE	General ba	ckground			
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:	NONE				
	00554/544				
	GREEK/ENGLISH				
and EXAMINATIONS:					
COURSE DELIVERED TO	YES				
ERASMUS STUDENTS					
MODULE WEB PAGE (URL)	https://eclass.uowm.gr/courses/MRE218				

2. LEARNING OUTCOMES

Learning outcomes

The aim of this course is to enrich students' knowledge of basic programming principles, good software development practices and the ability to use software libraries to solve specialized problems. For this purpose, the use of Python was chosen, which is a powerful and rapidly evolving programming language, capable to function as an introductory programming language but also to offer a reliable and almost universal software development tool. Its open character has contributed to the existence and continuous development of software libraries pertaining to it for all areas of interest (graphics, data analysis, artificial intelligence, web programming, distributed programming, etc.).

The course introduces basic concepts but also advanced programming topics such as algorithm development techniques, program flow control structures, it introduces the data structures provided by Python (lists, dictionaries, tuples) while introducing the concepts and principles of object-oriented programming.

Upon successful completion of the course, the student should:

1. Understand the basic concepts of Computer Programming.

- 2. Be able to analyze a complex problem into individual simpler problems.
- 3. Be able to encode the problem in algorithmic form.
- 4. Understands the basic principles and logic of programming and code development.
- 5. Write structured programs that include function calls and data entry/exit in Python.

6. Be able to use structured data formats such as tables in the programs he/she develops

7. Be able to clearly express the documentation of the program.

General Skills

- Theoretical and practical background regarding the cognitive field of programming.
- Search, analysis and synthesis of data and information.
- Decision making.
- Promoting free, creative and inductive thinking.

3. COURSE CONTENTS

- An Introduction to Computing and Problem Solving
- Core objects, Variables, Input and Output (string functions, Print Formatting, list Object)
- Structures that control Flow.
- Relational and Logical Operators, Decision structures.
- The while loop
- The for loop
- Lists, strings, tuples, dictionaries
- Functions, User Defined Functions, Scope of Variables, Lambda Expressions.
- Object-Oriental Programming

4. TEACHING METHODS - ASSESSMENT

4. ILACIIING MILITIODS - ASSESSI					
MODE OFDELIVERY	1. THEORY				
	In class, face to face				
	2. LABORATORY				
	In laboratory facilities, face to face.				
USE OF INFORMATION AND	Use of appropriate Python software				
COMMUNICATIONS	Video and slide presentations via projector				
TECHNOLOGY	• Support of teaching process via the electronic platform e-class				
TEACHING METHODS					
	Activity	Semester workload			
	Lectures	50			
	Laboratory exercises	50			
	Non-directed study	50			
	Course total	150			
ASSESSMENT METHODS	1. THEORY:				
	Final written exam which includes:				
	i. Short-answer questions				
	ii. Multiple choice questions				
	n. Waterpie enoice	questions			

5. ATTACHED

- Suggested bibliography:

- ΕισαγωγήστονΠρογραμματισμόμετηνPython, SchneiderDavid
- Python Εισαγωγή στους υπολογιστές, Νικόλαος Αβούρης, Μιχαήλ Κουκιάς, Βασίλειος

Παλιουράς, Κυριάκος Σγάρμπας