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Abstract

In this paper we apply Regression via Classification (RvC) to the problem of estimating the number of software defects. This
approach apart from a certain number of faults, it also outputs an associated interval of values, within which this estimate lies with
a certain confidence. RvC also allows the production of comprehensible models of software defects exploiting symbolic learning algo-
rithms. To evaluate this approach we perform an extensive comparative experimental study of the effectiveness of several machine learn-
ing algorithms in two software data sets. RvC manages to get better regression error than the standard regression approaches on both
datasets.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

As the size and complexity of software systems increases,
software industry is challenged to deliver high quality, reli-
able software on time and within budget. Although there is
diversity in the definition of software quality, it is widely
accepted that a project with many defects lacks quality.
Defects are commonly defined as deviations from specifica-
tions or expectations that might lead to failures in operation
(Fenton & Neil, 1999). Knowing the causes of possible
defects as well as identifying general software management
decisions that may need attention since the beginning of a
project could save money, time and work. The estimation
of the potential fault-proness of software is an indicator
of quality and can help planning, controlling and executing
software development and maintenance activities.

An efficient method for defect analysis is learning from
past mistakes to prevent future ones. Today, there exist
several data sets that could be mined in order to discover
useful knowledge regarding defects (International Software
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Benchmarking Standards Group; Maxwell, 2002). Using
this knowledge one should ideally be able to

(a) Identify potential fault-prone software.
(b) Estimate the specific number of faults.
(c) Discover the possible causes of faults.

Several data mining methods have been proposed for
defect analysis in the past (Fenton & Neil, 1999, 2001;
Khoshgoftaar & Seliya, 2002; Lanubile & Visaggio, 1997;
Neumann & Bibi, 2004; Wooff, Goldstein, & Cohen,
2002) dealing successfully with some of the above issues.
Most of them create either regression models that provide
equations estimating the number of faults, or classification
models that identify fault-proneness. Estimating the exact
number of faults is too risky, especially in the beginning
of a project when too little information is available. In
addition, regression models are not easily understood by
domain experts, and thus provide little help for the discov-
ery of fault causes. The mathematical nature of these mod-
els tends to obscure rather than clarify the potential causes
of faults. Classification models that predict fault-proneness
on the other hand can be comprehensible, but not very use-
ful, because they give no clue about the actual number of
faults.

mailto:sbibi@csd.auth.gr
mailto:greg@csd.auth.gr
mailto:stamelos@csd.auth.gr
mailto:vlahavas@csd.auth.gr


2092 S. Bibi et al. / Expert Systems with Applications 34 (2008) 2091–2101
These issues led us to propose a different data mining
approach, called Regression via Classification (RvC)
(Torgo & Gama, 1997), that benefits from the advantages
and caters for the disadvantages of both regression and
classification approaches. RvC involves the discretization
of the target variable into a finite number of intervals,
the induction of a classification model for predicting such
intervals and the transformation of the model predictions
back into specific numerical estimates.

In Bibi, Tsoumakas, Stamelos, and Vlahavas (2006) the
authors have introduced the theoretical framework of RvC
and applied and evaluated the method in one data set. The
results were encouraging and indicated several advantages
of RvC when applied for software fault prediction:

• It can provide a better understanding of software defects
by automatically dividing their numerical values into
significant intervals.

• Apart from a numerical estimate of faults, it also out-
puts an associated interval of values, within which this
estimate lies with a certain confidence. This way it
reduces the level of uncertainty associated with just a
point estimate, and provides more knowledge concern-
ing the defects to the end user.

• It allows the production of comprehensible models of
software defects that are easily interpretable by project
managers and other non-experts in data mining technol-
ogy. This can be achieved through the use of symbolic
classification algorithms (rule learning, decision tree
learning).

In order to evaluate RvC in terms of its prediction accu-
racy, a comprehensive experimental study is performed.
We use several classification algorithms for the implemen-
tation of the RvC framework and we assess their efficiency
for the task of software defect prediction. We also make a
comparative evaluation of RvC with classical regression
algorithms used in past approaches and other state-of-
the-art regression algorithms from the field of machine
learning such as support vector machines and model trees.
Apart from the prediction accuracy we also present and
discuss the knowledge that the RvC framework produces,
i.e. the result of the automatic discretization of the defects
and the comprehensible models that are produced (rules
and trees) by symbolic algorithms.

Two data sets were used for the evaluation of all these
approaches. The first one involves maintenance data from
bank applications (Maxwell, 2002). It contains data about
the size and defects of each application. The second data
set is the widely known ISBSG multi-organizational repos-
itory release 7 that has 1227 projects (International Soft-
ware Benchmarking Standards Group). Using these two
data sets this study serves another purpose as well: to com-
pare company specific models with models based on multi-
company data. The results coming from the application of
RvC methods to these two data sets are promising. Both
regression and classification accuracy of the models is com-
petitive to those of regression models and in most cases
RvC outperforms them.

This paper is organized as follows. The next section pre-
sents an overview of the related work. In Section 3, we
present the RvC framework along with details concerning
the implementation of this method for the problem of soft-
ware defect prediction. The description of the two datasets
and the learning algorithms applied to the data sets are
given in Section 4. Section 5 presents the evaluation results
along with the extracted software fault prediction models.
Finally, in Section 6, we conclude the paper and present
ideas for future work.

2. Related work

The earliest studies in software defect prediction focused
on establishing relationships between software complexity,
usually measured in lines of code, and defects. Well known
metrics introduced during 1970s is Halstead’s theory (Hal-
stead, 1975) which predicts the number of defects based on
the language volume and McCabe’s cyclomatic complexity
(McCabe, 1976) which measures and controls the number
of paths through a program. From this point forward sev-
eral models were suggested based on the above metrics
(Gaffney, 1984; Lipow, 1982) and also other code complex-
ity metrics (Cohen & Devanbu, 1999; Neumann & Bibi,
2004).

The usual drawback of complexity metrics is that they
indicate software size as the only predictor of faults. There-
fore in 1980s and afterwards research has tried to relate soft-
ware complexity to sets of different metrics, deriving
regression models. A simple regression method is linear
regression that when applied in large data sets outperforms
expert judgement (Tomaszewski, Hakansson, Lundberg, &
Grahn, 2006). Recent studies exploring regression models
suggest discriminant analysis (Bellini, Bruno, Nesi, &
Rogai, 2005) and neural networks for predicting the number
of faults in modules (Lanubile, Lonigro, & Visaggio, 1995;
Lanubile & Visaggio, 1997). Neural nets are also used in
Quah and Thwin (2004) in order to predict the number of
faults in PL/SQL projects. In Khoshgoftaar and Seliya
(2002), a case study is presented where various tree based
regression models using design metrics are suggested for
predicting the number of faults in modules. MARS regres-
sion method has been introduced in Briand, Melo, and
Wust (2002) for fault prediction in object-oriented code.
Also MARS is suggested for the prediction of the number
of faults from abstract cognitive complexity metrics are pre-
sented and analyzed (Neumann & Bibi, 2004). Ostrand,
Weyuker, and Bell (2005) suggests the use of a binomial
regression model that exploits the knowledge of past
releases of a software project regarding faults to predict
the number of faults in the next release of the project.
Regression models on the other hand present the disadvan-
tage of providing results in the form of a ‘‘black box’’. The
results are difficult to interpret and sometimes the models
ignore important causal effects. In 1990s, classification mod-
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els were adopted to solve this problem. Clustering in combi-
nation with expert opinion is proposed for creating fault
prediction models and detecting potential noisy modules
in Zhong, Khoshgoftaar, and Seliya (2004b) Zhong, Khosh-
goftaar, and Seliya (2004a). Logistic regression is applied in
studies (Bellini et al., 2005; Emam, Melo, & Machado, 2001
Kamiya, Kusumoto, & Inoue, 1999) for the estimation of
fault-proneness. Bayesian nets in combination with multi-
criteria decision aid in Fenton and Neil (2001) are suggested
for providing a support for decision making based on cau-
sality. Also in Wooff et al. (2002) a Bayesian model is sug-
gested for tracking modules for software testing. Most of
the above studies estimate potential fault-proneness of soft-
ware components without providing any fault number.

In the same decade due to the large number of research
in this field, several studies compared different methods
such as regression techniques and classification techniques.
However the most accurate method varied according to the
context of the study. Principal component analysis, dis-
criminant analysis, logistic regression, logical classification
models, layered neural networks, and holographic net-
works are applied in Lanubile et al. (1995) and Lanubile
and Visaggio (1997) while MARS regression method and
classification methods such as rules, CART and Bayesian
networks are compared in Neumann and Bibi (2004). Fen-
ton and Neil (1999) provided a critical review of literature
and suggested a theoretical framework based on Bayesian
networks that could solve the problems identified. They
argued that complexity metrics should not be the only pre-
dictor of defects, they pointed out that statistical method-
ologies should pay attention on the data quality and the
evaluation method and finally they stressed that it is impor-
tant to identify the relationship between faults and failures.

As mentioned in Fenton and Neil (1999) clearly all of the
problems described cannot be solved easily, however mod-
eling the complexities of software development using new
probabilistic techniques presents a positive way forward.
In this study, we propose the use of Regression via Classifi-
cation for modeling uncertainty in software defect predic-
tion. Using this method we will attempt to solve several of
the problems mentioned in literature such as, interpretabil-
ity of the results, use of size as the only predictor, combina-
tion of results with expert opinion. We will apply RvC in
two data sets containing data relative to the environment
variables, the application domain and the computer attri-
butes. The main idea behind the prediction models is to pro-
vide a clue of which tools, languages and application
domains are connected with the existence of faults and pre-
pare the ground of the appropriate managerial decisions.

3. Regression via Classification

In this section we first present the general framework of
the Regression via Classification approach and the impor-
tant stages in this process. We then provide specific details
concerning our implementation of this framework for the
problem of software defect prediction.
3.1. The Regression via Classification framework

Supervised machine learning considers the problem of
approximating a function that gives the value of a depen-
dent or target variable y, based on the values of a number
of independent or input variables x1, x2, . . ., xn. If y takes
continuous values, then the learning task is called regres-

sion, while if y takes discrete values then it is called
classification.

Traditionally, machine learning research has focused on
the classification task. It would therefore be very interesting
to be able to solve regression problems taking advantage of
the many machine learning algorithms and methodologies
that exist for classification. This requires a mapping of
regression problems into classification problems and back,
which has already been studied by some researchers (Torgo
& Gama, 1997; Weiss & Indurkhya, 1995).

The whole process of Regression via Classification
(RvC) comprises two important stages: (a) The discretiza-
tion of the numeric target variable in order to learn a clas-
sification model, (b) the reverse process of transforming the
class output of the model into a numeric prediction. The
first stage is necessary for training the classification model
and the second for applying it to new data.

3.1.1. Discretizing the target variable

The task of discretizing an input attribute for classifica-
tion problems is usually divided into supervised discretiza-
tion, when knowledge about the class attribute is used for
the discretization process and unsupervised discretization,
when the class values of the instances are unknown or
not used. An interesting study and experimental results of
supervised and unsupervised discretization methods can
be found in Dougherty, Kohavi, and Sahami (1995). The
discretization of a target variable in a regression problem
is an unsupervised discretization task.

Two simple methods for unsupervised discretization are
equal-interval binning and equal-frequency binning. The
former divides the range of values of a numerical attribute
into a pre-determined number of equal intervals. The latter
divides the range of values into a pre-determined number
of intervals that contain equal number of instances.

The k-means clustering algorithm (Witten & Frank,
1999) has also been used for unsupervised discretization.
The algorithm starts by randomly selecting k values as cen-
ters of the ranges. It then assigns all values to the closest of
these centers and calculates the new centers as the mean of
the values of these ranges. This process is repeated until the
same values are assigned to each of the k ranges in two con-
secutive iterations.

3.1.2. Transforming classifier outputs to numeric

predictions

Once the discretization process has been completed, any
supervised classification algorithm can be used for model-
ing the data. The next step is to make numeric predictions
from the classification model that is produced. This model



Table 1
Descriptive statistics for the number of faults

Data set No. of
projects

Minimum Maximum Mean Std.
Dev.

Pekka 66 0 59 7.106 11.848
ISBSG 91 0 151 9.813 21.31
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predicts a number of classes which correspond to numerical
intervals of the original target variable. There remains the
problem of transforming this class to a specific number,
in order to assess the regression error of the RvC frame-
work. A choice for this number should be a statistic of cen-
trality that summarises the values of the training instances
within each interval. Such a statistic could be for example
the mean value of the target variable for each interval.

3.2. Our RvC implementation for software defect

prediction

Given the three different unsupervised discretization
methods that were previously described, one problem that
we are faced with in our implementation of the RvC frame-
work, is which method to use for discretizing the faults. None
of these three methods is better than the rest for all cases.

A second problem is that all discretization methods have
a common requirement: a pre-determined number of clas-
ses k. So, even if we have selected one of these methods,
we would then have to determine the number of classes.
Obviously this number will have a direct effect on the sub-
sequent classification learning task.

In order to deal with the above problems of determining
the actual parameters of the discretization process of the
RvC framework, we decided to use a wrapper approach
(Kohavi, 1995b). The wrapper approach is used for deter-
mining the best parameters for a machine learning method,
and it has been used in the past for classifier parameter
selection and feature selection. It evaluates the different
configurations of an approach by performing cross-valida-
tion and selects the configuration with the best accuracy.

Applying the wrapper approach, we run the discretiza-
tion process using all three methods and experiment with
the number of classes in the range 2 to 1 + 3.3 log(n), where
n is the number of instances. The upper bound of the num-
ber of classes was proposed in Sturge (1926) for selecting
the number of classes for discretization purposes. However,
this is just a statistical proposal for the number of classes,
that does not take into account any knowledge about the
domain and tends to propose a rather large number of clas-
ses. For this reason we used it as an upper bound in the
wrapper approach.

In total, our implementation evaluates 3 * (1 + 3.3 log(n)
� 2) = 9.9 log(n) � 3 different configurations of the discret-
ization process using 10-fold cross-validation (Kohavi,
1995a). The 10-fold cross-validation process splits the data
into 10-equal disjoint parts and uses nine of these parts for
training the RvC framework and one for testing. This is
done 10 times, each time using a different part of data
for testing. The training data are used initially to discretize
the faults (using one of the configurations) and then to
train a classification algorithm. The learned model is then
applied to the test data. For the transformation of the out-
put of the classification model back to a numeric estimate
we use the median of the values in each interval, as it is usu-
ally a more robust centrality measure than the mean. So,
for each test instance we calculate the absolute difference
of the number of faults in this instance with the median
value of the predicted class interval. The average of these
differences for all test instances is the Mean Absolute Error
performance metric for numeric prediction. The configura-
tion with the lowest average Mean Absolute Error over all
the 10-folds of the cross-validation is selected as the config-
uration to use.
4. Data sets and learning algorithms

We firstly describe here the two data sets that were used
in the experiments. We then present the learning algorithms
that were used for RvC and ordinary regression on these
data sets.

4.1. Data sets

Both data sets include data concerning the methods,
tools, requirements and people that are involved in a soft-
ware project. This information will be used by the algo-
rithms for making an estimation of possible defects.
Pekka data set used in the study was selected as a small
data set containing projects maintained by a single com-
pany. ISBSG data set was selected as a large multi-organi-
zational data set indicative of software development in
companies all over world. Descriptive statistics of the two
data sets are presented in Table 1.

4.1.1. The Pekka data set
The data in the Pekka data set come from a big commer-

cial bank in Finland, which began to collect development
and maintenance data as early as 1985. The data were col-
lected by Pekka Forselious and are presented in Maxwell
(2002). Between 1987 and 1995, 250 IBM applications were
developed that moved applications from a Bull mainframe
environment to a three-tier architecture system constructed
of PCs, local servers and IBM mainframes. From the 250
projects of the database, a subset of 67 applications was
presented in Maxwell (2002) that had accurate, complete
and valid size, defect and effort data as mentioned in the
book. The results coming from the statistical analysis when
considering the whole data set pointed out the project with
ID 55, which presented 163 defects, as an outlier. Almost
all classification methods created a fault class with that
project as a single member while the rest of the projects
were classified into another class. In order to avoid the
above situation the models were recreated omitting the
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project with ID = 55. The final data set used in the study
included 66 projects. Tables 2 and 3 present the variables
of Pekka data set used in our analysis.

This data set was selected because it contained projects
with many defect data and risk factors whose values have
been carefully assessed. In addition, it came from only
one company so the results, would be indicative of the pre-
dictive accuracy of the suggested estimation models within
a company.

4.1.2. The ISBSG data set

The ISBSG (International Software Benchmarking
Standards Group) data set release 7 contains 1238 projects
that cover the software development industry from 1989 to
2001 (International Software Benchmarking Standards
Group). The group maintains, develops and exploits a
repository of international software project metrics to help
developers with project estimation and benchmarking. The
data set contains over 50 fields involving the nature of the
project, the type of the product and the development envi-
Table 2
Variable description for Pekka data set

Name Variable description Values

Borg Business organization type BigCorp = Big Corporation, C
ITServ = IT services, InHServ

Morg Internal business unit Account = Accounting, BUC
CustInt = Customer interconn
infrastructure, ITServ = IT se
LetCred = Letter of credit, Lo
Treasury = Treasury, Resto =

Apptype Application type BackOff = BackOffice databas
business system, InfServ = Inf

DBMS Database management system DB2, ISDN
Tpms Transaction processing

management system
BATCH, IIMS, IMS, PTCIC

r1 Number of users Values of risk factors range fr
r2 Configuration
r3 Change management
r4 Structural flexibility
r5 Documentation quality
r6 People dependence
r7 Shutdown constraints
r8 Online transaction processing

integration
r9 Batch processing integration
r10 Capacity flexibility

Table 3
Descriptive statistics for the variables with continuous values for Pekka data

Name Variable description Minim

FP Function points 18
Pcobol Percentage of code written in cobol 0
Ptelon Percentage of code written in telon 0
Peasy Percentage of code written in easy 0
Pjcl Percentage of code written in jcl 0
Ageend Total months maintained 8
Avetrans Average transactions per 24 h 0
Disksp Disk space used 0
Cpu Cpu usage 0
ronment, methods and tools. The projects come from 20
different countries. Over 70 languages are represented in
the data set. As a consequence, ISBSG data set covers a
wide range of possible project attributes and application
environments.

The selection of this data set for creating and comparing
fault estimation models was motivated by the following
questions:

1. Is it feasible to create accurate fault estimation models
from multi-organizational data?

2. Different applications, in different environments have
the same causes of faults?

3. What are the differences between estimates derived from
multi-company data and estimates derived from com-
pany specific data?

Due to the fact that the ISBSG repository is a large het-
erogeneous data set, a data selection, transformation and
preparation process was required before applying any data
orp = Other corporations, Group = Accounting/management,
= In-House services, Retail = Retail/people

= Business unit counting, Common = Banking service,
ecting, Decsup = Decision support, Deposit = Deposit ITInfra = IT

rvices, ITSupp = IT technical support, IntlBank = International banking,
an = Loan security, Payment = Payment, Person = Personel,
In-house restaurant, SecTrade = Securities trading system
e, Connect = Customer interconnection service, Core = Core banking
ormation service/decision support

S, RECICS

om 1 to 5 1 = Least risky situation 5 = Most risky situation

set

um Maximum Mean Std. Dev.

2328 465.985 517.08
1 0.377 0.296
0.87 0.072 0.19
0.52 0.095 0.134
1 0.456 0.264
85 39.288 20.74
345 14.227 47.19
39,012 1838.015 6063.651
2197 298.106 526.563
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mining methods. Initially only the projects that had values
for the minor, major and extreme defects were selected (97
projects). Because several projects had no defects reported
for all three defect categories we decided that it would be
more appropriate to create one more defect field. This field
represents the total number of faults detected in an applica-
tion and is the sum of the minor, major and extreme defects
that are recorded in the data set. In order to avoid any mis-
takes from data collection or measurement scope, only pro-
jects with data quality A and B in the corresponding field
were selected. Finally variables containing redundant or
aggregated information were excluded (such as the basic
elements of function points analysis). Also for attributes
like Organization type that had many discrete levels, levels
for which less than 4 observations were observed were put
under category Other. After the pre-processing stage, 91
projects were used for applying the data mining methods.
Tables 4 and 5 present the variables of ISBSG data set.

4.2. Learning algorithms

We used the WEKA machine learning library (Witten &
Frank, 1999) as the source of algorithms for experimenta-
Table 4
Variable description for ISBSG data set

Name Variable description Values

DT Development type New development, re-development,
LT Language type 3GL, 4GL, ApG
PPL Primary programming

language
C, COBOL, NATURAL, ORACL

OT Organisation type Communication, electricity/gas/wat
transport and storage, energy

DBMS Database management
system

ADABAS, DB2, IDMSX, ORACL

DP Development platform MF, MR, PC
HMA How methodolgy acquired Developed/purchased, developed in
AT Application type DSS, MIS, Office.I.S, other, proces
BAT Business area type Accounting, banking, engineering,
UCU Upper case tool used Yes, no
LCU Lower case tool used Yes, no
ICU Integrated case tool used Yes, no
MA Methodology acquisition Inhouse, purchased, combined
PC Package customization Yes, no

Table 5
Descriptive statistics for the variables with continuous values for ISBSG data

Name Variable description Minimum

FP Function points 11
mts Max team size 1
Date Implementation date 1992
EI External inquiry 4
EO External output 0
EE External inquiry 0
ILF Internal logical files 0
EIF External interface files 0
Added Added lines of code 0
Changed Changed lines of code 0
Deleted Deleted lines of code 0
tion. For the RvC framework we used the following classi-
fication algorithms as implemented in WEKA with default
parameters unless otherwise stated:

• IBk: The k nearest neighbor algorithm (Aha, Kibler, &
Albert, 1991), using cross-validation to select the best
k value.

• JRip: The RIPPER rule learning algorithm (Cohen,
1995).

• PART: The PART rule learning algorithm (Witten &
Frank, 1998).

• J48: The C4.5 decision tree learning algorithm (Quinlan,
1993).

• SMO: The sequential minimal optimization algorithm
for training a support vector classifier using RBF ker-
nels (Platt, 1998).

For ordinary regression we used the following algo-
rithms as implemented in WEKA with default parameters
unless otherwise stated:

• Linear: A least median squared linear regression algo-
rithm (Rousseeuw & Leroy, 1987).
enhancement

E, PL/I, SQL, TELON other4GL, other

er, financial, business, manufacturing, other, public administration,

E, other

house, purchased
s control, transaction/production
financial, fineenforcement, manufacturing, other

set

Maximum Mean Std. Dev.

5684 763.385 957.72
65 7.868 11.936
1995 1993 0.716
2221 345.5 405.493
1216 207.6 238.541
820 135.775 152.659
1137 202.75 213.737
317 32.325 68.545
1481 171 298.932
556 113.429 133.596
270 23.829 61.5
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• MLP: An algorithm for training a multi-layer percep-
tron (Bishop, 1995).

• Reg-IBk: The k nearest neighbor algorithm (Aha et al.,
1991), using cross-validation to select the best k value.

• SMOreg: The sequential minimal optimization algo-
rithm of Smola and Scholkopf (1998) for support vector
regression using RBF kernels.

• M5P: An algorithm for generating M5 model trees
(Quinlan, 1992; Witten & Frank, 1999). This algorithm
is used twice, one for the production of a model tree
and one for the production of a regression tree.

• REPTree: A fast regression tree learner that uses infor-
mation variance reduction and reduced-error pruning
(Witten & Frank, 1999).
5. Results and discussion

In this section we first present the evaluation results and
then the classification models that were extracted from the
two data sets will be presented and discussed.

5.1. Comparative evaluation of RvC

In order to evaluate RvC and the regression algorithms,
10-fold cross-validation was used, which is one of the most
widely used and acceptable method for evaluating machine
learning approaches (Kohavi, 1995a). The performance of
the approaches was measured by their average Mean Abso-
lute Error for the 10-folds of the cross-validation process.
In addition, for RvC we calculated the average classifica-
tion accuracy of the algorithms, the average number of
fault classes and the percentage that each of the three dis-
cretization methods was used.

Table 6 shows the average Mean Absolute Error of all
the approaches on the two datasets. We firstly notice that
RvC actually manages to get better regression error than
the standard regression approaches on both datasets. The
best performance in both data sets is obtained with RvC
Table 6
Mean Absolute Error of RvC and regression approaches

RvC Regression

SMO RIPPER PART C4.5 IBk SMOreg Linea

PEKKA 6.69 7.15 7.70 8.53 7.88 7.07 7.96
ISBSG 9.08 9.77 9.56 9.36 10.17 9.81 10.17

Table 7
Accuracy, mean number of classes and percentage of each discretization meth

PEKKA

Acc Av. C M1 M2

SMO 0.94 2.00 1.00 0.00
PART 0.72 4.40 0.60 0.10
IBk 0.69 2.40 0.40 0.50
C4.5 0.67 3.90 0.60 0.10
RIPPER 0.46 5.40 0.40 0.60
and the SMO algorithm, while the SMOreg algorithm for
regression is the second best. This result agrees with the
idea of support vector machines as very effective machine
learning approaches. However, support vector machines
do not produce comprehensible models. Fortunately, rela-
tively good performance is also obtained by the symbolic
algorithms (RIPPER, C4.5 and PART). We will present
the comprehensible models produced by these algorithms
in the following section.

Another thing that must be noted is the fact that RvC
achieves better performance overall than regression
approaches, even though it uses a rough estimation of
the actual numbers. One reason for this could be the diffi-
culty of the datasets (few instances, high dimensionality) as
a regression learning problem which leads to poor numeric
estimates.

Table 7 shows the accuracy of the RvC classification
algorithms, the mean number of classes in the 10-folds of
the cross-validation and the percentage of times that each
of the three methods (M1: equal-width, M2: equal-
frequency, M3: k-means) was used for discretizing the
number of defects. We first notice that the most accurate
algorithms are SMO and PART and this has certainly con-
tributed to the corresponding low regression error of RvC.
However, RvC with RIPPER managed to achieve low
regression error even though the classification accuracy of
RIPPER was not very high. This shows that apart from
the classification accuracy, the actual discretization of
defects into intervals is also important for the regression
error. It also shows that the end user should trust more
the comprehensible models produced by PART and C4.5
rather than that of RIPPER.

Looking at the average number of classes we see that for
the Pekka data set, it varies a lot from one algorithm to the
other and ranges from 2 to 5.4. In the ISBSG data set it
varies less and ranges from 2.5 to 3.7. The most successful
discretization method seems to be the simplest one, i.e.
equal-width binning.
r REPTree M5P regression tree M5P model tree IBk MLP

7.72 7.71 7.28 8.27 7.22
10.80 10.87 12.20 12.99 15.35

od

ISBSG

M3 Acc Av. C M1 M2 M3

0.00 0.94 3.10 0.80 0.00 0.20
0.30 0.86 3.70 0.70 0.10 0.20
0.10 0.83 2.50 0.70 0.20 0.10
0.30 0.62 3.30 0.20 0.40 0.40
0.00 0.64 3.70 0.30 0.40 0.30
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Observing the results in Tables 6 and 7 some conclusions
can be drawn from the comparison of models created by
multi-company data set (ISBSG data set) with the ones cre-
ated by company specific data set (Pekka data set). There is
a diversity between the results presented in Tables 6 and 7.
When the two models are compared in terms of Mean
Absolute Error it seems that company specific model out-
performs the muti company model. When the two models
are compared in terms of classification accuracy, the
multi-company model perform slightly better than the
company specific model. The difference in the performance
of the two models between classification and regression
results can be explained by the number of classes consid-
ered by the methods. The algorithms indicated a relatively
small number of classes probably due to the fact that in the
data set not sufficient evidence appeared that would allow
the creation of more classes and the successful estimation
of them. This had as a result a better classification accuracy
of multi-company model due to the few number of classes
but a slightly worse regression accuracy due to the ampli-
tude of the classes. A tentative conclusion that can be
drawn from this fact is that in our case a model from
multi-company data can only provide a rough fault class
estimation. Note that the generality of the conclusions is
not guaranteed, as they are based on the two specific data
sets that we have used in this study.
5.2. Model analysis

Here we will present the comprehensible models pro-
duced by the three symbolic algorithms C4.5, PART and
RIPPER. The first algorithm outputs a decision tree, while
the other two output a set of classification rules. Each rule
has a body, which consists of one or more conditions under
which the rule will fire, and a head which consists of the
predicted class of faults. We also present two quantitative
measures of the rule’s quality: (a) support, which is the ratio
between the number of records that satisfy the rule body
and the total number of records in the database, and
Table 8
Rule list produced by CvR with PART and JRIP on the Pekka data set

Body Head

JRIP list of rules

FP 6 986 9.5 < D 6 59
cpu P 292 2.5 < D 6 9.5
FP P 671 2.5 < D 6 9.5

0 6 D 6 0.5

PART list of rules

FP 6 939 and morg = ACCOUNT 0 6 D 6 8.43
FP 6 939 and borg = RETAIL 0 6 D 6 8.43
morg = PAYMENT and r1 = 5 0 6 D 6 8.43
cpu 6 506 and r6 = 2 0 6 D 6 8.43
r5 = 1 0 6 D 6 8.43
morg = deposit 50.57 < D 6 59
Ageend 6 40 8.43 < D 6 16.86

16.86 < D 6 25.29
(b) confidence, which is the ratio between the number of
database records that satisfy both the rule body and
head and the number of records that satisfy just the rule
body.

We must note here that RIPPER and PART belong to
the separate-and-conquer family of rule learning algo-
rithms. These algorithms learn one rule, remove the exam-
ples that this rule covers and proceed with the next rule.
Any remaining uncovered examples, are handled by a
default rule that fires without any conditions and predicts
the most frequent class among the remaining examples.
Therefore the support and confidence of each rule is
reported based on the subset of the examples that remained
for that rule. This also implies that the rules are presented
in the order that they are discovered, and during execution
they are considered in this order.
5.2.1. Pekka data set

Initially, the RvC and regression algorithms have been
applied to the 66 projects included in our analysis. Table
8 presents the rule sets that was produced by RvC with
the RIPPER and PART algorithms, while Fig. 1 presents
the decision tree of C4.5. The first rule coming from the
PART decision list can be explained as following: In the
training data set there are 13 projects with fp 6 939 and
internal business sector ACCOUNT from which 12 present
equal or less to 8.43 faults. Applying this rule only one pro-
ject is misclassified to another fault class. Support value for
this rule is (13/66) 19.7% and confidence value is (12/13)
92.3%.

The decision tree of Fig. 1 has two splitting nodes. The
number of function points is the splitting criterion for both
nodes. The decision tree is interpreted as follows: If the
number of function points of an unknown project is equal
or less than 1361 then the number of defects will be less
than 29. Else if the number of function points is equal or
less than 1979 then the number of faults will be between
29 and 59, otherwise the number of faults will be less than
29. For each suggested class in the leaf the average number
Point estimate Confidence Support

20 87.5 12.12
5 60 15.15
5 80 7.58
0 39.53 65.15

1 92.31 19.70
1 85.71 21.21
1 85.71 10.61
1 85.86 21.42
1 63.26 5.48

53 100.00 3.03
11 66.67 4.55
20 74.55 3.39



Fig. 1. Decision tree C4.5 for Pekka data set.
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of the class is indicated as the most probable fault number
of the class along with support and confidence values.

A project variable that appears often in the results of the
three classification methods is Function Points. This is rea-
sonable, as function points is a metric indicative of the size
of a software application, and as the size of a software pro-
ject grows so does its complexity. Software complexity is
widely accepted as a major cause of defects. An interesting
rule is the one indicated by PART decision list that appli-
cation that are destined for deposit units tend to present a
large number of faults. Also the applications that have low
CPU usage seem to be less fault-prone. A surprise to us was
that only risk factors r1, r5 and r6 (number of users, doc-
umentation quality and people dependence) appeared from
the risk factors.

In this data set the classes of defects suggested by JRip
and PART algorithms are relatively tight. JRip predicts
three classes of faults with most probable values, 0, 5 and
20 faults. The model estimates whether a software project
will present few number of faults (0 or 1), nominal number
of faults (3–9) or relatively large number of faults (10–59).
PART decision list estimates four probable number of
faults, one fault, 11 faults, 20 faults and 53 faults.
Table 9
JRIP and PART list of rules for ISBSG dataset

Body Head

JRIP list of rules

FP <= 303 and ALC P 153 0.5 < D 6 3.5
MTS P 4 and LT = 4GL 9.5 < D 6 151
FP P 499 and PL = COBOL 9.5 < D 6 151
N_EO P 71 and OT = other 9.5 < D 6 151

0 < D 6 0.5

PART list of rules

FP > 722 and ID <= 94 3.5 < D 6 151
DT = Enhancement and Up.CASE = no 0 < D 6 3.5
AT = Office information system 3.5 < D 6 151
OT = Electricity and gas and water 0 < D 6 3.5
AT = Management information system 3.5 < D 6 151
AT = Transaction/production and N_EO > 57 3.5 < D 6 151

0 < D 6 3.5
The decision tree suggests a rough estimate of fault clas-
ses, predicting only 2 fault classes. The first fault class pre-
dicts from 0 to 28 faults with most probable value 2 faults
and the second class is between 29 and 59 faults with most
probable number 39 faults. Even though the suggested clas-
ses are relatively large the regression performance of C4.5
considering the median point of each class is competitive
and even better than traditional regression models.
5.2.2. Isbsg data set

For ISBSG data set the models that are suggested by the
framework of Regression via Classification are presented in
Table 9, and in Fig. 2. For example the first rule of Table 9
can be interpreted as follows: If the function points of a
project are equal or less than 303 and the added lines of
code are equal or less than 153 then the total number of
defects found will be more than 0.5 and less or equal to
3.5 with a most probable fault value of 1.8 faults. Though
the number of the added lines of code cannot be estimated
easily, it is a variable often used in models. This rule in the
training set classifies correctly four of the projects that
present the above values of function points and added lines
of code into the correct class of faults. None of the projects
of the training data set that comply with this rule is mis-
classified to a wrong fault class. The rules coming from
PART decision list are interpreted in the same way.

The decision tree presented in Fig. 2 has the number of
function points as a splitting node. If the number of func-
tion points is less than 722 the faults will be equal or more
than 10 and less than 61. This rule coming from the deci-
sion tree classifies correctly 55 of the 60 projects whose
function points are equal or less than 722. If the number
of function points of a software application is more than
722 then the number of faults will be more than 61 and
equal or less than 151, this rule classifies correctly 16 out
of 31 projects.

As expected, function points appeared often in the
results. Also Office and Management Information Systems
are pointed out as fault-prone applications probably due to
their increased functionality. An interesting rule is the one
Point estimate Confidence Support

2 100.00 4.39
14 75 17.58
14 85.71 7.69
14 100 4.4
0 36.67 65.93

10 89.63 31.79
0 83.36 32.56

10 83.33 6.59
0 100.00 4.39

10 73.84 9.03
10 69.44 6.33
0 87.35 9.30



Fig. 2. Decision tree for ISBSG data set.
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included in the PART decision list and involves implemen-
tation date. It seems that applications developed 1994 and
earlier with a high number of function points are fault-
prone. In general as indicated by the decision tree a high
number of function points is itself a reason for fault exis-
tence. But the rule that involves implementation date as
well provides an additional information. Software size
and complexity seemed more troublesome and difficult to
handle before 1995. Probably sufficient experience is gained
in the last years that gradually minimizes the appearance of
faults.

In general, in both data sets in many cases large defect
intervals are estimated. Some could say that the estimate
is too general and fuzzy and therefore has reduced practical
use. But we argue that it is preferable to have a large inter-
val with a high confidence value within which the actual
fault number will fall, than a small interval with a low
degree of confidence, or no estimate at all. Probably in lar-
ger data sets the appearance of few and large fault classes
would be minimized as more information would be in-
cluded in the models.

Regarding the causes of defects, they remain the same
both when the data come from the multi-company data
set and the company-specific data set. In both cases in
our study the size of a software application is the main rea-
son of faults. Also the type of the application seems to have
an influence on software fault-proness.

6. Conclusions and future work

In this paper the framework of Regression via Classifi-
cation (RvC) was applied to the problem of early fault pre-
diction. Our motivation was to exploit the advantages of
classification algorithms in order to solve the main draw-
backs of regression algorithms, such as the incomprehensi-
bility of the produced models and their inability to provide
a good point estimate of faults. RvC provides a complete
framework for defect prediction producing as an output
a fault class into which the actual fault number may fall
in, along with a specific most probable fault number within
this class. The representation of the fault knowledge can be
in the form of rules and decision trees which are among the
most expressive and human readable representations for
learned hypotheses.

In general RvC as a data mining method offers a conve-
nient way to solve problems that are not explained purely
logically but rather probabilistically. Software fault estima-
tion is one of these problems: we are not sure of the factors
that affect directly the existence of faults and we expect a
support from statistical methods to point out the underly-
ing relationships that appear in fault data. Some of the
results of the application of RvC technique were expected
and confirmed by intuition like the influence of a software
application size on the existence of faults. The success of
the method is that it provides a framework for discovering
potential cause–effect relationships that can be surprising
like the one in ISBSG data set that implies that when a
CASE tool is not used the number of faults is reduced. This
is controversial to the fact that the use of a CASE tool is
considered to prevent faults and aid software development.
However the same rule may also imply that with the use of
CASE tools more faults are triggered or detected. Further
analysis is needed to investigate this phenomenon.

In addition, we must stress the very good results of RvC
in terms of regression error. Despite the fact that RvC out-
puts the median of an entire interval as its point estimate of
faults, it manages to outperform most of the regression
approaches in predictive accuracy.

Future work may involve the application of RvC in pre-
defined fault intervals in order to avoid the extraction of
models estimating large fault classes. Also we intend to
apply the proposed methodology to other software data
sets involving other software quality attributes in addition
to defects so as the results of the RvC analysis will guide
the testing process. We will also experiment with methods
that combine different classification algorithms such as
Stacking (Wolpert, 1992) and Effective Voting (Tsouma-
kas, Katakis, & Vlahavas, 2004) for the purpose of increas-
ing the predictive performance of RvC.
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