
The Journal of Systems & Software 169 (2020) 110706

T
e
o
n
t
A

U

d

w

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

Examining the reuse potentials of IoT application frameworks
Paraskevi Smiari a, Stamatia Bibi a,∗, Daniel Feitosa b

a Department of Electrical and Computer Engineering, University of Western Macedonia, Greece
b Data Research Centre, University of Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 5 November 2019
Received in revised form 5 June 2020
Accepted 22 June 2020
Available online 24 June 2020

Keywords:
IoT applications
Reusability
Black-box reuse
White-box reuse effort estimation

a b s t r a c t

The major challenge that a developer confronts when building IoT systems is the management of a
plethora of technologies implemented with various constraints, from different manufacturers, that at
the end need to cooperate. In this paper we argue that developers can benefit from IoT frameworks
by reusing their components so as to build in less time and effort IoT systems that can easily integrate
new technologies. In order to explore the reuse opportunities offered by IoT frameworks we have
performed a case study and analyzed 503 components reused by 35 IoT projects. We examined (a)
the types of functionality that are most facilitated for reuse (b) the reuse strategy that is most adopted
(c) thequality of the reused components. The results of the case study suggest that the main functionality
reused is the one related to the Device Management layer and that Black-box reuse is the main type.
Moreover, the quality of the reused components is improved compared to the rest of the components
built from scratch.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Over the last decade, the emerging paradigm of the Internet of
hings (IoT) dominates the digital transformation (Zimmermann
t al., 2015) landscape, providing benefits related to better quality
f life and greater insight into businesses. The IoT describes the
etwork of devices that are connected via the Internet, enabling
he collection, exchange and analysis of generated information.
ccording to Statista,1 by 2025, the total amount of installed IoT

devices will reach 75.44 billion worldwide, which corresponds
to a fivefold increase compared to the amount of 2015. The
next generation of mobile connection technology, 5G, is expected
to boost the application of IoT in everyday life, further democ-
ratizing a range of services (Zanella et al., 2014) that include,
among others, healthcare, education, manufacturing and home
automation. IoT is considered as a system of systems that com-
prises physical things, various communication channels and a
combination of complete software solutions, including data and
operations. Hence, managing various hardware, software and net-
work technologies, in order to implement IoT applications, has
proven to be a major challenge for developers.

Given the aforementioned, developing IoT applications with
the conventional platforms, is becoming increasingly difficult for

∗ Correspondence to: Department of Electrical and Computer Engineering,
niversity of Western Macedonia, Karamanli & Ligeris, Kozani, 50100, Greece.

E-mail addresses: psmiari@uowm.gr (P. Smiari), sbibi@uowm.gr (S. Bibi),
.feitosa@rug.nl (D. Feitosa).
1 https://www.statista.com/statistics/976045/iot-revenue-forecast-
orldwide/.
ttps://doi.org/10.1016/j.jss.2020.110706
164-1212/© 2020 Elsevier Inc. All rights reserved.
developers that lack experience and knowledge (Zanella et al.,
2014) in a domain that is still in its infancy. The main difficulty
is that developers need to adapt their applications to multiple
platforms and spent effort to learn and use platform APIs and in-
formation models (Bröring et al., 2017). To deal with this problem
literature has suggested the use of frameworks (Aly et al., 2018;
Ciccozzi and Spalazzese, 2016; Yelamarthi et al., 2017) that are
platform independent and consist of highly modularized software
building blocks (Kim et al., 2012; Serna et al., 2015). Typically,
IoT frameworks present a set of common concepts (e.g., Devices,
Gateways, Data Management) (Zimmermann et al., 2015) that
can be reused by developers in order to save time and effort. In
the recent years, Open Source Software (OSS) frameworks have
become a key supplier of critical software components (Paschali
et al., 2017), dominating the industry of IoT (Aly et al., 2018;
Tanganelli et al., 2015). Currently there are several available
OSS frameworks with big support from the community that can
facilitate reuse in the context of IoT application development.
However, as pointed by Chen et al. (2008), the reuse of OSS
components encompasses challenges with respect to component
selection, component integration, and system maintenance (Chen
et al., 2008). Thus, such endeavor involves three major tasks that
the reuser needs to perform:
(a) Identify the reusable asset: In this step the reuser has to
identify the most suitable asset that implements the type of
functionality she wants to integrate in the new system (Paschali
et al., 2017). According to Schwittek and Eicker, it is of paramount
importance to define the reused functionality based on the ap-

plication domain (Schwittek and Eicker, 2013) where it will be

https://doi.org/10.1016/j.jss.2020.110706
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110706&domain=pdf
mailto:psmiari@uowm.gr
mailto:sbibi@uowm.gr
mailto:d.feitosa@rug.nl
https://www.statista.com/statistics/976045/iot-revenue-forecast-worldwide/
https://www.statista.com/statistics/976045/iot-revenue-forecast-worldwide/
https://doi.org/10.1016/j.jss.2020.110706

2 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

i
2
m
o
s
a
t
m
p
s
a
e
t
t
m
v
r
(
t
t
g
r
m
t
t
e
b
d
a
f
b
e
c
i
n
p
(
t
c
2
c
c
(
n
a
a
s
t
t
c
e
F
r
q

O
t

a
p

ntegrated and the associated requirement (Raemaekers et al.,
012) that it is intended to fulfill. In the IoT application do-
ain, the reusable functionalities can be mapped to the layers
f the architecture (Zimmermann et al., 2015) of a typical IoT
ystem. According to Zimmerman (Zimmermann et al., 2015),
n IoT solution comprises of many devices that communicate
hrough a network and generate data that are integrated to be
anaged in the IoT cloud platform and further processed to be
resented to the end-user. All of the above functionalities that are
upported by IoT systems require the relevant identification and
ccess management mechanisms. It is important for the reuser to
xamine the IoT reuse options based on the types of functionality
hat the reusable components offer. For example, it is expected
hat components related to Communication Protocols may be
ore easily available compared to components related to Devices
irtualization. Taking into consideration the availability of the
eusable resources, the reuser may optimize the reuse process.
b) Integrate the reusable asset: In this step the developer has
o decide upon the strategy for integrating the reusable asset to
he new system. There are several cases where the assets are inte-
rated in the new system simply as they are, indicating Black-box
euse (Frakes and Terry, 1996). In other cases, new functionalities
ust be implemented on the reused components for integrating

hem, indicating White-box reuse (Frakes and Terry, 1996). In
he latter case it is important to have an approximation of the
ffort required to integrate the reused component, which can
e measured as the effort required to apply the changes. In IoT
evelopment, due to the large scale of operations when building
pplications (Tanganelli et al., 2015), it is important to know
rom the beginning the reuse strategy for integrating components
ased on the types of functionalities that can be reused. For
xample, it is highly possible to retrieve Device Management
omponents (i.e., Operational components) that can be used as
s, whereas Presentation components (i.e., Building Charts compo-
ents) may require a lot of customization and potentially deemed
rohibitive.
c) Evaluate the reusable asset: In this step the reuser needs
o ensure that the quality of the reusable components does not
ompromise the overall quality of the application (Bibi et al.,
010; Lim, 1994). This is particularly important for IoT application
omponents, since they are expected to possess various quality
haracteristics that are related to their ability to be (a) extendible
Smiari and Bibi, 2018) so as to handle the variability of heteroge-
eous devices and technologies, (b) flexible (Kim et al., 2012) so
s to easily adapt to changes caused by the external environment
nd implement new requirements, (c) reusable (Lazarescu, 2014)
o as to allow further reuse in future IoT applications, saving
ime and effort, and (d) functional (Bröring et al., 2017) so as
o offer several functionalities through their public APIs. We
larify that other quality attributes, e.g., understandability and
ffectiveness, may also be important (Bansiya and Davis, 2002).
or this purpose, it is important to examine the quality of the
eused components to ensure that they do not deteriorate the
uality of the new system.
In this study we examine the reuse opportunities offered by

SS IoT frameworks in order to assist practitioners in performing
he aforementioned tasks for deciding upon the following:

- What functionalities can be reused from IoT frameworks?
- Which reuse strategy should be adopted with respect to the
functionality reused?

- What is the quality of the reused components with respect
to the functionality reused?

To answer the aforementioned concerns, we have performed
case study on 503 components, originating from 7 different IoT

rojects coming from the Eclipse IoT framework that has been
reused by 35 IoT projects. Eclipse IoT framework was selected
because it is frequently used in research (Aly et al., 2018; Ko-
vatsch et al., 2014; Smiari et al., 2019), has a strong support from
industrial players like Bosch and QIVICON, and is often reused
for building commercial products (e.g., Mixtile Hub, Coqon). In
order to draw conclusions regarding reuse opportunities from
IoT frameworks, we have downloaded and analyzed the source
code of the applications that reused Eclipse IoT frameworks and
examined the components that were reused.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 describes the case study design
whereas Section 4 presents the results obtained from the case
study. Section 5 discusses the results of this case study and Sec-
tion 6 addresses the threats to validity of the research performed.
Finally, Section 7 concludes the paper and presents ideas for
future work.

2. Related work

2.1. Software reuse

Software reuse is a widely known and used technique for the
creation of a new software product that is based on the adoption
of existing software components. Reusable components can bring
many benefits in the software development process some of them
being the reduction of cost and effort (Wangoo and Singh, 2018)
and the increase of productivity (Lim, 1994). Research activities
focusing on the advantages of software reuse, have also pointed
out that it has a positive impact in quality (Arvanitou et al.,
2016) and maintainability (Lim, 1994) of the software. Software
reuse is also known in literature for the improvement of software
system flexibility (Jatain et al., 2013). This is achieved through the
separation of the stable parts of systems from the specification
of their composition (Jatain et al., 2013). Improved flexibility has
also been identified with the usage of frameworks as argued by
Wang et al. (1999) who proposed a framework which aims at
assembling components in distributed systems. Many research
efforts are found in literature examining various aspects of soft-
ware artifact reusability (Jatain et al., 2013). We will describe
these efforts by categorizing them based upon the tasks of the
software reuse process that we referred to in Section 1: (a) the
reusable component identification (b) the reuse strategy adopted
regarding the integration of the component to the target system
(c) the evaluation of the reused components.

The first step, when it comes to the reusability of components,
is the identification of the appropriate reusable software com-
ponent. Research has focused on clustering techniques in order
to identify components of similar functionality and reusability.
Such techniques have been thoroughly discussed by Jatain et al. in
Jatain et al. (2013) as well as Saied et al. (2018) who managed to
spot reusable components on third party libraries through usage
pattern mining. Automated mechanisms that identify reusable
components by searching routines with a specific input have
also been proposed by Podgurski and Pierce (1993). The authors
created a method that identifies reusable components through
behavior sampling by giving a randomly chosen sample. When
it comes to selecting the most appropriate candidate for reuse
research has shown that familiarity with the domain or archi-
tecture (Torchiano and Morisio, 2004) is a major factor. Other
techniques to prioritize and select the most suitable candidate,
besides interoperability (Tran et al., 1997), is to take into ac-
count the functional and non-functional requirements (Tran et al.,
1997) of the specific domain. By evaluating reusable components
through metrics that indicate the acceptance of a component
by the developers (Papamichail et al., 2018), we can effectively
estimate the reusability, leading to a more suitable selection prior
to integrating it.

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 3
Fig. 1. IoT reference architecture (Fremantle, 2015).
v
s
n
T
e
w
P
t
T
a
T
t
l
m
d

t
c
c
a
T
t
t

The next step, after identifying the suitable reusable com-
ponent, is to integrate it into the target software system. Ye
et al. (2000) has mentioned several limitations when it comes to
integrating reusable components in a system. These limitations
can be extracted from the environment we want to integrate the
component in and such can be the implementation language, the
performance, or the quality. It is observed that in service oriented
architectures the potential in reusability is high because develop-
ers often choose to learn an existing service than to implement
it from scratch, thus making it necessary for the existence of an
integration framework (Zhu, 2005). Such framework is presented
by Yu et al. aiming at integrating user interface components
with the help of a declarative composition language called XPIL
(Yu et al., 2007) which is based on XML. Although, it is often
required to parameterize the reusable components in order to
integrate them in the existing environment (Gupta et al., 2010),
research has shown that, by continuously testing components and
recommending those that have the lowest failure rate (Kessel and
Atkinson, 2018), it can enable the integration of reusable com-
ponents especially in an environment that supports continuous
integration.

The third step we need to consider, when creating reusable
components, is to evaluate the reused component in terms of
quality. A wide range of studies have been performed for as-
sessing the quality of a certain reusable artifact based on struc-
tural properties (e.g., encapsulation, coupling and cohesion). Ban-
siya and Davis (2002) proposed QMOOD, a hierarchical qual-
ity model, for assessing the quality of object-oriented artifacts
that relates structural properties to high-level quality attributes
(e.g., reusability, flexibility, etc.). Prakash et al. used a suite of
metrics (Prakash et al., 2012), that he divided into procedural and
object oriented, based on the classical metrics suite proposed by
Chidamber and Kemerer (1994). These metrics were also used
by Padhy et al. (2018) in order to create prediction methods to
spot whether or not components are qualified as reusable. Addi-
tionally, reusability indices (Ampatzoglou et al., 2018) have been
introduced that are based on both non-structural and structural
metrics. In this context data mining techniques (Prakash et al.,
2012; Wangoo and Singh, 2018) have been adopted for evaluating
the quality of the reusable assets by taking into consideration
several software quality metrics, some of them being the metrics
suite provided by Chidamber and Kemerer (1994).

In this study we have selected to adopt the QMOOD model
(Bansiya and Davis, 2002) to assess the quality of the reusable
components since it is a model that has been thoroughly used
 t
in literature to investigate software quality (Couto et al., 2018;
O’Keeffe and Cinnéide, 2006; Osbeck et al., 2011) and software
reusability (Ampatzoglou et al., 2011; Ani et al., 2017). Addition-
ally, another motivation for selecting QMOOD (Bansiya and Davis,
2002), is the fact that it provides 6 indices, Reusability, Extendibil-
ity, Flexibility, Functionality, Understandability and Effectiveness
that assess the quality aspects that are of interest in the case of
component reuse in the context of IoT (Bröring et al., 2017; Kim
et al., 2012; Lazarescu, 2014; Smiari and Bibi, 2018).

2.2. Designing IoT applications

In this section we will initially present the typical architectural
design of IoT applications and then proceed with describing the
efforts performed for facilitating reuse in the IoT context. Several
studies can be found in literature that propose reference architec-
tures for developing modular and reusable software services for
IoT systems (Yelamarthi et al., 2017; Zimmermann et al., 2015).
According to Fremantle (2015) an IoT architecture consists of
seven layers (see Fig. 1).

The Devices layer, represents a plethora of heterogeneous de-
ices that are connected to the internet usually as digital twins
tored to the cloud. The Communication layer, supports the con-
ectivity of devices through several communication protocols.
he Aggregation/Bus layer works as a gateway for the differ-
nt devices and enables the communication between devices as
ell as bridging and transforming between protocols. The Event
rocessing & Analytics layer, represents the data retrieved from
he bus layer and stored to the database for analyzing events.
he External Communication layer, indicates the communication
chieved outside of devices with the usage of processing models.
he Device Management layer includes all the functions available
hat handle devices. Lastly the Identity & Access Management
ayer, which is responsible for controlling the access provided,
anaging different identities and managing the security of the
evices and the environment in general.
The similarities between the different IoT platform architec-

ure models are appointed by Guth et al. (2018). Guth et al.
oncluded that the various layers of the different architectures
an be mapped to a single abstract reference architecture. As
n example the architecture proposed by Cisco (The Internet of
hings Reference Model Whitepaper, 2014) offers similar func-
ionalities and presents common layers to Fremantle (2015) as
he ‘‘Communication layer’’ in Fremantle’s architecture (Freman-

le, 2015) can be mapped to the ‘‘Connectivity’’ layer in Cisco (The

4 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

I
s
w
t
l
A
2
I

m
(
h
c
i
a
(
r
a
b
c
g
s

e
K
W
b
t
d
e
n
a
t
r
g
t
i
a
a
s
c
i
r
a
s
t
r
p
t
i
t
f
a
w
u

f
t
s
e
a
i

l
l
l
2
o
i

s
t
p
b
c
t
r
e
c

(
t

r
s
t
m
a

nternet of Things Reference Model Whitepaper, 2014). Another
imilar architecture is the one proposed by Krčo (Krčo et al., 2014)
ho suggests layers such as the ‘‘Device’’ layer. The IoT architec-
ure proposed by Yelamarthi et al. (2017) presents a ‘‘Sensors’’
ayer corresponding to the ‘‘Devices layer’’ in Fremantle (2015).
dditionally, the ‘‘External Communications layer’’ (Fremantle,
015) can be found in the ‘‘User interface devices’’ layer in the
oT architecture proposed by Yelamarthi et al. (2017).

Several researchers adopted the architecture presented in Fre-
antle (2015) to build IoT platforms. Specifically, Zamfir et al.

2016) proposed a platform for prototyping IoT applications in the
ealthcare monitoring sector. Additionally, Neagu et al. (2016) fo-
used on creating cloud solutions for IoT in the healthcare sector,
ntroducing a Sensing as a Service platform. Levina et al. (2017)
dopted the IoT reference architecture presented in Fremantle
2015) for developing an intelligent transportation system. The
eference architecture proposed by Fremantle was also used as
ground rule for implementing IoT platforms for Smart Homes
y Pessoa and Duarte-Figueiredo (2017). The architecture was
hosen due to its extensibility and modularity while the main
oal was to increase specific aspects of smart homes, such as
ecurity.
Reuse potentials in the IoT domain, with respect to the differ-

nt types of IoT services have been explored by a few researchers.
atasonov et al. introduced a middleware platform called UBI-
ARE (Katasonov et al., 2008) for supporting the communication
etween IoT services. This platform consists of a selection of tools
hat enable the implementation of agents and adaptors. The mid-
leware is based on the usage of reusable Java components, which
nable communication and collaboration of services in heteroge-
eous environments. Additionally, Lazarescu (2014), introduced
platform focused on establishing wireless communications in

he context of IoT for achieving low cost and long-term envi-
onmental monitoring. The authors defined generic requirements
athered from different IoT environmental monitoring applica-
ions and managed to structure a platform which can be reused
n a wide range of similar long-term environmental monitoring
pplications. Cicozzi et al. promoted the reusability of design
rtifacts in IoT systems through Model Driven Engineering and
elf-adaptive systems proposing the MDE4IoT framework (Cic-
ozzi and Spalazzese, 2016). A model-based system was also
ntroduced by Shani and Broodney who proposed a solution to
euse already existing IoT models (Shani and Broodney, 2015). To
chieve that the authors adopted semantic mediation models to
pot commonalities between models. Chatuverdi et al. examined
he reusability of data management functionality focusing on
eusing streaming dataflows (Chaturvedi et al., 2007). The authors
roposed dataflow reuse algorithms that identify common tasks
hat can be reused in order to create a merged dataflow contain-
ng all the streams. Smirek et al. examine possible reusability at
he user interface level (Smirek et al., 2016) by comparing two
rameworks, one of which being part of the Eclipse IoT family. The
uthors examined whether the functionalities of the two frame-
orks allow them to create a more abstract and customizable
ser interface.
Despite the fact that several researchers proposed models and

rameworks that can support the reuse in the specific layers of
he IoT applications architecture, the reuse from existing open
ource frameworks has not been yet addressed. In this paper we
xamine the reuse potentials of open source components that are
lready available and can support the development of platform

ndependent IoT applications.
3. Case study design evaluation

In this section, we present the design of the case study per-
formed to assess the reusability potentials of IoT frameworks.
We report the details of this case study based on the guidelines
of Runeson and Höst (2009). Our work comprises an embedded
multiple-case study, where the involved contexts are the different
IoT functionality types, the cases are the IoT projects and the units
of analysis are their reused components. Thus, in Section 3.1, we
present the research objectives of the study. In Sections 3.2 and
3.3, we describe the IoT frameworks that participate in this study
and the data collection processes. Finally, in Sections 3.4 and 3.5
we provide an overview of the data and the data analysis process.

3.1. Research objectives and questions

The overall goal of this case study is to examine the reuse
potentials of IoT application frameworks with respect to (a) the
type of functionality that the reused component implements,
(b) whether customization is required for integrating the reused
component to the target system, and (c) the quality of the reused
components compared to the native ones. To ease the design and
reporting of the case study, we split the aforementioned goal into
three research questions based on the analysis perspectives that
we introduced in Section 1.

(RQ1) Which types of functionality offer the most components
in the context of IoT application development?

This research question aims at identifying the types of func-
tionalities implemented in IoT frameworks that offer the larger
pool of reusable components. The classification scheme adopted
to assess the types of functionalities was inspired by the architec-
ture proposed by Fremantle (2015). We choose to adopt this ar-
chitecture model since it has been used in numerous research ac-
tivities (Neagu et al., 2016; Pessoa and Duarte-Figueiredo, 2017;
Zamfir et al., 2016). Also we believe that the specific reference
architecture presents commonalities with the majority of the rest
of the proposed architectures (Krčo et al., 2014; The Internet of
Things Reference Model Whitepaper, 2014; Yelamarthi et al.,
2017) across literature, thus making it a respectable choice. This
architecture defines seven core types of functionalities according
to the corresponding layers: the Devices layer, the Communication
ayer, the Aggregation/Bus layer, the Event Processing & Analytics
ayer, the External Communication layer, the Device Management
ayer and the Identity & Access Management layer (Fremantle,
015; Zimmermann et al., 2015). A more detailed presentation
f the different functionalities offered by each layer can be found
n Section 2 and Fig. 1.

The answer to this research question will provide both re-
earchers and practitioners with an overview of the reuse po-
entials offered by each type of functionality. On the one hand,
ractitioners will be aware of the types of components that can
e more easily found and reused in the context of IoT appli-
ations. On the other hand, researchers will be able to identify
ypes of implemented functionalities that are currently sparsely
eused, examine the associated rationale and propose solutions,
.g., to prioritize maintenance and development of new reusable
omponents.

RQ2) Do the reused software components require customiza-
ion?

This research question aims to identify whether or not the
eused components are customized when integrated to the target
ystem and, if customized, to analyze the measured effort. The
erm customization, in software component reuse, refers to the
odification of the source code of the reused components so
s to fulfill the purpose of the target system where they are

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 5
employed (Frakes and Terry, 1996). This research question is
further decomposed as follows.

RQ2.1 Which reuse strategy (i.e. White-box reuse or Black-box
reuse) is adopted when integrating the reused IoT components
to the target application? To answer this RQ we discriminate
between white-box reuse and black-box reuse (Heinemann et al.,
2011). White-box reuse according to Ravichandran and Rothen-
berger (2003) and Frakes and Terry (1996) allows for the cus-
tomization of the reused artifact while Black-box reuse aims to the
direct integration of the artifact based on its API using software
components ‘‘as is’’, with no code modification.

The analysis in this question will provide an overview of how
many of the reused components where customized (white-box
reuse) and how many were not (black-box reuse) per type of
functionality. The answer to this RQ is useful to both researchers
and practitioners since it will appoint the types of functionalities
that can be reused ‘‘as is’’. Such IoT functionalities can be univer-
sally standardized in order to allow platforms interworking, a fact
that currently is very important when it comes to IoT application
development.

RQ2.2 What is the customization effort required to integrate the
reused components in the case of White-box reuse?

This research question captures the customization effort re-
quired for tailoring the functionality of the software component
to fit in the target system when White-box reuse strategy is
adopted. We clarify that Black-box reuse was not considered in
this RQ since it requires no modifications (Gaffney and Durek,
1989). According to Frakes and Terry (1996), the customization
effort is the cost associated with the new code, implemented
for incorporating the reused code into the target system. The
integration effort, in our case, is measured as the number of
source lines of code (SLOC) for implementing new functionalities
related to the reused artifacts. In particular, the effort is calculated
as the SLOC added, deleted or modified in order to customize the
original component that exists in the IoT development framework
to the target system. The use of SLOC is a common practice when
measuring the effort required to implement software within the
context of software reuse (Gui and Scott, 2006; Prieto-Diaz and
Freeman, 1987).

The output of this research question will provide insights to
practitioners on the effort required, when adopting White-box
reuse for each type of IoT functionality reused.

(RQ3) Do reused components present higher quality compared
to the native components in the context of IoT application
development?

This research question aims at investigating if the quality of
the reused components is higher compared to the quality of the
native components, in which the reused ones are introduced. The
quality of components measured by assessing six indices of the
QMOOD model (Bansiya and Davis, 2002), Reusability, Flexibility,
Extendibility, Functionality, Understandability and Effectiveness.
The QMOOD model was selected since it has widely been used in
literature (Ani et al., 2017; Couto et al., 2018; O’Keeffe and Cin-
néide, 2006) and it includes a variety of quality aspects that are
appointed as important when evaluating IoT applications (Kim
et al., 2012; Smiari and Bibi, 2018). The output of this research
question will be a comparison between the quality of the reused
and the native components per type of functionality offered in IoT
applications.

The answer to this question will help practitioners evaluate
the reused components in terms of quality and guide mainte-
nance activities in the long-term by prioritizing the maintenance
of the ones with lower quality (compared to the native compo-
nents). Furthermore, researchers can easily identify components
of different functionality types that are in need for applying
methods and tools that improve quality.
3.2. Case selection and units of analysis

This section presents the details of the projects that were
selected for examining the reuse potentials in IoT applications.
In this embedded multiple-case study, the involved contexts are
the different IoT functionality types, the cases are the Eclipse IoT
projects and the units of analysis are their reused components.

The selected projects are part of the Eclipse IoT framework.
Eclipse IoT2 offers 35 open source projects which implement
protocols, services and gateways among others. We addressed
reuse opportunities from Eclipse IoT for a variety of reasons:

• Eclipse IoT projects provide all the benefits of an open
source project, that are big embracement from the commu-
nity (Von Krogh et al., 2003) and cost efficiency (Morgan
and Finnegan, 2007) which renders it a primary choice
when it comes to reusing components for building IoT
solutions (Bröring et al., 2017; Shani and Broodney, 2015).

• The initiative of Eclipse IoT is supported by many com-
mercial companies (Bosch, Sierra Wireless, Aloxy, Othermo,
IBM and Red Hat) that have adopted these frameworks.
This fact shows that this framework is expected to further
attract developers to IoT technologies.

• Eclipse IoT projects are consistently used for empirical
research the last years in the context of building cloud
services (Kovatsch et al., 2014), communication protocols
(Tanganelli et al., 2015), enabling solutions for the vehi-
cle domain (Höttger et al., 2018), providing solutions for
manufacturing systems (Dorofeev et al., 2017).

In this study we aim to analyze components of IoT projects
that have already been reused by other projects and implement
the types of functionalities presented in Fig. 1. Therefore, in order
to retrieve the reused components, we considered the following
steps.
(a) Initially tracked all the Eclipse IoT projects as mentioned in
the official website of eclipse IoT2 (35 projects)
(b) Searched for Eclipse IoT projects built with Maven, finding
15 of them. We applied this criterion since it provides an easy
mechanism to facilitate reuse between different projects. More-
over, Maven offers detailed reuse information between software
components, i.e., the number of times each package has been
reused and the name of the component that reuses it.
(c) Examined if the 15 Eclipse IoT projects have been reused (by
inspecting the information provided by Maven). From these 15
projects, seven of them have been actually reused. For each com-
ponent in these seven Eclipse IoT projects, named the ‘‘source’’
components, we recorded:

• The name of the project and the name of the component
from Eclipse IoT projects that has been reused, as the
‘‘source component’’ (in total, 503 components from the
seven projects were analyzed).

• The name of the project and the name of the component
that has reused components from Eclipse IoT projects, the
‘‘target’’ component.

Therefore, only the Eclipse IoT projects that have been reused
by other projects were further analyzed, as we were not able to
acquire reuse information for the rest of the Eclipse IoT projects.
The seven projects from which we could extract reuse infor-
mation are: Californium, Ditto, Kura, Leshan, Milo, Paho and

2 https://iot.eclipse.org/, https://www.eclipse.org/californium/, https:
//www.eclipse.org/ditto/, https://www.eclipse.org/kura/, https://www.
eclipse.org/leshan/, https://projects.eclipse.org/projects/iot.milo, https:
//www.eclipse.org/paho/, https://www.eclipse.org/smarthome/.

https://iot.eclipse.org/
https://www.eclipse.org/californium/
https://www.eclipse.org/ditto/
https://www.eclipse.org/ditto/
https://www.eclipse.org/kura/
https://www.eclipse.org/leshan/
https://www.eclipse.org/leshan/
https://projects.eclipse.org/projects/iot.milo
https://www.eclipse.org/paho/
https://www.eclipse.org/paho/
https://www.eclipse.org/smarthome/

6 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

T
E

S
a

c
s

3

e
F
R
t

t

able 1
clipse IoT reused projects.
Project Description #Classes LoC Releases # Forks # Contributors # Classes reused

by other projects

Californium (2015) Devices & services communication 662 141.118 29 247 49 75
Ditto (2017) Handles devices heterogeneity 3.361 420.944 14 41 21 25
Kura (2014) Communication with IoT hardware 1.965 317.578 42 215 38 36
Leshan (2015) M2M communication 367 48.849 27 260 25 27
Milo (2017) Data transfer 1.478 184.368 21 165 18 74
Paho (2013) Communication of IoT applications 344 68.626 14 534 41 26
SmartHome (2014) Support of IoT smart home devices 2.197 363.735 4 845 178 240
p

S
I
c
r
a
g
o

S

Fig. 2. Case selection process.

martHome. The rest of the Eclipse IoT projects did not present
ny reuse instances and therefore excluded from the analysis.
Table 1 presents a summary of the seven IoT projects whose

omponents are reused by other projects. Appendix presents a
ummary of the projects that reuse Eclipse IoT.

.3. Data collection

The dataset used in this study consists of 503 rows, i.e., one for
ach reused component (a component is considered to be a class).
or every component, we recorded 3 sets of metrics: related to
euse, Effort and Quality. We also synthesized these metrics at
he project level in order to answer the three research questions.

Table 2 presents the metrics considered within the scope of
his study and their description.
In order to collect the data for this study we followed the
rocess summarized in the next steps, also depicted in Fig. 2.

tep 1: We searched the Maven3 repository for the seven Eclipse
oT projects that were reused (see Table 1). These projects are
onsidered as the ‘‘source’’ of the reused components. Then we
ecorded the projects that reused the seven Eclipse IoT projects,
s reported in Maven. These projects are considered as the ‘‘tar-
ets’’ of the reused components. The output of this step is a list
f the ‘‘source’’ and ‘‘target’’ projects.

tep 2: In this step, we downloaded both source and target
projects from GitHub. In order to retrieve the reused classes,
we searched all ‘‘import’’ directives in the target projects that
included the path to classes of the source projects. The ‘‘import ’’
directives were considered to be reuse indicators of particular
classes of the source projects. The output of this step is the list of
the reused components (classes) from the source projects.

Step 3: In this step, we classified the reused components based
on the Type of Functionality they offer. The functionality of each
component was mapped to one of the seven architectural layers
introduced by Fremantle (2015). The process for mapping the
functionality of each component was based on the keywords
presented in Fig. 1. The keywords were selected based on the
words (and synonyms) included in the names of the layers of
well-known IoT architectures (Krčo et al., 2014; The Internet of
Things Reference Model Whitepaper, 2014; Yelamarthi et al.,
2017) and the semantics behind every ‘‘source’’ component to
further verify the type of functionality it is meant to implement.
For example, the class MqttMessage is part of the implementation
of the MQTT messaging protocol offered by the project Paho.
Since MQTT is a protocol that relates to communications this class
will be categorized as part of the Communication layer. The first
author of the study parsed the source code of the components
and manually classified each reused component to a type of
functionality based on the keywords of Fig. 1. In 70% of the cases
the classification was easy since the name of the component was
very representative of its functionality (and usually included as
term or sub-term one of the keywords of Fig. 1). A one-third
sample of these cases was inspected by the other authors to
ensure consistency. In 30% of the cases the classification output
was not clear. These cases were further discussed among the
authors for reaching a consensus. In 5% of these cases there
was further discussion and disagreements that were resolved by
internal author voting.

Step 4: In this step, we classified the Reuse Strategy into Black-
box reuse or White-box reuse (Ravichandran and Rothenberger,
2003). By Black-box reuse we mean an instantiation of a new
object from the reused class or the utilization of a parameter or
function of a reused class that has not been subject to changes
(Ravichandran and Rothenberger, 2003). White-box reuse refers
to the extension of the reused class by adding new function-
alities or implementing existing definitions (Ravichandran and

3 https://mvnrepository.com/.

https://mvnrepository.com/

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 7
Table 2
IoT source selection metrics.
Type of metric Metric Description

Reuse metrics

Development with Reuse (Schwittek and
Eicker, 2013)

Shows if a component has been built with reuse (Yes/No)

Type of Functionality
(Fremantle, 2015)

Devices layer
Communication layer
Aggregation/Bus layer
Event Processing & Analytics layer
External Communication layer
Device Management layer
Identity & Access management layer

Reuse Strategy
(Ravichandran and Rothenberger, 2003)

Black-box
White-box

Effort metrics Integration Effort (Gui and Scott, 2006;
Prieto-Diaz and Freeman, 1987)

= Added SLOC + modified SLOC + deleted SLOC in the components reused by the
‘‘target’’ projects.
If the ‘‘source’’ component is reused more than once then the integration effort is
calculated as the average Integration Effort for all the cases that it has been reused.

Quality metrics
(Bansiya and Davis,
2002)a

Functionality (Bansiya and Davis, 2002) 0.12 ∗ CAM + 0.22 ∗ NOP + 0.22 ∗ CIS + 0.22 ∗ DSC + 0.22 ∗ NOH
Extendibility (Bansiya and Davis, 2002) 0.5 ∗ ANA-0.5 ∗ DCC + 0.5 ∗ MFA + 0.5 ∗ NOP
Reusability (Bansiya and Davis, 2002) −0.25 ∗ DCC + 0.25 ∗ CAM + 0.5 ∗ CIS + 0.5 ∗ DSC
Flexibility (Bansiya and Davis, 2002) 0.25 ∗ DAM − 0.25 ∗ DCC + 0.5 ∗ MOA + 0.5 ∗ NOP
Understandability (Bansiya and Davis, 2002) −0.33 ∗ ANA + 0.33 ∗ DAM − 0.33 ∗ DCC + 0.33 ∗ CAM − 0.33 ∗ NOP − 0.33 ∗

NOM − 0.33 ∗ DSC
Effectiveness (Bansiya and Davis, 2002) 0.2 ∗ ANA + 0.2 ∗ DAM + 0.2 ∗ MOA + 0.2 ∗ MFA + 0.2 ∗ NOP

Synthesized metrics

Reused components Total number of components reused per Type of Functionality
(Is calculated as the total number of times the different values of Type of
Functionality are observed for the components where Development with Reuse =

‘‘Yes’’)

Native components Total number of native components per Type of Functionality
(Is calculated as the total number of times the different values of Type of
Functionality are observed for the components where Development with Reuse =

‘‘No’’)

Black-box reuse Total number of components reused in the form of Black-box Reuse per type of
functionality
(Is calculated as the total number of times the different values of Type of
Functionality are observed for the components where Development with Reuse =

‘‘Yes’’ and Reuse strategy = ‘‘Black-box’’)

White-box reuse Total number of components reused in the form of White-box Reuse per Type of
Functionality
(Is calculated as the total number of times the different values of Type of
Functionality are observed for the components where Development with Reuse =

‘‘Yes’’ and Reuse Strategy = ‘‘White-box’’)

Reuse Frequency (Frakes and Terry, 1996)
= E/L
E = Number of classes that are reused from external sources, in the target system
L = Total number of classes in the target system

aMetrics and indices coming from QMOOD model
CAM = Cohesion Among Methods of Class
NOP = Number of Polymorphic Methods
CIS = Class Interface Size
DSC = Design Size in Classes
NOH = Number of Hierarchies,
ANA = Average Number of Ancestors
DCC = Direct Class Coupling
MFA = Measure of Functional Abstraction
DAM = Data Access Metric
NOM = Number of Methods
MOA = Measure of Aggregation (Bansiya and Davis, 2002).
Rothenberger, 2003). To define the type of reuse we analyzed
the project’s dependency tree to identify the system files (.class)
that exist in compiled packages projects that are downloaded
from the Maven repository. The identification of the original
Eclipse IoT reused components relied on the naming of the system
class. We searched each one of these classes in the source code
of the ‘‘target’’ projects, and when we identified class exten-
sions in a project, we marked them as White-box reuse. We
also searched the target system for the keywords ‘‘extends’’ or
‘‘implements’’ or ‘‘override’’ in methods that could indicate the
addition/implementation/modification of a class. The remaining
Eclipse IoT classes in the ‘‘target’’ projects were considered to be
Black-box reuse (since they were not extended/modified in target
source code).

Step 5: Next, in the case of White-box reuse we recorded the
Integration Effort required to customize the reuse component
to the target system. The Integration Effort is measured as the
source lines of code (SLOC) developed for integrating the reused
component. For this purpose, we recorded the SLOC developed in
the case of White-box reuse. In particular, we used a diff tool4
(for comparing source code delta) to assess the number of lines
added, modified and deleted between the original component

4 https://www.jetbrains.com/help/idea/comparing-files-and-folders.html.

https://www.jetbrains.com/help/idea/comparing-files-and-folders.html

8 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

a
f
i

S
c
s
d
b
r
p
M
r
t
T
r
t
b
T
Q

3

o
a
c
a
a
W
d
d
H
d

M
(

nd the reused one. In most of the cases of White-box reuse,
unctionalities were added by either extending a parent class,
mplementing an interface or overriding a method.

tep 6: As a final step, we recorded the Quality of both the reused
omponents and the native components, i.e., classes of the target
ystem that were built from scratch. In this step, we analyzed the
ependency tree of each ‘‘target’’ project to identify if a class has
een reused or it is built from scratch (native). First, we marked as
eused all systems classes (.class files) that exist in the compiled
ackages of the ‘‘target’’ projects that are downloaded from the
aven repository. The identification of the original Eclipse IoT

eused components relied on the naming of the system class and
he extended classes relied on the process described in Step 4.
here were also other native components reused from Maven
epository, which did not originate from the Eclipse IoT project
hat were excluded from the analysis. All other classes of the
uilt projects (i.e., other than reused ones) are tagged as native.
he quality of the components was assessed by utilizing the
MOOD model (Bansiya and Davis, 2002) and Percerons5 tool. In

particular, we calculated the following quality indices:

- Functionality indicates the level at which a class provides
operations to other classes.

- Extendibility indicates the level at which code can be ex-
panded to accommodate new requirements.

- Reusability indicates the level at which code can be ap-
plied to different contexts.

- Flexibility indicates the level at which code can be altered
to be adapted into different contexts.

- Understandability indicates the level at which code can be
comprehended

- Effectiveness indicates the level at which code can perform
specific operations successfully

.4. Data analysis

The data analysis of this case study includes the calculation
f (a) the frequency and descriptive statistics of reuse properties
cross the different types of IoT functionality and (b) the appli-
ation of Significance tests for checking whether the differences
cross reused functionality types are significant. In the case of
pplying Significance tests we initially performed a Shapiro–
ilk test in order to investigate whether our data are normally
istributed. Since the test indicated that our data are not normally
istributed, we then used non-parametric tests (Kruskal–Wallis
test and a Mann–Whitney U test) considering the fact that our
ata set satisfies the following assumptions:

• the dependent variables are either continuous or ordinal
• the independent variables consist of two or more categor-

ical and independent groups.

- In the case where the groups are only two the Mann–
Whitney U test is performed

- Otherwise the Kruskal–Wallis H test is performed

• we have independence of observations, since our data con-
sist of different projects that reuse different components

For RQ1, we provide the descriptive statistics (Mean, Min,
ax, St. deviation) and performed a Kruskal–Wallis H test

x2 (df) , p) to check the difference between the level of reuse

5 https://extreme.se.uom.gr/.
across different functionality types. The dependent variables con-
sist of the No of Reused components and the No of Native compo-
nents whereas the independent variable is the Type of functional-
ity. Additionally, we also calculated the corresponding statistics
for the components that are native (they are built from scratch)
in the ‘‘target’’ projects. Among the variables that are of interest
in this question is the Reuse Frequency (see Table 2) that is an
indication of the level of reuse in the ‘‘target’’ system.

Concerning RQ2, we provide the descriptive statistics (Mean,
Min, Max, St. deviation) related to the total number of times
where the two different reuse strategies are observed (Black-
box reuse, White-box reuse). We also provide the corresponding
frequency of the two types of reuse strategy in the form of a
bar chart. We then perform a Mann–Whitney U test (U, p) to
check whether the difference between the two reuse strategies
is significant with respect to the functionality type of the reused
component. The dependent variable is associated with the Type
of Functionality while the independent variable consists of the
Black-box and White-box type of reuse. Additionally, in the case
where White-box reuse is observed we also provide the related
descriptive statistics (Mean, Min, Max, St. deviation) regarding
the Integration Effort required to customize the component to the
‘‘target’’ class and perform a Kruskal–Wallis H test (x2 (df) , p) to
check the difference between the effort across different function-
ality types. In this case, the dependent variable is attributed as the
Integration Effort whereas the independent variable is considered
to be the Type of Functionality.

Similarly, in RQ3, we provide the descriptive statistics (Mean,
Min, Max, St. deviation) related to the quality attributes (Ex-
tendibility, Flexibility, Reusability, Functionality, Understandabil-
ity, Effectiveness) of both the reused components and the native
ones of the ‘‘target’’ projects. Then we perform a Mann–Whitney
U test (U, p) to check whether the difference between the qual-
ity in the reuse and the native components is significant. The
dependent variables refer to the Reusability, Functionality, Flex-
ibility, Extendibility, Understandability and Effectiveness while
the independent variable consists of the Reused and the Native
components.

In Table 3 we provide an overview of the data analysis meth-
ods employed per research question.

3.5. Data overview

In this section, we present an overview of the data used in the
study. First, we categorized the data into reused and native com-
ponents. Next, we calculated the descriptive statistics that give
us an overview of the data as presented in detail in Table 4 and
Fig. 3. When focusing in White-box reuse the average integration
effort that is required is 214.18 lines of code. Additionally, the
Reusability appeared to have a higher average value in the reused
components compared to the other metrics, whereas Understand-
ability appeared to have the lowest. As for the native components,
Flexibility, Extendibility and Understandability appear to have
higher mean values compared to the reused components.

The total components from the ‘‘target’’ projects that were
found in each Type of Functionality are presented in Fig. 3 and
each bar is split into the total percentage of native and reused
components that were found in each type respectively. Although
in total multiple components target the External Communication
layer (27.1%), the Communication layer (22.6%) and the Event
Processing & Analytics layer (22.4%), we observed that the Devices
and Device Management layer appear to be reused more than the
rest of the layers, with 70% and 11% of the components being
reused respectively. This finding is intuitive since, when referring
to the Reused components per Type of Functionality (see Fig. 3),
selecting components that will enable building and handling di-
verse devices without the need to rewrite functionality is of high

https://extreme.se.uom.gr/

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 9

c
t
i
c
t
E
o
s

4

c
a

4
i

s
T
m
t
f
r
l
s
r
E
o

Table 3
Data analysis overview.
RQ Variable Analysis Calculations

RQ1

Dependent variables: Descriptive statistics Mean, Min, Max, Std.
Dev, Reuse frequencyNo of Reused components, No of native components

Independent variable: Kruskal–Wallis H Test x2 (df) , p
Type of functionality

RQ2.1

Dependent variables: Descriptive statistics Mean, Min, Max, Std.
DevType of functionality

Independent variable: Bar Chart Frequencies
Black-box reuse, White-box reuse Mann–Whitney U Test U, p

RQ2.2

Dependent variables: Descriptive statistics Integration effort, Min,
Max, Std. DevIntegration effort

Independent variable: Kruskal–Wallis H test x2 (df) , p
Type of functionality

RQ3

Dependent variables: Descriptive statistics Mean, Min, Max, Std.
DevReusability, Functionality, Flexibility, Extendibility,

Understandability, Effectiveness

Independent variable: Mann–Whitney U test U, p
Reused components, Native components
Table 4
Data overview.

Reused Native

White box Black box

Min Max Mean St. Dev Min Max Mean St. Dev Min Max Mean St. Dev

Integration effort 27 1421 214.18 203.27 – – – – – – – –
Reusability 0.25 90.73 13.23 12.99 0.25 67.78 8.75 10.10 0.25 422.79 3.98 9.64
Flexibility −0.25 1.00 0.27 0.16 −0.25 2.24 0.32 0.39 −0.25 114.75 0.60 1.84
Functionality 0.32 42.07 6.46 6.31 0.1 36.35 4.17 5.00 0.10 209.68 1.90 4.75
Extendibility −0.32 1.51 0.49 0.36 −0.54 3.5 0.43 0.49 −25.06 116.5 0.89 2.15
Understandability −61.71 −0.33 −9.30 8.68 −45.32 −0.33 −5.25 6.20 −157.29 0.00 −3.60 6.01
Effectiveness −0.20 0.87 0.55 0.15 −0.2 2.0 0.41 0.32 −0.20 46.40 0.52 0.89
importance in IoT projects and thus, the Devices (70%) and the
Device Management layers (11%) appear to have more instances.

Furthermore, the Devices layer appears to be the lowest in total
omponents, which is understandable since this category refers
o lower level devices and sensors and it would not be a point of
nterest in some of the projects. However, there are more reused
omponents (70%) than native components (30%). On the con-
rary, the Communication, the Event Processing & Analytics and the
xternal Communication layers appear to have the lowest amount
f reused components (2%) compared to the native ones, which
uggests that these components are much more often rewritten.

. Results

In this section, we present and interpret the results of this
ase study, organized by research question and based on the data
nalysis presented in Section 3.4.

.1. RQ1 – Which types of functionality offer the most components
n the context of IoT application development?

To address this research question, we provide the descriptive
tatistics of the reused components per type of functionality (see
able 5) and examine the reuse potentials, per type of imple-
ented functionality, of the reused components. Table 5 presents

he summary statistics for the seven types of functionality of-
ered by the Eclipse IoT projects. It can be observed that most
eused components (see Mean — column 2) offer functionality re-
ated to the Device Management layer. Such functionality includes
tandard operations for handling IoT devices, e.g., configuration,
emote management, provisioning, maintenance and monitoring.
xternal Communication components are also reused frequently,
ffering functionality related to the communication of IoT devices
with the applications that handle the derived data, e.g., wrappers,
APIs and clients.

In terms of highest reuse frequency (see the rightmost column
in Table 5), we notice that Device layer is the most recurrent
type. The components that implement functionality related to
this layer usually represent the different kinds of hardware equip-
ment that can be used in the context of IoT, from the more
abstract form (‘‘thing’’) to the more specialized form (e.g., sensors,
actuators and mobile devices). Moreover, we find components
that represent device properties like operational range, lifespan,
etc. Overall, it seems that practitioners seek to reuse high-level
IoT functionality such as the representation and management of
devices. This can be interpreted intuitively, as these functionali-
ties are context-free and are more likely to be reused (Dorofeev
et al., 2017). Therefore, we summarize that device functionalities
share commonalities that can be reused and additionally present
the same management requirements.

The least reused components are related to the Identity &
Access Management layer and to the Communication layer. We
observe that practitioners tend to reuse fewer of such compo-
nents probably because they are considered to be safety-critical
for IoT applications that need to avoid third-party attacks (Kim
et al., 2012), ensuring the smooth operation of the devices. More-
over, components that implement context-aware functionalities
(e.g., communications and aggregation) are highly dependent on
the protocol that a device (and its manufacturer) can support
and, thus, are less reused. Also, such functionalities are commonly
implemented from scratch (Ciccozzi and Spalazzese, 2016), as
they need to be configured based on the specific requirements
and deployment details of a particular IoT application and its re-
strictions in terms of hardware and communication protocols. To
investigate if the aforementioned differences are statistically sig-

nificant, we performed a Kruskal–Wallis H test, which suggested

10 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

m
b
g

Fig. 3. Type of functionality of reused and native components bar chart.
Table 5
Reuse per type of functionality.
Type of functionality Reused components Native components Reuse frequency

Mean Min Max St. Dev Mean Min Max St. Dev

Devices 6.81 1 45 8.63 7.66 1 18 9.07 0.88
Communication 4.43 1 27 4.27 66.63 1 1315 160.54 0.06
Aggregation/Bus 5.16 1 20 4.21 64.57 1 1203 142.33 0.08
Event Processing & Analytics 5.05 1 39 5.16 63.49 1 2897 266.96 0.08
External Communication 7.07 1 98 11.4 48.75 1 1130 96.47 0.15
Device Management 9.31 1 93 10.3 27.89 2 181 27.33 0.33
Identity & Access Management 2.95 1 9 2.14 31.50 1 190 42.02 0.09

Kruskal–Wallis H test x2 (6) = 38.59 p = <0.001
that there are significant differences in the reusable components
of the different types of functionality (x∧2 (6) = 38.59, p =

<0.001).

4.2. RQ2 – Do the reused software components require customiza-
tion?

In this section, we first present and interpret the results re-
garding the reuse strategy that is mostly adopted, differentiating
between Black-box reuse and White-box reuse. Next, we focus on
White-box reuse and examine the integration effort required to
customize the reused component to the target class.

4.2.1. RQ2.1 - Which reuse strategy (i.e., White-box reuse or Black-
box reuse) is adopted when integrating the reused IoT components
to the target application?

In Fig. 4, we present the type of Reuse Strategy employed
per type of functionality. The results suggest that most of the
components are integrated in the ‘‘target’’ project in the form
of Black-box reuse (72.6%). As we can observe in Fig. 4 and
Table 6, the Device Management components are, on average,
ostly reused ‘‘as is’’ (i.e., Black-box reuse). Moreover, White-
ox reuse was required in 27.4% of the components. To investi-
ate if the aforementioned differences are statistically significant,
we performed a Mann–Whitney U test, which suggested that
there are significant differences in the different types of reuse in
terms of the different types of functionality for all the types of
functionality.

Black-box reuse is the dominant form in third-party IoT com-
ponents (i.e., not developed in-house), which can be interpreted
in two ways. On the one hand, practitioners may not be willing
to devote effort and time to understand the reused components
and, therefore, they select components that can be reused as
is. This interpretation is in accordance with related work that
also appoints the dominance of Black-Box reuse in the case of
reusing third-party, open source software components (Haefliger
et al., 2008). On the other hand, the reused components of-
fer core functionality (i.e., Device Management layer), which is
the least likely to require changes. For example, general pur-
pose components like the ones representing devices, communica-
tion protocols, management operations or standard cryptography
algorithms are the least likely to require changes.

4.2.2. RQ2.2 - What is the customization effort required to integrate
the reused components in the case of White-box reuse?

To investigate the effort required for the integration of the
components with respect to the different types of reused func-
tionality, we calculated the descriptive statistics and performed a

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 11
Fig. 4. Reuse strategy per type of functionality.
Table 6
Type of reuse per type of functionality.
Type of functionality Black-box reuse White-box reuse

Mean Min Max St.Dev Mean Min Max St.Dev

Devices 6.67 1 45 8.26 1.55 1 4 1.13
Mann–Whitney U test U = 69.500 p = 0.001
Communication 4.34 1 26 4.15 1.02 1 2 0.16
Mann–Whitney U test U = 871.000 p = <0.001
Aggregation/Bus 4.72 1 19 3.89 1.26 1 3 0.51
Mann–Whitney U test U = 2718.000 p = <0.001
Event processing & Analytics 4.66 1 38 4.75 1.18 1 4 0.51
Mann–Whitney U test U = 1927.500 p = <0.001
External Communication 6.70 1 96 11.07 1.43 1 5 0.82
Mann–Whitney U test U = 1671.500 p = <0.001
Device management 8.71 1 91 9.90 1.27 1 5 0.60
Mann–Whitney U test U = 10610.500 p = <0.001
Identity & Access management 2.70 1 9 2.15 1 1 1 0.00
Mann–Whitney U test U = 12.000 p = 0.012
Kruskal–Wallis H test for the variable Integration Effort, but only
for the cases where the reuse type is White-box. The summarized
results are presented in Table 7.

We observed that the type of functionality that requires the
greatest effort on average, in the case of White-box reuse, re-
gards the Device Management layer. This result can be interpreted
intuitively since components in this layer are responsible for
supporting specific smart devices. As IoT frameworks focus on
accommodating a substantial range of devices (Zanella et al.,
2014), it is expected that such reusable components (from the
framework) are quite generic and would require a significant
amount of code to fully characterize the smart devices.

Additionally, we found that components implementing func-
tionality related to the Identity & Access Management layer are the
ones that required the least integration effort. This finding sug-
gests that the implemented standards are most often sufficient
(e.g., in terms of reliability and security) for the target applica-
tions, which is understandable as the authorization standards and
protocols are becoming widespread across various industries and
application domains (Leiba, 2012), also enabling more complete
off-the-shelf components.

4.3. RQ3 – Do reused components present higher quality compared
to the native components in the context of IoT application develop-
ment?

In Table 8 we present the results regarding the quality of
the reused components. For this research question, we examined
the offered functionalities by assessing the six quality indica-
tors defined in the QMOOD model (Bansiya and Davis, 2002),
i.e., Reusability, Flexibility, Functionality, Extendibility, Under-
standability and Effectiveness. Overall, it is observed that reused
components present higher quality in terms of Reusability and
Functionality. This is expected since the reused components come
from the Eclipse IoT development framework that is built to
facilitate reuse and offer abstractions that will help developers
Table 7
Effort required to integrate the reused components per type of functionality.
Type of
functionality

Integration
effort

Std. Dev Min Max

Devices 159.42 111.74 60.00 394.00
Communication 192.84 178.17 27.00 944.00
Aggregation/Bus 162.53 100.29 27.00 781.00
Event Processing
& Analytics

127.86 91.86 44.00 553.00

External
Communication

223.53 214.06 27.00 968.00

Device
Management

264.26 244.76 42.00 1421.00

Identity & Access
Management

83.00 25.85 61.00 119.00

Kruskal–Wallis H
test

x2 (6) = 41.826 p = <0.001

adopt functionalities that are typical to the particular application
domain such (Kovatsch et al., 2014; Tanganelli et al., 2015).

In terms of Flexibility, Extendibility and Effectiveness, the
reused components present similar values to native components,
suggesting that reusing IoT components does not jeopardize the
quality of the target system. This result is also verified by Feitosa
et al. (2020) who argue that reused components present similar
maintainability compared to native ones. In terms of Understand-
ability, the reused components appear to more comprised than
native ones. This result is expected since the metric used for
the calculation of Understandability considers that inheritance
and polymorphism have a negative effect on Understandability
(Bansiya and Davis, 2002). Since the components under study
support the representation of abstractions to a great degree, the
reusable code is considered to be less understandable. However,
we argue that this result can be counterbalanced by the fact that
the reusable components, and the projects hosting them, usually
provide a very detailed documentation that is considered to affect
implicitly the Understandability (Paschali et al., 2017).

12 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

T
Q

t
p
t
e

5

p
r
w
t
d
s
e
r
R
c
t

able 8
uality of the eclipse IoT projects and destination components per type of functionality offered.
Layer Reusability Flexibility Functionality Extendibility Understandability Effectiveness

Reused Native Reused Native Reused Native Reused Native Reused Native Reused Native

Devices Mean 6.2 2.0 0.2 0.08 2.9 0.9 1.8 0.5 −4.3 −1.8 0.5 0.1
Min 3.5 0.8 0.2 0.0 1.6 0.3 0.5 0.0 −4.6 −2.6 0.4 0.0
Max 6.8 3.6 0.3 0.3 3.2 1.6 0.9 1.5 −3.2 −1.0 0.6 0.2
St.dev 1.2 1.4 0.01 0.1 0.6 0.6 0.2 0.9 0.6 1.1 0.05 0.1

U = 1.000 5.500 1.000 10.000 0.000 0.000
p = 0.007 0.029 0.007 0.334 0.011 0.011

Communication

Mean 6.1 4.4 0.6 0.6 2.8 2.1 0.3 1.2 −3.8 −4.2 0.3 0.7
Min 0.3 0.3 −0.3 −0.3 0.1 0.1 0.0 −25.1 −17.5 −153.5 −0.2 −0.2
Max 34.0 138.0 2.2 114.8 17.2 101.4 3.0 116.5 −0.3 0.0 2.0 46.4
St.dev 7.3 7.9 0.5 2.8 3.6 4.0 0.6 3.1 3.8 6.7 0.4 1.3

U = 76908.500 100500.500 81414.500 74121.000 91997.000 75676.000
p = <0.001 0.629 0.001 <0.001 0.704 0.003

Aggregation/
Bus

Mean 9.2 4.5 0.4 0.4 4.5 2.3 0.4 1.5 −5.7 −4.3 0.5 0.7
Min 0.3 0.3 −0.3 −0.2 0.3 0.1 0.0 −0.5 −26.7 −51.2 −0.2 −0.2
Max 39.9 282.0 2.2 36.2 19.4 154.7 3.5 36.5 −0.3 0.0 1.6 14.4
St.dev 10.5 10.8 0.4 2.4 5.3 5.8 0.6 2.8 5.9 5.4 0.3 1.2

U = 1210.500 2481.500 1230.500 3201.000 17767.000 21522.500
p = <0.001 0.035 0.001 0.205 0.006 0.345

Event Processing
& Analytics

Mean 9.8 3.4 0.3 0.5 4.7 1.6 0.5 1.1 −4.0 −3.6 0.4 0.6
Min 0.3 0.3 −0.3 −0.3 0.1 0.1 0.0 0.0 −14.8 −58.7 −0.2 −0.2
Max 34.0 75.5 2.2 11.3 17.2 34.5 2.0 11.5 −0.3 0.0 1.4 6.2
St.dev 9.1 5.4 0.4 0.8 4.5 2.4 0.4 1.4 3.3 4.1 0.3 0.6

U = 34767.500 63182.500 34580.500 63405.500 47513.000 47701.500
p = <0.001 0.029 <0.001 0.029 0.135 0.143

External
Communication

Mean 7.6 4.0 0.2 0.6 3.6 1.9 0.3 0.5 −4.4 −3.2 0.3 0.4
Min 0.3 0.3 −0.3 −0.3 0.1 0.1 −0.3 −0.6 −45.3 −157.3 −0.2 −0.2
Max 67.8 422.8 1.3 38.8 36.4 209.7 1.5 40.0 −0.3 0.0 0.6 15.8
St.dev 12.1 11.7 0.4 1.4 6.1 5.6 0.4 1.6 8.5 6.5 0.2 0.7

U = 103420.000 114031.000 102754.000 140076.500 99368.000 105025.000
p = <0.001 <0.001 <0.001 0.105 0.137 0.350

Device
Management

Mean 14.4 3.3 0.3 0.1 7.0 1.5 0.6 0.3 −10.0 −4.8 0.6 0.2
Min 1.1 0.3 −0.2 −0.3 0.6 0.1 −0.5 0.0 −61.7 −12.6 0.4 −0.2
Max 90.7 12.0 1.0 0.8 42.1 5.3 1.5 1.5 −1.7 −1.0 0.9 0.6
St.dev 13.3 2.7 0.1 0.3 6.4 1.2 0.3 0.4 8.8 4.0 0.1 0.2

U = 299.000 721.500 286.000 723.000 605.000 94.500
p = <0.001 0.001 <0.001 0.001 0.001 <0.001

Identity
& Access

Mean 7.0 3.5 0.5 0.5 3.2 1.6 0.7 0.5 −5.0 −3.3 0.5 0.4
Min 1.1 0.3 −0.3 −0.3 0.5 0.1 0.0 0.0 −16.8 −31.7 −0.2 −0.2
Max 23.0 31.0 2.2 3.3 10.6 13.7 1.0 4.0 −0.3 0.0 2.0 2.0
St.dev 6.2 4.9 0.5 0.5 2.9 2.2 0.4 0.7 4.4 4.2 0.5 0.3

U = 1515.500 2563.500 1652.000 3240.000 2108.500 2899.500
p = <0.001 0.017 <0.001 0.641 0.018 0.911
T
c

S
m
h
a
o

d
l
o
d
p
E
t
i
t

m

5. Discussion

In this section, we illustrate the relevance of our findings
hrough an example use case involving a reuse decision making
rocess in the context of an IoT application development. Addi-
ionally, we interpret the results obtained by this case study and
laborate on implications to both researchers and practitioners.

.1. Applicability of empirical findings

In Section 1, we described three major tasks of the reuse
rocess, i.e., (a) identify the reusable asset, (b) integrate the
eusable asset and (c) evaluate the reusable asset. In this section,
e elaborate on an example decision making process, presenting
he data that would guide it. To that end, in Table 9 we rank the
ifferent functionality types for each metric considered in this
tudy, which are grouped according to the three major tasks. For
xample, when identifying reusable assets (wondering ‘‘what to
euse?’’), one may look into the reuse frequency metric (column
F) and check the top three reused functionalities, finding that
omponents related to the Devices, the Device Management and
he External Communications layers are more commonly reused.
 t
o help the reader further, we provide examples of popular
omponents on the right side of Table 9.
In our example, the reuser intends to develop a small-scale

mart Home application that will manage a set of smart lamps
anufactured by different companies. The goal is to create a
olistic solution exploiting the existing reusable components that
re freely available, which will be configured to meet the needs
f a Smart Home.
Based on Table 9 and the architecture model of Fig. 1, the

eveloper should start by reusing components from the Devices
ayer. The Devices layer implements the lower level components
f the architecture representing the devices around which the
eveloper will build a centralized solution. These components
resent the highest reuse frequency and also possess the highest
xtendibility. Additional components implementing Device func-
ionality may need extra coding since these components are often
ntegrated via White-Box reuse in the target system. However,
he expected necessary effort is not that high.

The next step is to implement functionality related to the
anagement of the devices (such as turn the lights on/off, change
heir color, or update their firmware) by reusing components

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 13

f
r
r
a
m
H
t
s

s
d
F
t
t
n
s
F
c
d
t
u
h

s
E
a
s
o
p
s
l
t
n
b

p
f
a
u
b
l
w
c

Table 9
IoT component reuse ranking.
Functionality Task | Relevant question | Metrics Example of popular

reused component

Identification Integration Evaluation
What to reuse? Does it need customization? What is their quality?

RF #R
eu

se
d

co
m
po

ne
nt
s

W
hi
te
-B

ox

Bl
ac
k-
Bo

x

In
te
gr
at
io
n

ef
fo
rt

Re
us

ab
ili
ty

Fl
ex

ib
ili
ty

Fu
nc

tio
na

lit
y

Ex
te
nd

ib
ili
ty

U
nd

er
st
an

da
bi
lit
y

Ef
fe
ct
iv
en

es
s

Devices 1 3 1 3 3 6 7 6 1 2 2 Thing
Communication 7 6 6 4 5 7 1 7 6 1 6 NetworkService
Aggregation/Bus 6 4 4 6 4 3 3 3 5 6 3 MQTTActionListener
Event Processing &
Analytics

5 5 5 5 2 2 4 2 4 4 5 MemoryPersistence

External Communication 3 2 2 2 6 4 6 4 7 3 7 ChartProvider
Device Management 2 1 3 1 7 1 5 1 3 7 1 OnOffStatus
Identity & Access
Management

4 7 7 7 1 5 2 5 2 5 4 AuthorizationModelFac-
tory
5

a
c
a

rom the Device Management layer. These components are top-
anked in terms of Reusability, Functionality, Effectiveness and
euse frequency, making them the perfect candidates to manage
ll the functionalities performed by the IoT devices. Moreover,
ost of these components are integrated via Black-box reuse.
owever, if additional code is required (i.e., White-box reuse),
he developer should be aware that this integration can be costly
ince they depicted the maximum effort.
In order to facilitate the Communication of the smart lamps,

ome basic components can be reused for the protocol that each
evice supports. These components are highly ranked in terms of
lexibility and Understandability, allowing for the implementa-
ion of a uniform communication solution that will accommodate
he diversity of protocols successfully. However, these compo-
ents are not reused frequently and, thus, the reuser may need to
earch carefully to identify the appropriate components for reuse.
urthermore, a special focus is given to reusing Aggregation/Bus
omponents since they are responsible for bridging the different
evices. The smart lamps are from different manufacturers and,
herefore, we need to write extra native code to provide a more
niform solution. Fortunately, these components appear to be
ighly ranked for most quality attributes.
The next step is to handle all the data retrieved from our

mart lamps (e.g., energy consumption). Components related to
vent Processing & Analytics, such as general purpose data storage
nd retrieval procedures, can be reused in our example. However,
ince we want to satisfy specific use cases like identifying peaks
f energy consumption, we would choose to expand these com-
onents by writing our own algorithms and automations from
cratch. The same goes for the Identity & Access Management
ayer, in which we reuse components for already existing solu-
ions (e.g., authentication), but we also expand them by writing
ative code in order to have an application that will be configured
ased on our specific needs (e.g., customized security).
In the end, we structure the entire solution by reusing com-

onents related to the External Communication layer, providing
unctionalities related to data visualization, such as charts. We
lso need to implement native code, as we want to satisfy certain
se cases that cannot be fulfilled through reuse, such as com-
ining UI components to create a better user experience. This
ayer appears to have quite high Understandability, which is what
e are looking for when creating a system that can be easily
onfigured to meet the users’ needs.
.2. Implications to researchers and practitioners

The results of this study provide useful information and guid-
nce to practitioners on planning the reuse of components in the
ontext of IoT application development. In particular, some take
way messages that we can provide based on our case study are:

• When identifying reuse opportunities, Engineers of IoT can
greatly benefit from reusing a core set of general purpose
components, which in our case regard the Event Processing
& Analytics layer and the Devices layer. These components,
in their majority, can be reused as is without requiring any
integration effort.

• Regarding the integration of reused components, we high-
light that although components from the Device Manage-
ment layer are heavily reused (and necessary), they may
require a substantial integration effort, which should be
factored in the design and implementation phased of an
IoT application.

• Regarding the evaluation of reusable assets, we mainly
found that reuse in the context of IoT development seems
not to jeopardize the overall quality of the IoT system while
also improving its reusability and functionality.

Based on the results of this case study, we encourage re-
searchers to:

• Further explore the reuse of components in the context
of IoT application development by examining other Open
Source projects. Researchers can investigate whether the
same type of components, as appointed by this study, have
been systematically reused.

• Introduce a process for systematic, planned reuse of IoT
components. Such a process would define clear procedures
for: (a) identifying and sorting the reusable components,
(b) integrating the reused components into the new appli-
cations and (c) maintaining these components.

6. Threats to validity

To conclude this section, we refer to the threats to validity
of this case study divided by construct, internal, reliability and
external aspects (Runeson and Höst, 2009). Construct validity
defines how effectively a test or experiment measures up to its

14 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

T
P

able A.1
rojects that reuse Eclipse IoT projects.
Project Description #Classes LoC Releases # Forks # Contributors # Reused classes

Apache Camel Integration systems framework 18.461 2.176.350 158 4.000 605 49
Eclipse Hono IoT devices connector service 648 119.809 43 94 32 10
Eclipse Leshan M2M communication 367 48.849 27 260 25 67
Mule CoAP connector CoAP capable applications 13 3.001 1 2 1 5
Rhiot IoT messaging platform 443 39.398 5 24 14 44
IoTDM Middleware for IoT data management 245 40.801 20 2 17 15
PerfCake Performance testing framework 273 48.736 24 31 19 2
GSN Middleware for sensor networks 443 86.804 13 41 11 1
SiteWhere IoT platform 1.195 150.579 39 298 13 4
Bosch IoT Things Examples for Bosch IoT Things service 21 4.101 1 34 22 12
Eclipse Kura Addons Communication addons for Eclipse Kura 26 3.703 16 3 2 10
Dentrassi Camel Component for providing OPC UA client and server 36 4.266 2 5 2 18
DFKI COS BaSys Platform Service platform 1.142 265.678 6 0 5 3
PLC4J Driver OPC UA Set of libraries that enables communication with PLC 866 90.312 16 88 37 2
Apache ActiveMQ High performance message broker 4.650 913.479 66 1.200 91 3
Apache Stratos PaaS framework 1.438 189.727 53 111 48 4
Spring Integration Support for Enterprise Integration Patterns 2.950 405.617 204 831 141 10
WSO2 Axis2 Transports Framework for axis2 based transports 361 43.481 62 144 77 7
WSO2 MB WSO2 message broker 292 49.481 26 74 29 40
MQTT Notification Plugin MQTT Notification Plugin for Jenkins 2 380 0 14 4 1
Applozic Android SDK Android Chat SDK 327 64.660 66 304 19 2
AWS AppSync SDK Android AWS AppSync SDK 220 45.786 34 41 17 2
CA Mobile API Gateway Android CA Mobile API Gateway SDK 531 97.305 24 17 15 3
AirMap Android Airspace service for drones SDK 145 24.497 25 5 3 1
Labstack Android Android library for labstack platform 4 81 0 0 1 2
TNT4J Track and trace API 164 31.107 217 12 7 2
Qiscus SDK Android Android Chat SDK 176 30.791 177 75 13 1
Ibis Adapter Framework Stateless integration framework 1.108 198.028 204 41 27 3
Vert.x MQTT MQTT server and client 58 9.401 34 56 15 12
Moquette MQTT lightweight broker 130 14.917 14 636 35 9
Eclipse Kapua Platform for managing IoT gateways 2.733 247.650 28 138 27 11
Joynr Web-based communication framework 1.232 146.817 142 33 17 3
FROST-Server Server for OGC Sensor Things API 464 64.117 20 31 11 4
MQTT Load testing for MQTT broker 25 3.685 6 1 7 7
OpenHab2 Home automation platform 3.384 394.788 90 2600 535 787
f
o
t
t
t
W
b
t
r
t
a
i

s

claims. Internal validity is related to the examination of causal
relations examining whether an experimental environment is ad-
equate to support the claim. External validity examines whether
the results of a study can be generalized to other cases. Reliability
is associated to the reproducibility of the study, i.e., the ability
of other researchers to repeat the same process, collect data and
reach the same results.

A possible threat to construct validity is related to the metrics
that are used to answer our research questions. Since, to our
knowledge, there are not any studies available in literature ex-
amining the reuse potentials from IoT development frameworks,
we selected the metrics based on general purpose studies exam-
ining software reuse metrics (Frakes and Terry, 1996), models
(Schwittek and Eicker, 2013) and strategies, Ravichandran and
Rothenberger (2003). Each metric selected in this study is based
on the relevant reference from existing literature. With respect
to the synthesized metrics (Reused components, Native compo-
nents, Black-box reuse, White-box reuse) we selected to use these
metrics in order to be able to map the reused components to
the type of IoT functionality that they serve. Regarding the effort
metrics, we believe that the lines of code are indicators of the
effort required to integrate the reused components. This metric
has been also adopted in Gui and Scott (2006) and Prieto-Diaz and
Freeman (1987) for assessing the reuse effort. Moreover, since the
scope of the study is to compare customization effort between
reusable components that offer different functionalities and not
to provide a typical reuse effort estimation model, we believe
that this metric is an indicative for comparing the difference
between the customization effort of reusable components. Nev-
ertheless, we acknowledge that there are other metrics that can
also be used. Concerning the type of functionality, we based our
categorization on the reference architecture proposed by Freman-
tle (2015). The specific architecture was chosen (a) considering
its high adoption by other research practitioners in literature
(Neagu et al., 2016; Pessoa and Duarte-Figueiredo, 2017; Zamfir
et al., 2016) and (b) considering its high coverage in IoT architec-
ture aspects (Krčo et al., 2014; The Internet of Things Reference
Model Whitepaper, 2014; Yelamarthi et al., 2017). We acknowl-
edge though, that the choice of the reference architecture model
may alter the observed results. For the quality assessment of the
reused components, we have used QMOOD model (Bansiya and
Davis, 2002), which is an established quality model that has been
rigorously validated and reused in literature (Ani et al., 2017;
Couto et al., 2018; O’Keeffe and Cinnéide, 2006). However, we
acknowledge that other quality models could lead to variations
in the observed results.

Regarding internal validity, the proposed study attempted to
orm an association between (a) the reuse strategy and the type
f functionality implemented by the reused components and (b)
he quality characteristics (such as flexibility, reusability, func-
ionality, extendibility, understandability and effectiveness) and
he type of functionality implemented by the reused components.
e cannot claim that this association forms a causal relationship
etween the type of functionality of the reused components and
he reuse strategy adopted or the quality of the components. The
esults just indicate trends and common practice when it comes
o selecting and integrating components in the context of IoT
pplication development. Some of these trends can be verified
ntuitively while others may be surprising.

With regard to reliability, we believe that the followed re-
earch process ensures the replication of our study. The process

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 15
that has been followed in this study has been thoroughly doc-
umented in the case study design, provided in Section 3. In
addition, the extraction of the data and the associated struc-
tural metrics was performed with the help of the publicly avail-
able tools (Maven repository, Github, Percerons) and therefore
any interested researcher can repeat the analysis and derive the
same results. We acknowledge though potential researchers’ bias
during the data collection due to the manual classification of
components into types of functionality performed by the first
author. The first author of the study parsed the source code of the
components and classified each reused component to a type of
functionality based on the keywords of Fig. 1. In most of the cases
the classification was easy since the name of the components
clearly indicated its function. For these case, one-third of the
sample were inspected by the other authors to ensure consis-
tency. Additionally, the classification was not straightforward in
30% of the cases, in which scenario all authors discussed to reach
consensus.

Finally, we acknowledge that the external validity, is threat-
ened by the fact that the data set examines a subset of IoT
reuse opportunities coming from the 7 projects supported by
Eclipse IoT framework. Since we wanted to measure actual reuse
opportunities, as observed in practice with the help of Maven
repository statistics, we were forced to select only frameworks
whose components were reused by other projects. In Maven
Repository we were able to retrieve other reused frameworks,
such as Microsoft Azure IoT, Amazon SDKs but we made the
choice not to analyze frameworks that are platform specific,
compromising the interoperability of the applications. Therefore,
concerning the generalizability, we can say that a replication of
the analysis performed in this study to other IoT frameworks
would be useful for further generalizing the results regarding
reuse opportunities in the IoT development context.

7. Conclusions

In this paper, we explored the reuse opportunities stemming
from 7 popular projects coming from the Eclipse IoT framework
for building IoT applications. We performed a case study and
investigated (a) the types of functionalities that can be reused;
(b) the reuse strategy that is adopted and the effort required
for integrating the reused components with respect to the type
of functionality that they implement and (c) the quality of the
reused components with respect to the type of functionality
that they implement. We analyzed 503 reused components in-
tegrated in 35 target IoT applications. The results of this case
study suggest that: the main reused functionality is related to
the Device Management layer; the main reuse strategy is Black-
box reuse; and the effort for integrating the reused components
can range from 27 lines of code to 1421 lines of code. The
quality of the reused components is slightly higher, in terms of
Reusability and Functionality, compared to components built from
scratch in most cases. As future work we intend to further explore
reuse opportunities within IoT frameworks by examining other
open source frameworks, retrieving candidate components and
comparing them.

CRediT authorship contribution statement

Paraskevi Smiari: Conceptualization, Methodology, Software,
Formal analysis, Data curation, Writing - original draft, Writing
- review & editing. Stamatia Bibi: Conceptualization, Method-
ology, Software, Writing - original draft, Writing - review &
editing. Daniel Feitosa: Conceptualization, Methodology, Writing
- original draft, Writing - review & editing.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This research was co-funded by the European Union and Greek
national funds through the Operational Program Competitiveness,
Entrepreneurship, and Innovation, grant number T1EDK-04873

Appendix. Projects that reuse Eclipse IoT projects

See Table A.1.

References

Aly, M., Khomh, F., Yacout, S., 2018. Kubernetes or OpenShift? Which Technology
Best Suits Eclipse Hono IoT Deployments. In: 2018 IEEE 11th Conference on
Service-Oriented Computing and Applications (SOCA). IEEE.

Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Avgeriou, P., Stamelos, I., 2018.
Reusability index: A measure for assessing software assets reusability. In:
International Conference on Software Reuse. Springer, Cham.

Ampatzoglou, A., Kritikos, A., Kakarontzas, G., Stamelos, I., 2011. An empirical
investigation on the reusability of design patterns and software packages. J.
Syst. Softw. 84 (12), 2265–2283.

Ani, Z.C., Basri, S., Sarlan, A., 2017. A reusability assessment of UCP-based
effort estimation framework using object-oriented approach. J. Telecommun.
Electron. Comput. Eng. (JTEC) 9 (3–5), 111–114.

Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2016. Software
metrics fluctuation: a property for assisting the metric selection process. Inf.
Softw. Technol. 72, 110–124.

Bansiya, J., Davis, C.G., 2002. A hierarchical model for object-oriented design
quality assessment. IEEE Trans. Softw. Eng. 28 (1), 4–17.

Bibi, S., Stamelos, I., Gerolimos, G., Kollias, V., 2010. BBN based approach for
improving the software development process of an SME—a case study. J.
Softw. Maint. Evol.: Res. Pract. 22 (2).

Bröring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Kaebisch, S., Kramer, D.,
Phouc, D.L., Mitic, J., Anicic, D., Teniente, E., 2017. Enabling IoT ecosystems
through platform interoperability. IEEE Softw. 34 (1), 54–61.

Chaturvedi, S., Tyagi, S., Simmhan, Y., 2007. Collaborative Reuse of streaming
dataflows in IoT applications. In: 2017 IEEE 13th International Conference
on E-Science (E-Science). pp. 403–412.

Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., Liu, C., 2008. An empirical study on
software development with open source components in the chinese software
industry. Softw. Process: Improv. Pract. 13 (1), 89–100.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng. 20 (6), 476–493.

Ciccozzi, F., Spalazzese, R., 2016. MDE4IoT: supporting the internet of things
with model-driven engineering. In: International Symposium on Intelligent
and Distributed Computing. Springer, Cham.

Couto, C.M.S., Rocha, H., Terra, R., 2018. A quality-oriented approach to rec-
ommend move method refactorings. In: Proceedings of the 17th Brazilian
Symposium on Software Quality. pp. 11–20.

Dorofeev, K., Cheng, C.H., Guedes, M., Ferreira, P., Profanter, S., Zoitl, A.,
2017. Device adapter concept towards enabling plug & produce production
environments. In: 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE.

Feitosa, D., Ampatzoglou, A., Gkortzis, A., Bibi, S., Chatzigeorgiou, A., 2020. CODE
reuse in practice: Benefiting or Harming Technical Debt. J. Syst. Softw.
110618.

Frakes, W., Terry, C., 1996. Software reuse: metrics and models. ACM Comput.
Surv. 28 (2), 415–435.

Fremantle, P., 2015. A Reference Architecture for the Internet of Things. WSO2
White paper.

Gaffney, Jr., J.E., Durek, T.A., 1989. Software reuse—key to enhanced productivity:
some quantitative models. Inf. Softw. Technol. 31 (5), 258–267.

Gui, G., Scott, P.D., 2006. Coupling and cohesion measures for evaluation of
component reusability. In: Proceedings of the 2006 International Workshop
on Mining Software Repositories. ACM, pp. 18–21.

Gupta, A., Cruzes, D., Shull, F., Conradi, R., Rønneberg, H., Landre, E., 2010.
An examination of change profiles in reusable and non-reusable software
systems. J. Softw. Maint. Evol.: Res. Pract. 22 (5), 359–380.

http://refhub.elsevier.com/S0164-1212(20)30151-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb1
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb2
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb3
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb3
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb3
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb3
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb3
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb4
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb4
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb4
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb4
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb4
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb5
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb6
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb7
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb8
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb9
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb10
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb11
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb11
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb11
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb12
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb12
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb12
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb12
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb12
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb14
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb15
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb16
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb16
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb16
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb17
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb17
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb17
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb18
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb18
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb18
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb19
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb19
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb19
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb19
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb19
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb20
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb20
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb20
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb20
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb20

16 P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706

G

H

H

H

J

K

K

K

K

K

L

L

L

L

M

N

O

O

P

P

P

P

P

P

P

R

R

R

S

S

S

S

S

S

S

T

T

T

T

V

W

W

Y

Y

Y

Z

Z

Z

Z

uth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F.,
Reinfurt, L., 2018. A detailed analysis of IoT platform architectures: concepts,
similarities, and differences. In: Internet of Everything. Springer, Singapore,
pp. 81–101.

aefliger, S., Von Krogh, G., Spaeth, S., 2008. Code reuse in open source software.
Manage. Sci. 54 (1), 180–193.

einemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck, M., 2011.
On the extent and nature of software reuse in open source java projects.
In: International Conference on Software Reuse. Springer, Berlin, Heidelberg,
pp. 207–222.

öttger, R., Ozcelikors, M., Heisig, P., Krawczyk, L., Cuadra, P., Wolff, C., 2018.
Combining Eclipse IoT Technologies for a RPI3-Rover Along with Eclipse
Kuksa. Software Engineering (Workshops).

atain, A., Nagpal, A., Gaur, D., 2013. Agglomerative Hierarchical approach for
clustering components of similar Reusability. Int. J. Comput. Appl. 68 (2).

atasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V.Y., 2008. Smart
semantic Middleware for the Internet of Things. Icinco-Icso 8, 169–178.

essel, M., Atkinson, C., 2018. Integrating reuse into the rapid, continuous
software engineering cycle through test-driven search. In: 2018 IEEE/ACM
4th International Workshop on Rapid Continuous Software Engineering
(RCoSE). IEEE.

im, J.E., Boulos, G., Yackovich, J., Barth, T., Beckel, C., Mosse, D., 2012. Seamless
integration of heterogeneous devices and access control in smart homes. In:
Intelligent Environments (IE), 2012 8th International Conference on IEEE. pp.
206–213.

ovatsch, M., Lanter, M., Shelby, Z., 2014). Californium: Scalable cloud services
for the internet of things with coap. In: 2014 International Conference on
the Internet of Things (IOT). IEEE.

rčo, S., Pokrić, B., Carrez, F., 2014. Designing IoT architecture (s): A European
perspective. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). pp.
79–84.

azarescu, M.T., 2014. Internet of things low-cost long-term environmental
monitoring with reusable wireless sensor network platform. In: Internet of
Things. Springer, Cham, pp. 169–196.

eiba, Barry, 2012. Oauth web authorization protocol. IEEE Internet Comput. 16
(1), 74–77.

evina, A.I., Dubgorn, A.S., Iliashenko, O.Y., 2017. Internet of things within the
service architecture of intelligent transport systems. In: 2017 European
Conference on Electrical Engineering and Computer Science (EECS) IEEE. pp.
351–355.

im, W.C., 1994. Effects of reuse on quality, productivity, and economics. IEEE
Softw. 11 (5), 23–30.

organ, L., Finnegan, P., 2007. Benefits and drawbacks of open source software:
an exploratory study of secondary software firms. In: IFIP International
Conference on Open Source Systems. Springer, Boston, MA.

eagu, G., Florian, V., Stanciu, A., Preda, S., 2016. Sensing as a service approach
in health monitoring. In: 2016 15th RoEduNet Conference: Networking in
Education and Research. IEEE, pp. 1–5.

’Keeffe, M., Cinnéide, M.O., 2006. Search-based software maintenance. In:
Conference on Software Maintenance and Reengineering (CSMR’06). IEEE, p.
10.

sbeck, J., Virani, S., Fuentes, O., Roden, P., 2011. Investigation of automatic
prediction of software quality. In: 2011 Annual Meeting of the North
American Fuzzy Information Processing Society. IEEE, pp. 1–6.

adhy, N., Singh, R.P., Satapathy, S.C., 2018. Software reusability metrics estima-
tion: Algorithms, models and optimization techniques. Comput. Electr. Eng.
69, 653–668.

apamichail, M., Diamantopoulos, T., Chrysovergis, I., Samlidis, P., Symeonidis, A.,
2018. User-perceived reusability estimation based on analysis of software
repositories. In: 2018 IEEE Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE). IEEE.

aschali, M.E., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Stamelos, I., 2017.
Reusability of open source software across domains: A case study. J. Syst.
Softw. 134, 211–227.

essoa, T.Q., Duarte-Figueiredo, F., 2017. NodePI: An integrated platform
for smart homes. In: 2017 IEEE 9th Latin-American Conference on
Communications (LATINCOM). IEEE, pp. 1–6.

odgurski, A., Pierce, L., 1993. Retrieving reusable software by sampling behavior.
ACM Trans. Softw. Eng. Methodol. 2, 286–303.

rakash, B.A., Ashoka, D.V., Aradhya, V.M., 2012. Application of data mining
techniques for software reuse process. Proc. Technol. 4, 384–389.

rieto-Diaz, R., Freeman, P., 1987. Classifying software for reusability. IEEE Softw.
4 (1), 6.

aemaekers, S., Deursen, A.V., Visser, J., 2012. An analysis of dependence
on Third-party libraries in Open Source and proprietary systems. In: 6th
International Workshop on Software Quality and Maintainability (SQM’ 12).

avichandran, T., Rothenberger, M.A., 2003. Software reuse strategies and

component markets. Commun. ACM 46 (8), 109–114.
uneson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14 (2), 131.

aied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D., 2018. Improving
reusability of software libraries through usage pattern mining. J. Syst. Softw.
145, 164–179.

chwittek, W., Eicker, S., 2013. A study on Third Party Component reuse in
Java Enterprise Open Source Software. In: 16th International Symposium on
Component-Based Software Engineering (CBSE’ 13). ACM, pp. 75–80.

erna, M.A., Sreenan, C.J., Fedor, S., 2015. A visual programming framework
for wireless sensor networks in smart home applications. In: 2015 IEEE
Tenth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP). pp. 1–6.

hani, U., Broodney, H., 2015. Reuse in model-based systems engineering. In:
2015 Annual IEEE Systems Conference (SysCon) Proceedings. IEEE.

miari, P., Bibi, S., 2018. A smart city application modeling framework: A case
study on Re-engineering a smart retail platform. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) IEEE.
pp. 111–118.

miari, P., Bibi, S., Feitosa, D., 2019. Examining the Reusability of smart home ap-
plications: A case study on Eclipse Smart home. In: International Conference
on Software and Systems Reuse. Springer, Cham, pp. 232–247.

mirek, L., Zimmermann, G., Beigl, M., 2016. Just a smart home or your smart
home–a framework for personalized user interfaces based on eclipse smart
home and universal remote console. Procedia Comput. Sci. 98, 107–116.

anganelli, G., Vallati, C., Mingozzi, E., 2015. CoAPthon: Easy development of
CoAP-based IoT applications with Python. In: 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT). IEEE.

he Internet of Things Reference Model Whitepaper, 2014. The Internet of Things
Reference Model - Whitepaper. Cisco.

orchiano, M., Morisio, M., 2004. Overlooked aspects of COTS-based develop-
ment. IEEE Softw. 21 (2), 88–93.

ran, V., Liu, D.B., Hummel, B., 1997. Component-based systems development:
challenges and lessons learned. In: Proceedings Eighth IEEE International
Workshop on Software Technology and Engineering Practice Incorporating
Computer Aided Software Engineering. IEEE.

on Krogh, G., Spaeth, S., Lakhani, K.R., 2003. Community, joining, and special-
ization in open source software innovation: a case study. Res. Policy 32 (7),
1217–1241.

ang, G., Ungar, L., Klawitter, D., 1999. Component assembly for Object-Oriented
Distributed Systems. IEEE Comput. 71–78.

angoo, D.P., Singh, A., 2018. A classification based predictive cost model for
measuring Reusability Level of Open Source software.

e, Y., Fischer, G., Reeves, B., 2000. Integrating active information delivery and
reuse repository systems. In: ACM SIGSOFT Software Engineering Notes. Vol.
25. ACM, No. 6.

elamarthi, K., Aman, Md S., Abdelgawad, A., 2017. An application-driven mod-
ular IoT architecture. In: Wireless Communications and Mobile Computing
2017.

u, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M., 2007. A
framework for rapid integration of presentation components. In: Proceedings
of the 16th International Conference on World Wide Web. ACM.

amfir, M., Florian, V., Stanciu, A., Neagu, G., Preda, Ş., Militaru, G., 2016. Towards
a platform for prototyping IoT health monitoring services. In: International
Conference on Exploring Services Science. Springer, Cham, pp. 522–533.

anella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M., 2014. Internet of things
for smart cities. IEEE Internet Things J. 1 (1), 22–32.

hu, H., 2005. Building reusable components with service-oriented architec-
tures. In: IRI-2005 IEEE International Conference on Information Reuse and
Integration, Conf, 2005. IEEE.

immermann, A., Schmidt, R., Sandkuhl, K., Wißotzki, M., Jugel, D., Möhring, M.,
2015. Digital enterprise architecture-transformation for the internet of
things. In: 2015 IEEE 19th International Enterprise Distributed Object
Computing Workshop. IEEE.

Paraskevi Smiari is a Ph.D. candidate at the De-
partment of Electrical and Computer Engineering at
the University of Western Macedonia, Kozani, Greece.
She holds a BSc in Informatics and Telecommunica-
tions Engineering (2016) from the same University.
Her research interests include software process and
architecture models, IoT application development and
software reuse and quality. She currently works as an
Android Developer in the medical device industry.

http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb21
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb22
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb22
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb22
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb23
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb24
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb25
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb26
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb27
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb28
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb29
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb30
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb30
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb30
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb30
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb30
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb31
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb32
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb33
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb34
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb34
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb34
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb35
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb36
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb37
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb38
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb39
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb40
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb41
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb41
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb41
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb41
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb41
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb42
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb43
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb44
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb45
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb46
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb46
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb46
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb46
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb46
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb47
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb48
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb49
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb50
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb51
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb52
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb53
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb54
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb55
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb56
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb57
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb58
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb59
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb60
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb61
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb62
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb63
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb63
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb63
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb63
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb63
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb64
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb65
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb66
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb67
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb67
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb67
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb68
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69
http://refhub.elsevier.com/S0164-1212(20)30151-5/sb69

P. Smiari, S. Bibi and D. Feitosa / The Journal of Systems & Software 169 (2020) 110706 17
Dr. Stamatia Bibi is an Assistant Professor of soft-
ware engineering in the Department of Electrical and
Computer Engineering at the University of West-
ern Macedonia, Kozani, Greece. She holds a BSc in
Informatics (2002) and a Ph.D. (2008) in software
engineering from the Aristotle University of Thessa-
loniki, Greece. Her interests include process models,
cost estimation, quality assessment, and cloud comput-
ing. She currently has 40 publications among journal,
conference papers and book chapters.
Dr. Daniel Feitosa is an Assistant Professor in the Fac-
ulty Campus Fryslân and the Chief Data Scientist at the
Data Research Centre of the University of Groningen.
He is also an associated researcher in the group of
Software Engineering and Architecture of the Univer-
sity of Groningen. He holds a BSc degree (2010) and
MSc (2013) in Computer Science from the University
of São Paulo, Brazil, and was awarded his Ph.D. degree
(2019) in Software Engineering by the University of
Groningen. He currently has 20 publications among
journal, conference papers and book chapters. His main

research interests are in software architecture, software patterns and data
analytics.

	Examining the reuse potentials of IoT application frameworks
	Introduction
	Related work
	Software reuse
	Designing IoT applications

	Case study design evaluation
	Research objectives and questions
	Case selection and units of analysis
	Data collection
	Data analysis
	Data overview

	Results
	RQ1 – Which types of functionality offer the most components in the context of IoT application development?
	RQ2 – Do the reused software components require customization?
	RQ2.1 - Which reuse strategy (i.e., White-box reuse or Black-box reuse) is adopted when integrating the reused IoT components to the target application?
	RQ2.2 - What is the customization effort required to integrate the reused components in the case of White-box reuse?

	RQ3 – Do reused components present higher quality compared to the native components in the context of IoT application development?

	Discussion
	Applicability of empirical findings
	Implications to researchers and practitioners

	Threats to validity
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix. Projects that Reuse Eclipse IoT projects
	References

