1. GENERAL

SCHOOL	ENGINEERI	NG				
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING					
LEVEL OF STUDIES	UNDER GR	UNDER GRADUATE				
COURSE CODE	4106	SEMESTER 8th				
COURSE TITLE	ARTIFICIAL	INTELLIGENCE				
INDEPENDENT TEACHI	NG ACTIVITII	ES				
if credits are awarded for separ	rate components of the WEEKLY					
course, e.g. lectures, laboratory ex	xercises, etc. If the credits TEACHING CREDITS				REDITS	
are awarded for the whole of the	e course, give the weekly HOURS					
teaching hours and the	e total credit	otal credits				
		Lectures	3		6	
		Laboratory				
Add rows if necessary. The organise	ation of teac	hing and the				
teaching methods used are describ	ed in detail a	nt (d).				
COURSE TYPE	Specialised	ed general knowledge				
general background,						
special background, specialised						
general knowledge, skills						
development						
PREREQUISITE COURSES:						
LANGUAGE OF INSTRUCTION	GREEK/ENGLISH					
and EXAMINATIONS:						
COURSE DELIVERED TO	YES					
ERASMUS STUDENTS						
MODULE WEB PAGE (URL)	https://eclass.uowm.gr/courses/MRE265					

2. LEARNING OUTCOMES

Learning outcomes

Artificial Intelligence is the field of computer science that deals with the design of intelligent computer systems, i.e., systems that exhibit features related to intelligence in human behavior. The course introduces the structure of intelligent agents and examines problem solving with search methods (uninformed or blind search as well as informed search), the search for solutions to constraint satisfaction problems and the search for successful actions in rivalry problems (e.g., games between two opponents). Also, the methods of representation of knowledge and reasoning are presented, where the propositional logic, the first-order predicate calculus, inference in the first-order calculus and the concept of semantic networks are introduced. The problem of action planning is studied, and an introduction to probabilistic reasoning is also made examining the Bayesian networks and Markov chains.

Upon successful completion of the course, the student should be able to:

- Model problems as AI problems and select/use appropriate search algorithms to solve them.
- Represent knowledge by using methods of Logic and draw conclusions from it.
- Model and solve action planning/scheduling problems.

• Model probabilistic decision problems by using Bayes networks.

General Skills

This course aims to introduce the student to basic methodologies of representation and processing of knowledge and how he can use them in problems related to intelligent behavior, such as finding solutions to combinatorial problems, knowledge representation and inference and also autonomous planning of actions.

3. COURSE CONTENTS

- Problem Representation Search Trees
- Problem Solving Techniques based on Blind (Uninformed) Search
- Problem Solving Techniques based on Informed Search
- Constraint Satisfaction Problems
- Adversarial Search
- Propositional Logic
- First-Order Predicate Calculus
- Reasoning in First First-Order Logic
- Knowledge Representation
- Automated Planning
- Probabilistic Reasoning
- Decision making

4. TEACHING METHODS - ASSESSMENT

MODE OFDELIVERY	1. THEORY				
	In class, face to face				
USE OF INFORMATION AND	Use of appropriate software				
COMMUNICATIONS	Video and slide presentations via projector				
TECHNOLOGY	• Support of teaching process via the electronic platform e-class				
TEACHING METHODS					
	Activity	Semester workload			
	Lectures	50			
	Homework	50			
	Non-directed study	50			
	Course total	150			
ASSESSMENT METHODS					
	1. (60%) Final written exam which includes:				
	i. Short-answer questions				
	ii. Multiple choice questions				
	iii. Problem solving				
	2. (40%) Homework				

5. ATTACHED

- Suggested bibliography:

- Ι.Βλαχάβας, Π.Κεφαλάς, Ν.Βασιλειάδης,Φ.Κόκκορας, Η.Σακελλαρίου, 2011, Τεχνητή Νοημοσύνη (4η Έκδοση), Εκδότης: ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ, ISBN: 978-6185196448
- Stuart J. Russell and Peter Norvig, 2005, Τεχνητή Νοημοσύνη: Μία Σύγχρονη Προσέγγιση (2η Αμερικάνικη Έκδοση), Κλειδάριθμος, ISBN: 978-9602098738
- Stuart J. Russell and Peter Norvig, 2020, Artificial Intelligence: A Modern Approach (4th Edition), Pearson, ISBN: 978-0134610993