1. GENERAL

SCHOOL	ENGINEERING			
DEPARTMENT	PRODUCT AND SYSTEMS DESIGN ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	2101		SEMESTER	3rd
COURSE TITLE	ALGORITHMS AND DATA STRUCTURES			
INDEPENDENT TEACHI	NG ACTIVITII	ES		
if credits are awarded for separate components of the			WEEKLY	
course, e.g. lectures, laboratory exercises, etc. If the credits			TEACHING	i CREDITS
are awarded for the whole of the course, give the weekly			HOURS	
teaching hours and the	e total credit	s		
		Lectures	3	6
Laboratory				
Add rows if necessary. The organisation of teaching and the				
teaching methods used are described in detail at (d).				
COURSE TYPE	Special bac	kground		
general background,				
special background, specialised				
general knowledge, skills				
development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	GREEK/ENGLISH			
and EXAMINATIONS:				
COURSE DELIVERED TO	YES			
ERASMUS STUDENTS				
MODULE WEB PAGE (URL)	https://eclass.uowm.gr/courses/MRE232			

2. LEARNING OUTCOMES

Learning outcomes

An algorithm is a well-designed computational process that processes incoming data and produces results corresponding to solution of a particular problem. The aim of this course is to introduce students to the understanding of the complexity of algorithms in terms of processing speed and computational resource requirements (memory), to provide them with basic knowledge about the design data structures so that they can design algorithms that manage computer memory efficiently, and also to provide them with basic knowledge of techniques for designing efficient computational processes by studying classical problem solving algorithms.

Upon successful completion of the course, the student should be able to:

- Evaluate the performance of an algorithm in terms of its execution time
- Estimate the requirements of an algorithm in computing power
- Estimate the requirements of an algorithm for memory on a computer
- Design appropriate data structures for an algorithm
- Optimize the computational process in an algorithm

• Implement algorithms with an object-oriented approach.

General Skills

This course aims to give students the necessary theoretical background for the analysis of algorithms, basic knowledge for the development of algorithms, as well as expertise for object-oriented implementation of algorithms.

3. COURSE CONTENTS

- Algorithm analysis
- Asymptotic behavior of algorithms
- Data structures (arrays, stacks, queues, binary trees, graphs)
- Sorting algorithms
- The divide and conquer technique
- Recursion
- Searching in tree structures
- The greedy method
- Dynamic programming

4. TEACHING METHODS - ASSESSMENT

MODE OFDELIVERY	1. THEORY			
	In class, face to face			
USE OF INFORMATION AND	Use of appropriate software			
COMMUNICATIONS	 Video and slide presentations via projector 			
TECHNOLOGY	• Support of teaching process via the electronic platform			
	e-class			
TEACHING METHODS				
	Activity	Semester workload		
	Lectures	50		
	Homework	50		
	Non-directed study	50		
	Course total	150		
ASSESSMENT METHODS	1. (60%) Final written exam which includes:			
	i. Short-answer questions			
	ii. Multiple choice questions			
	iii. Problem so	lving		
	2. (40%) Homework			

5. ATTACHED

- Suggested bibliography:

- Τσίχλας, Κ., Γούναρης, Α., Μανωλόπουλος, Ι., 2015, Σχεδίαση και ανάλυση αλγορίθμων. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: http://hdl.handle.net/11419/4005, ISBN: 978-9606034657
- Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, 2013, Data Structures & Algorithms in Python, John Wiley & Sons, Inc., ISBN: 978-1118290279
- Μαγκούτης Κ, Νικολάου Χ, 2015, Εισαγωγή στον αντικειμενοστραφή

προγραμματισμό με Python, Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών. Διαθέσιμο στο: http://hdl.handle.net/11419/1708, ISBN: 978-9606031014