COURSE OUTLINE

1. GENERAL

SCHOOL	ENGINEERING			
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	4304 SEMESTER 8 th			
COURSE TITLE	Algorithm Optimization			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHINO HOURS	G CREDITS	
Lectures		3	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Scientific are	ea		
PREREQUISITE COURSES:	NONE			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK/ENGLISH			
COURSE DELIVERED TO ERASMUS STUDENTS	YES			
MODULE WEB PAGE (URL)	https://ecla	ss.uowm.gr/		

2. LEARNING OUTCOMES

Learning outcomes

The purpose of this course is to introduce the students to the theory, algorithms and applications of combined optimization, with emphasis on problems related to flows, paths and matching graphs. The aim is to familiarize students with the basic principles of algorithm design and in particular with discrete optimization algorithms as well as to investigate applications of such problems to real optimization problems.

On successful completion of this module the learner will be able to:

- 1. Knows the theory and algorithms of combinatorial optimization
- 2. Analyzes real problems as optimization problems
- 3. Distinguishes the possibility of applying specific algorithms
- 4. Applies optimization algorithms to real problems
- 5. Designs optimization algorithms

General Skills

Upon successful completion of the program students will:

- have the theoretical and practical background on the field of product and systems design engineering and the corresponding profession.
- utilize scientific knowledge to understand, analyze and solve problems.
- apply a wide range of scientific and technical knowledge concerning the design and development of products and systems.

3. COURSE CONTENTS

- Optimization problems,
- Complexity,
- Computational solubility,
- Precise algorithms,
- Integral programming,
- Approximation algorithms,
- Local search,
- Simulation.

4. TEACHING METHODS - ASSESSMENT MODE OFDELIVERY In class, face to face

USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 Video and slide presentations via projector Support of teaching process via the electronic platform e-class Communication with students. 		
TEACHING METHODS	Activity	Semester workload	
	Lectures	90	
	Non-directed study	60	
	Course total	150	
ASSESSMENT METHODS	Final written exam which includes:		
	i. Short-answer questions		
	ii. Multiple choice questions		
	iii. Problem solving		

5. ATTACHED

- Suggested bibliography:

- J. Kleinberg and E. Tardos, Σχεδιασμός Αλγορίθμων, Εκδόσεις Κλειδάριθμος, 2008.
- Τ. Cormen, C. Leiserson, R. Rivest, and C. Stein, Εισαγωγή στους Αλγορίθμους, Πανεπιστημιακές Εκδόσεις Κρήτης, 2016.
- Ι. Κολέτσος και Δ. Στογιάννης, Εισαγωγή στην Επιχειρησιακή Έρευνα, 2015.
- R. Ahuja, T. Magnanti, J. Orlin, *Network Flows: Theory, Algorithms, and Applications,* Prentice-Hall, 1993.
- C. Papadimitriou, K. Steiglitz, *Combinatorial Optimization: Algorithms and Complexity*, Prentice-Hall, 1982.
- J. Bang-Jensen and G. Gutin, *Digraphs: Theory, Algorithms and Applications*, Springer-Verlag, 2001.
- W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver, *Combinatorial Optimization*, John Wiley & Sons, 1998.