COURSE OUTLINE

1. GENERAL

SCHOOL	ENGINEERING				
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	2204		SEMESTER 4°		
COURSE TITLE	COMPUTER AIDED DESIGN				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS		CREDITS
	Lectures		3		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Back	ground			
PREREQUISITE COURSES:	NONE				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK/ENGLISH				
COURSE DELIVERED TO ERASMUS STUDENTS	YES				
MODULE WEB PAGE (URL)	https://ecla	ss.uowm.gr/			

2. LEARNING OUTCOMES

Learning outcomes

The purpose of this course is to introduce the students to the processes and methods for the computer aided design of products in three dimensions. The students are introduced to the three-dimensional design with the aid of computers. They acquire knowledge on the following concepts: design methodologies, geometric models, internal representation of solid geometric models, parametric design, assembly methodologies, representation of curves and surfaces, and rendering techniques.

On successful completion of this module the learner will be able to:

- 1. Know the terminology of a CAD system.
- 2. Understand the structure of a CAD system.
- 3. Use the geometric models for designing three-dimensional products.
- 4. Select the appropriate geometric model for the designing of a three-dimensional product.
- 5. Use a CAD software.
- 6. Apply different methodologies for designing three-dimensional objects

General Skills

Upon successful completion of the program students will:

- have the theoretical and practical background on the field of Industrial Design and the corresponding profession.
- apply a wide range of scientific and technical knowledge concerning the design and development of industrial products.

3. COURSE CONTENTS

- *The product cycle*. The design process, the benefits of using CAD/CAM systems in manufacturing of a product.
- Introduction to CAD Systems. CAD Hardware, CAD software, evaluation of CAD systems.
- *Curves*. Representation of curves, parametric representation of analytic and synthetic curves.
- *Surfaces*. Representation of surfaces, parametric representation of analytic and synthetic surfaces.
- *Geometric modeling*. Geometric models for three-dimensional design (wireframe, surface and solid).
- *The solid geometric model.* Methods for creating a solid (primitive solids, Boolean operations, sweeping, feature-based design, parametric modeling).
- *Methods for the internal representation of solids.* Constructive Solid Geometry (CSG), Boundary Representation (b-rep) models and Decomposition Model.
- *Solid modeling systems*. Architecture of solid modeling systems.

4. TEACHING METHODS - ASSESSMENT

4. TEACHING METHODS - ASSESSMENT					
MODE OFDELIVERY	In class, face to face				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 Use of appropriate CAD software Video and slide presentations via projector Support of teaching process via the electronic platform e-class 				
TEACHING METHODS	Activity	Semester workload			
	Lectures	70			
	Semester project	40			
	Non-directed study	40			
	Course total	150			
ASSESSMENT METHODS	Final written exam which includes:				
	i. Short-answer questions				
	ii. Multiple choice questions				
	iii. Problem solving				

5. ATTACHED

- Suggested bibliography:

- CAD/CAM Theory and Practice, Ibrahim Zeid, McGraw Hill, 1991.
- Mastering CAD/CAM, Ibrahim, Zeid, McGraw-Hill Education Europe, 2004.
- Συστήματα CAD/CAM και Τρισδιάστατη Μοντελοποίηση, Νικόλαος Μπιλάλης, Εμμανουήλ Μαραβελάκης, Εκδόσεις Κριτική, Αθήνα, 2020.
- Βασικές αρχές συστημάτων CAD/CAM/CAE, Kunwoo Lee, Κλειδάριθμος, 2009.
- Σχεδιασμός με Η-Υ, Παπαδόπουλος Χρήστος, Εκδόσεις Πανεπιστημίου Πατρών, 2000.