1. GENERAL

SCHOOL	ENGINEERING				
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING				
LEVEL OF STUDIES	UNDER GRADUATE				
COURSE CODE	4109 SEMESTER 9th				
COURSE TITLE	MACHINE LEARNING				
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded for separate components of the			WEEKLY		
course, e.g. lectures, laboratory exercises, etc. If the credits			TEACHING	G CREDITS	
are awarded for the whole of the course, give the weekly			HOURS		
teaching hours and the total credits					
Lectures			3	6	
Laboratory					
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE	Specialised general knowledge				
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	GREEK/ENGLISH				
and EXAMINATIONS:					
COURSE DELIVERED TO	YES				
ERASMUS STUDENTS					
MODULE WEB PAGE (URL)	https://eclass.uowm.gr/courses/MRE267				

2. LEARNING OUTCOMES

Learning outcomes

Machine Learning is a subfield of Artificial Intelligence related to the ability of computers to learn and act without being explicitly programmed. The study and construction of algorithms that can draw conclusions from a variety of data and make predictions related to them is the main object of investigation in this field. It is closely related to concepts from Statistics, Probability Theory and Optimization. With the abundance of data that exists in our time due to the internet and the World Wide Web, the appropriate environment is provided for the application and evaluation of machine learning algorithms and related applications are search engines, computational vision, natural language processing, recognition of user behavior patterns. in a social network, autonomous vehicles and more generally autonomous interactive systems. The aim of the course is to present the concepts and basic elements of Machine Learning (neural networks, deep learning, decision trees, categorical logic, Bayesian networks, genetic algorithms, etc.) and students' understanding of the importance and prospects it offers. this space.

Upon successful completion of the course, the student should be able to:

• Understand the basic concepts of Machine Learning.

- Describe the basic types of learning (with or without supervision, with reinforcement)
- To categorize the most important models of machine learning.
- Describe the operation of the most basic machine learning models.
- To give examples of application of machine learning models (processing of standards, autonomous vehicles, processing of speech, signal and image, development of strategy in games, etc.)

General Skills

- Theoretical and practical background concerning the cognitive field of Machine Learning.
- Understand data analysis models and associate them with application requirements.

3. COURSE CONTENTS

- Introductory concepts
- Supervised learning
- Computational classification methods
- Neural networks
- Support vector machines
- Deep learning models
- Stochastic methods
- Bayesian neural networks
- Retrospective neural networks
- Estimation of probability distributions and clustering
- Analysis of main components
- Analysis of independent components
- Learning with reinforcement
- Elements of linear algebra
- Optimization

4. TEACHING METHODS - ASSESSMENT

4. TEACHING METHODS - ASSESSIN					
MODE OFDELIVERY	1. THEORY				
	In class, face to face				
USE OF INFORMATION AND	• Use of appropriate soft	ware			
COMMUNICATIONS	Video and slide presentations via projector				
TECHNOLOGY	• Support of teaching process via the electronic platform e-class				
TEACHING METHODS					
	Activity	Semester workload			
	Lectures	50			
	Homework	50			
	Non-directed study	50			
	Course total	150			
ASSESSMENT METHODS					
	1. (60%) Final written exam which includes:				
	i. Short-answer questions				
	ii. Multiple choice questions				

iii. Problem solving
2. (40%) Homework

5. ATTACHED

- Suggested bibliography:

- Μηχανική Μάθηση, Διαμαντάρας Κ, Μπότσης Α. Δημήτρης, εκδόσεις Κλειδάριθμος, 2019
- Python Deep Learning, "Exploring deep learning techniques and neural network architectures with PyTorch, Keras and TensorFlow" I.Vasilev, D.Slater, G.Spacagna, P.Roelants, V.Zocca, 2nd ed, Packt, 2019