COURSE OUTLINE

1. GENERAL

SCHOOL	ENGINEERING			
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	3204 SEMESTER 6			
COURSE TITLE	Computer Aided Analysis and Manufacturing (CAE/CAM)			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	T TEACHING ACTIVITIES separate components of the course, e.g. ses, etc. If the credits are awarded for the weekly teaching hours and the total creditsWEEKLY TEACHING HOURSCREDITS			
	Lectures 3 6			
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special back	ground, skills de	evelopment	
PREREQUISITE COURSES:	NONE			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK/ENGLISH			
COURSE DELIVERED TO ERASMUS STUDENTS	YES			
MODULE WEB PAGE (URL)	https://eclass.uowm.gr/			

2. LEARNING OUTCOMES

Learning outcomes

On successful completion of this module the learner will be able to:

The students are able to:

- perform structural analyses.
- evaluate the optimum dimensions of structures.
- satisfy strength and safety requirements.
- design the production process (selection of tools and conditions).
- generate the NC program of a part.
- use CAE/CAM software.

General Skills

Upon successful completion of the program students will:

- have the theoretical and practical background on the field of product and systems design engineering and the corresponding profession.
- utilize scientific knowledge to understand, analyze and solve problems.
- apply a wide range of scientific and technical knowledge concerning the design and development of products and systems.

3. COURSE CONTENTS

Introduction to CAE and computational mechanics methods, theoretical basis of the finite element method, theory of elasticity, failure theories and design methodologies, simplifications in FEM, element types and discretization, material properties, loads and boundary conditions, post-processing, structural optimization.

Process study and schedule (procedure, computer aided design). CNC program generation - CAM (methodology, definition of workpiece, machine selection, tools and conditions selection, CNC machining centers, NC sequences). Machine structure. Process control. Post processors.

4. TEACHING METHODS - ASSESSMENT				
MODE OFDELIVERY	In class, face to face			
USE OF INFORMATION AND	Video and slide presentations via projector			
COMMUNICATIONS TECHNOLOGY	Support of teaching process via the electronic			
	platform e-class			
	Communication with students.			
TEACHING METHODS	Activity	Semester workload		
	Lectures 90			
	Non-directed study 60			
	Course total	150		
ASSESSMENT METHODS				
	Final written exam which includes:			
	i. Short-answer questions			
	ii. Multiple choice questions			
	iii. Problem solving			
	-			
	Assignment			

5. ATTACHED

- Suggested bibliography:

- Βιβλίο [102072433]: Κατασκευαστική και Ανάλυση Προϊόντων με τη Βοήθεια Η/Υ, Ευκολίδης Νικόλαος, Τζώτζης Αναστάσιος, Κυράτσης Παναγιώτης <u>Λεπτομέρειες</u>
- 2. Βιβλίο [18548727]: Ανάλυση Πεπερασμένων Στοιχείων, Buchanan George R. Λεπτομέρειες
- 3. Class notes