
S P E C I A L I S S U E P A P E R

Maintenance process modeling and dynamic estimations based
on Bayesian networks and association rules

Angelos Chatzimparmpas | Stamatia Bibi

Department of Informatics and

Telecommunications Engineering, University of

Western Macedonia, Kozani, Greece

Correspondence

Stamatia Bibi, Department of Informatics and

Telecommunications Engineering, University of

Western Macedonia, Kozani, Greece.

Email: sbibi@uowm.gr

Abstract

Managing the maintenance process and estimating accurately the effort and duration

required for a new release is considered to be a crucial task as it affects successful soft-

ware project survival and progress over time. In this study, we propose the combination

of twowell‐knownmachine learning (ML) techniques,Bayesian networks (BNs), and asso-

ciation rules (ARs) for modeling the maintenance process by identifying the relationships

among the internal and external quality metrics related to a particular project release to

both themaintainability of the project and themaintenance process indicators (ie, effort

and duration). We also exploit Bayesian inference, to test the effect of certain changes in

internal and external project factors to the maintainability of a project. We evaluate our

approach through a case study on 957 releases of five open source JavaScript applica-

tions. The results show that the maintainability of a release, the changes observed

between subsequent releases, and the time required between two releases can be accu-

rately predicted from size, complexity, and activity metrics. The proposed combined

approach achieves higher accuracy when evaluated against the BN model accuracy.

KEYWORDS

developers' activity, JavaScript, maintainability, maintenance, software quality, source code quality

1 | INTRODUCTION

Software quality involves many different activities throughout the operational lifecycle of an application all targeted to the delivery of software

that meets the specified requirements and satisfies the evolving needs of end‐users. Quality concerns are often intertwined with software main-

tenance that is closely related to technical debt.1 Software maintenance is one of the most demanding activities during the software lifecycle, con-

suming up to 75% of the total project resources,2 mainly due to the many constraints related to the interdependencies of the source code artifacts

of the software under maintenance. According to the IEEE 12193 software standards document, software maintenance is defined as the “Modifi-

cation of a software product after delivery to correct faults, to improve performance or other attributes, or to adapt the product to a modified

environment.” The maintainability is “the ease of performing maintenance activities,” while maintenance effort is subsequently defined as the

“effort required to reduce or eliminate maintenance problems.” Despite the importance of software maintenance and its crucial effect on the qual-

ity of a software application over time, its management and assessment is still an immature discipline in software engineering research and prac-

tice. The main problem is that software maintainability (as a single synthesized factor) and maintenance process indicators (ie, effort and number of

modifications) are most of the times addressed separately without being able to test the effect of the low level internal and external metrics to

both maintainability and maintenance indicators at the same time.

This gap can be alleviated by modeling the relationship among the process and product metrics related to both the maintainability of an appli-

cation and the maintenance process. Nowadays, mature software organizations collect a wealth of data regarding software development and

maintenance, an analysis of which can help towards extracting knowledge for effectively monitoring the whole maintenance process. Using

Received: 29 July 2018 Revised: 15 January 2019 Accepted: 14 February 2019

DOI: 10.1002/smr.2163

J Softw Evol Proc. 2019;31:e2163.
https://doi.org/10.1002/smr.2163

© 2019 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/smr 1 of 25

https://orcid.org/0000-0002-9079-2376
https://orcid.org/0000-0003-4248-3752
mailto:sbibi@uowm.gr
https://doi.org/10.1002/smr.2163
https://doi.org/10.1002/smr.2163
http://wileyonlinelibrary.com/journal/smr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2163&domain=pdf&date_stamp=2019-03-29

well‐established machine learning (ML) techniques, practitioners and researchers can explore the potential of this data by identifying relations

among project and process characteristics and the various maintainability indicators. Ideally, both exploratory (ie, models that extract frequently

appearing patterns among the variables) and predictive models (ie, models that provide estimations of certain variables) could be of practical

use in the context of software maintenance. Exploratory models can describe specific relationships among particular combinations of internal

and external quality characteristics and their influence to the maintainability of an application and subsequently to the related maintenance pro-

cess indicators (ie, effort and time required for a maintenance cycle). Predictive models could be of practical use by providing estimations on the

values of the maintainability and the maintenance process indicators.

In this study, we propose the combination of twowell‐knownML techniques, Bayesian networks (BNs)4 and association rules (ARs),5 for monitoring

themaintainability of applications over time by supporting thewholemaintenance process.Wedefine a three‐step process for softwaremaintenance

assessment and prediction based on BN and ARmodels that includes (1) the data collection and preparation step where the data are transformed in a

suitable form so as to serve as an input to the models, (2) the creation and evaluation of the BN and AR models where we demonstrate the means to

evaluate and identify defective aspects of the BN models that can be confronted with the application of ARs, and (3) the evidence‐based estimation

and inference step where the software manager is able to insert updated knowledge in the model and test its effect on the outcomes.

The suggested approach attempts to take advantage of the unique attributes of the two methods. In particular:

• The formalism of BN enables the development of a probabilistic model for software maintenance. BNs are effective in dealing with uncertainty

and enable us to measure through Bayesian inference the effect in mathematical terms of certain changes in internal and external project fac-

tors to the maintainability of a project.

• BNs as a predictive modeling method can provide a complete estimation framework that classifies an application release to a certain maintain-

ability interval, based on data from several historical releases. On the other hand, a BN model can be easily supplemented with expert judgment

in the cases where project managers have scarce statistical data of present or past projects and wish to produce a semi‐automated BN model

that can be easily controlled by humans.6

• AR pattern recognition supports the discovery of frequently appearing cause‐effect relationships among the application attributes and the

maintainability indicators. AR is a method for descriptive modeling that identifies patterns often ignored by predictive models that tend to

minimize the set of variables used for prediction purposes. Therefore, AR can identify particular combinations of attribute values that have

a common effect on the maintainability indicators that, otherwise, would have been excluded.

• The representation form of AR is transparent, easy to understand, and reproduced in order to offer a more precise explanation of how the

prediction has been made. This representation is important to a problem domain such as software maintenance, where the manager must trust

the output; otherwise, the model may be ignored.7

In order to evaluate the proposed approach and demonstrate its efficiency, we perform an empirical study on 957 releases of five popular

applications which are developed in the JavaScript (JS) scripting language. The motivation behind the need to analyze JS applications regarding

maintenance is twofold: (1) The fact that JS is considered as a weakly typed programming language, meaning that it has looser type rules, that

may generate unpredictable results. In this context, we want to see whether this fact may cause problems to the maintenance of projects and

focus on identifying the aspects that may create them. (2) The fact that many programmers rely upon popular JS frameworks (JQuery is one of

them) for building their web applications reveals the need to further explore the potentials of JS frameworks in terms of maintenance and adjust-

ment to user demands. For the purpose of this study, we analyzed the source code of the subsequent releases of five popular JS applications and

additionally record a set of project activity metrics and release metrics such as the changes performed between releases and the time required for

them. The results of applying the proposed approach for monitoring the maintenance activities of five JS applications show that the maintainability

metric can be accurately predicted from size metrics along with activity metrics like the number of commits (NoCom). The changes observed

between subsequent releases, as an indicator of the maintenance effort, and the time required between two releases are dependent on the main-

tainability of the previous release. In general, we observed variances between the estimation models derived for the five applications a fact that

appoints the need for customized maintenance models based on the background and the specific characteristics of each application.

The rest of the paper is organized as follows: Section 2 presents related work; Section 3 provides the details of the two modeling techniques

(ie, BN and AR), and Section 4 outlines the proposed approach. In Section 5, we present the case study design details. In Section 6, we present the

results, while in Section 7, we discuss the results and provide implications to researchers and practitioners. Finally, Section 8 concludes the paper

by summarizing our findings and referring to possible future work.

2 | RELATED WORK

During the past decades, several ML methods have been proposed to predict software quality. Regression models were one of the first funda-

mental ML algorithms used by Niessink et al8 and Dagpinar et al.9 The former evaluated the predicted maintenance effort against analogy‐

2 of 25 CHATZIMPARMPAS AND BIBI

based, function points, and expert estimations. The latter predicted maintainability with object‐oriented metrics. There are different types of

regression models like linear10 and multiple linear regression.11 Misra10 performed an experimental statistical analysis in order to assess main-

tainability by using different types of metrics (eg, complexity and size). Additionally, Fioravanti et al11 estimated the maintenance effort by divid-

ing metrics to (1) functional‐based and (2) counting members. Other ML techniques such as fuzzy models12 and neural networks13 have been

explored for assessing the maintainability and maintenance effort correspondingly based on a set of object‐oriented complexity and size metrics.

Zhou et al14 proposed the use of multiple adaptive regression splines (MARS) as an effective way to predict maintainability from size and object‐

oriented complexity metrics and evaluated the applicability of the method on two data sets. Some studies experiment with compilations of dif-

ferent ML methods like Kaur et al,15 who compared back propagation artificial neural network, generalized regression neural network (GRNN), fuzzy

inference systems (FIS), and adaptive neuro‐fuzzy inference systems (ANFIS) for the assessment of maintenance effort. Support vector machine

(SVM) and TreeNet were used by Jin et al16 and Elish et al,17 respectively. In the SVM approach, the maintainability was predicted based on

object‐oriented metrics. First, the authors used fuzzy C‐means clustering to find the distance from the clustering center, and by doing that they

were left with five metrics. Then, SVM predicts their relation with the software maintainability referred as maintenance effort which is equal to

the lines changed per class. The TreeNet approach17 was compared against other techniques like multivariate adaptive regression splines, multi-

variate linear regression (MLR), support vector regression (SVR), artificial neural network (ANN), and regression tree (RT) and was found competitive

in estimating the maintenance effort. Fontana et al18 present an overview of ML approaches in the context of identifying code smells. The main

problem with the majority of the proposed techniques is that the estimations they derive work as a “black‐box,” ie, they do not present the

rationale of the estimate. It is not easy for a software engineer to understand and intuitively confirm the estimation models derived from regres-

sion models.19

On the other hand, BN modeling adopts a representation formalism that can be easily accepted by practitioners. Several researchers have pro-

posed BNs within the context of software quality estimation. Okutan et al20 suggested the use of BNs for software defect predictions and also

introduced two new metrics the number of developers and the lines of code quality. Fenton et al21 also used BN modeling for predicting software

defects, by separating projects into development lifecycles and modeling them to dynamic Bayesian networks (DBNs). DBNs are different phase

BNs which are constructed by one of the three activity classes: (1) specification and documentation; (2) design and development; and (3) test

and rework. Wagner22 proposed a BN approach for modeling the activity‐based quality model (ABQM) based solely on expert judgment for con-

structing the networks and the associated probabilities. Wagner22 modeled the activities during the software maintenance process with their asso-

ciated outcomes (comment lines, size, and cyclomatic complexity) and estimated the average maintenance effort. Bibi et al23 employed BNs to

model source code quality characteristics of 20 open source Java applications with maintenance process indicators like duration, effort, and

production.

In this study, we go beyond existing literature by

• Modeling the relationship among the process and product metrics related to both the maintainability of an application and the maintenance pro-

cess indicators like duration and effort (measured as the changes occurring from one release to another).

• Employing a plethora of metrics related to the maintainability of applications like internal source code quality metrics (size, duplications, and com-

plexity) and external and internal activity metrics (number of developers, user acceptance, number of code interventions, and bugs reporting).

Developer‐related factors, as the number of developers and the NoCom, have also been found as important factors by Catolino et al24 for esti-

mating the proportion of changes performed during maintenance.

• Proposing evidence‐based inference for testing the effect of certain changes on internal quality factors (ie, lines of code) and activity factors (ie,

NoCom) to maintainability.

3 | BACKGROUND INFORMATION

In this section, we present the background theory of the two ML methods employed in this study to model the maintenance process. In Section

3.1, we provide an overview of BN models and exemplify with a short example. Next, in Section 3.2, we present the basic concepts of AR mining.

3.1 | Bayesian networks

BNs are directed acyclic graphs (DAGs) that consist of a set of nodes and directed links between them.4 Each node represents a random variable

that can take mutually exclusive values according to a probability distribution, which can be different for each node. Each link expresses proba-

bilistic cause‐effect relations among the linked variables and is depicted by an arc starting from the influencing variable (parent node) and termi-

nating on the influenced variable (child node). The directions of the links indicate the direction of the impact. Causal networks can be used in order

to follow how a change of certainty in one variable may change the certainty for other variables. Therefore, to each variable A with influencing

CHATZIMPARMPAS AND BIBI 3 of 25

variables (parents) B1, …, Bn, the conditional probability table (CPT) Pr(A|B1,.., Bn) is attached. Formally, the relationship between two nodes (A and

B) can be expressed with the help of Bayes rule:

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ (1)

The construction of BN models is based on identifying the nodes that are conditionally independent based on the d‐separation properties that

are analytically presented in Nielsen and Jensen.4

A simple BN example is presented in Figure 1. The model consists of two nodes. The first node (NoC) represents the number of classes in a

software application, and the second node (Maintainability) represents the maintainability of the application measured with the help of experts,

ie, an expert assigns a maintainability value that ranges from 0, which is an excellent maintainability indicator to values higher than 3 that are con-

sidered poor maintainability indicators). We consider that the values of these two nodes fall into two discrete categories (low and high). For the

node NoC, let us suppose that low values range between 1 class and 10 classes. For example, the first column of the CPT states that if the number

of classes is low, then there is 70% probability that the maintainability will be high and 30% probability that the maintainability will be low. The

tool used for constructing the networks and the classifier was Genie modeler* .The algorithm used for learning BNs is analytically presented in

Druzdzel.25

3.2 | Association rules

Association rules (ARs) belong to descriptive modeling techniques and have as a target to describe the data and their underlying relationships with

a set of rules that jointly define the variables of interest.5 ARs are among the most popular representations of local pattern recognition as they find

frequent combinations of attribute values that lay in data sets. An AR is a simple probabilistic statement about the co‐occurrence of certain events.

Each rule consists of two parts. The left part is the rule body and is the necessary condition in order to validate the right part, rule head. Each rule

states that if the rule body is true, then the rule head is also true with probability p. ARs are Boolean propositions with true or false values. Given a

set of observations over attributes A1, A2, …, An in a data set D, a simple AR has the following form:

A1 ¼ X and A2 ¼ Y ¼ > A3 ¼ Z

Confidence ¼ P A3 ¼ ZjA1 ¼ X;A2 ¼ Yð Þ
Support ¼ freq X∩Y∩Z;Dð Þ:

This rule is interpreted as following: when the attribute A1 has the value X and attribute A2 has the value Y, then there is a probability p

(confidence) that attribute A3 has the value Z. For this rule, two major statistics are computed, confidence and support values. Confidence is

the probability p defined as the percentage of the records containing X, Y, and Z with regard to the overall number of records containing X and

Y only. Support is a measure that expresses the frequency of the rule and is the ratio between the number of records that present X, Y, and Z

to the total number of records in the data set (D). In this study, Weka is used for extracting the ARs based on the algorithms that are analytically

presented in Hall et al.26

4 | PROPOSED APPROACH

In this section, we present the proposed approach that employs BNs and ARs for performing probability inference and addressing causality in the

context of software maintenance. The proposed approach contains three main phases: (1) data collection and preparation, (2) BN and ARs model

extraction and evaluation, and (3) evidence‐based estimation and inference.

4.1 | Data collection and preparation

During this phase, the software engineer is expected to prioritize the maintenance goals and activities and define the metrics that should be col-

lected in order to measure and control the maintainability of the application, effectively. For example, based on the type and the goals of an appli-

cation, he can set different maintenance goals and more specific metrics to measure them (eg, in the case of mobile applications user engagement

(A) (B)
FIGURE 1 A, A BN for maintainability; B,
conditional probability table for
maintainability estimation

*https://www.bayesfusion.com/genie/

4 of 25 CHATZIMPARMPAS AND BIBI

https://www.bayesfusion.com/genie/

or acquisition metrics could be of high relevance with respect to maintenance). Hence, the first step of this phase is the data collection (step 1.1). A

set of candidate metrics that we suggest for the maintainability and the maintenance process assessment are internal source code quality metrics,

external quality metrics, and process metrics.

Internal quality metrics can consist of

• Source code size metrics that involve the descriptive statistics of an application such as the lines of code, the number of functions, the number of

files, the number of attributes, the number of statements.

• Source code complexity metrics that may include the cyclomatic complexity,27 the cognitive complexity, or even metrics that count the average

complexity per function.

• Source code object‐oriented metrics applies only in applications that are developed with object‐oriented languages and may include metrics as

defined in the QMOOD model.28

External quality metrics can consist of

• Operational metrics that may include the number of operational bugs reported, the number of new functionalities requests, and the number of

malfunctions.

• End‐user activity that may include the number of end‐users and the end‐user quality rating.

Process metrics consist of

• Development team metrics that may include the number of developers, the experience of developers, and the number of interventions made by

the development team in each release.

• Changes metric that is an indicator of the changes performed between two subsequent releases.

• Duration metric that is an indicator of the time required for performing maintenance activities between two subsequent releases.

The next step (step 1.2) is to define a set of tools that will ease and automate the metrics recording procedure for monitoring the maintenance pro-

cess of an application. For the internal source code size and complexity assessment of applications, there is a set of open source freely available

tools that can assist in that process (ie, SonarQube and language‐specific tools, Jdeodorant, Percerons, and JSClassFinder†). We suggest the use of

SonarQube that is language‐agnostic tool that calculates a variety of different metrics. The end‐user metrics can be derived with the help of online

forums, user lists, phone‐desks recording systems, or even bug‐tracking/recording systems if these are made available to the end‐users. The pro-

cess metrics normally are reported by the maintenance/development team that should be able to track the time required and the type of changes

performed between the releases of an application.

As a final step of this phase, we define the data preparation (step 1.3) that may include the creation of new variables (eg, calculate the values of

derived variables such as the average size of functions in an application), outlier removal, and data modifications including the transformation of

variables presenting continuous values to categorical ones. The transformation of continuous variables to categorical variables is a prerequisite for

deriving the BN and ARs models and should be performed with great caution as the number of classes considered and the discretization method

might affect the final estimation models' accuracy and representativeness. The number of classes considered can be selected empirically or by

adopting one of the rules suggested by literature such as Sturge's rule.29 The same stands for the selection of the discretization method that

can be based solely on empirical observation or on automated methods such as equal width binning, equal frequency binning, and clustering.30

According to Peng et al,31 equal frequency binning is a method that provides: (1) clear insights of the distribution of the observations, (2) creates

more stable classes compared with equal‐width binning, and (3) can handle more effectively the outliers compared with equal‐width binning.

Equal‐width binning on the other hand may result in a single class concentrating the majority of observations, while the rest of the classes remain

with very few observations. Therefore, we suggest the classification of the values of the independent variables by employing equal‐frequency bin-

ning. As mentioned in Peng et al,31 discretization according to intuition is more appropriate for simple and practically meaningful real data sets,

especially in the case of the dependent variables, and it is less vulnerable to outliers. Therefore, for the dependent variables, we suggest a selection

of the “cutting‐off” points of the classes based on the empirical distribution of the values of the dependent variables (the empirical selection of

classes is discussed analytically in Section 6.1.1).

†SonarQube: https://www.sonarqube.org/

JDeodorant: https://github.com/tsantalis/JDeodorant

Percerons: http://www.percerons.com/

JSClassfinder: https://github.com/aserg‐ufmg/JSClassFinder

CHATZIMPARMPAS AND BIBI 5 of 25

https://www.sonarqube.org/
https://github.com/tsantalis/JDeodorant
http://www.percerons.com/
https://github.com/aserg-ufmg/JSClassFinder

4.2 | Bayesian network and association rules model extraction and evaluation

During this phase, the software engineer has to define the parameters of the two ML models, derive the initial models, and evaluate them. The

first step of this phase is the development of the Bayesian network (step 2.1). In this step, expert input is required to set the learning parameters

of the BN model. Initially, the engineer needs to set the order of the variables that affects the causal relationships that the model will define. The

metrics order should be selected by taking into account two considerations: (1) the maintenance phase that refers to the time when the values

of the metrics will be available in the sense that we are first aware of certain bugs related to the particular release, while sometime afterward when

the bugs are closed, we observe differences in the source code metrics, and (2) the relatedness of metrics. For example, complexity metrics like

cyclomatic complexity number and cognitive complexity are closely related. We think that complexity precedes cognitive complexity, in the sense that

the value of the last one “includes” the value of cyclomatic complexity number. In general, we suggest that the hierarchy of the general metrics con-

sidered in the context of maintenance complies with the following order: external quality metrics (operational metrics and user activity), internal

team activity metrics, source code quality metrics (size, complexity, and object‐oriented metrics), and maintenance process metrics (changes, duration).

During this step, we also need to set the number of parents of each node (an ideal number is 3 so as not to increase the complexity of the CPTs). For

automatically deriving the BN model, there are a number of freely available tools such as Genie and Weka.‡ In this study, we selected Genie

because it provides a variety of parameterization options, it allows the modeler to insert expert knowledge, and it also allows evidence‐based

updates of the models. After the extraction of the BN model, the evaluation of the fitting accuracy of the model (step 2.2) proceeds. This is necessary

in order to identify cases, where the BN model is not able to accurately estimate the variables of interest and focus on the specific classes of

values that are misclassified. For this purpose, it is suggested to study the receiver operating characteristic (ROC) curves for each class of the

dependent variables, along with the confusion matrix, that will provide further information on the particular classes that the BN model presents

week estimation accuracy. In this case, we isolate the classes that present poor classification results and proceed to the next step that involves the

ARs mining so as to retrieve representative rules for the particular wrongly estimated classes. In some of the cases where the target variable is

misclassified, the probabilities stated in the CPT are equally distributed among the values of the independent variables, and therefore these are

among the cases that also need to be further explored.

The next step of this phase is the Association rules mining (step 2.3). In this step, the software engineer identifies all frequent and pertinent set

of attributes. Frequent set of attributes are considered those, whose associated support exceeds a certain support threshold. The support value

threshold depends on the number of observations existent in the data set for a certain class of the dependent variable. If the observations are very

few, then the support threshold should be set in very low values. Pertinent set of attributes are those whose associated confidence exceeds a

certain confidence threshold. Finally, the rules are sorted according to their confidence values, and the set of rules related to the classes of interest

of the dependent variable (those appointed in step 2.2) are selected so as to provide a more accurate and targeted estimate. In this study, we con-

sidered as confidence threshold 50% of the cases and as support threshold 5% of the cases. The confidence percentage of 50% is adopted so as to

ensure that a pattern has at least 50% probability to be correctly identified in the observations. The support threshold is set to relatively low

values so as to identify patterns that are not frequent, but they are still related to the estimation of the classes of dependent variables. The last

step of this phase is the combination of the BN and AR models (step 2.4). In this step, the software engineer sorts all the estimations derived from

the CPTs of the BN network based on the assigned probabilities for each class of the dependent variable. The probabilities are indicators of the

confidence level of the estimation. Then, the estimator sorts the AR rules based on the confidence value of each rule. When estimating a new

observation, the software engineer selects the model that provides the estimate that presents the highest confidence level, by comparing the con-

fidence levels of the estimations provided by the two models (see the analytical estimation example of Section 6.1.2).

The steps of this phase are summarized in Table 1.

4.3 | Evidence‐based estimation and inference

During this phase, the software engineer is able to test the impact of certain changes in the application functionality to the maintainability of the

application and to perform an estimate on the expected changes to the internal source code and the time required to perform the relevant main-

tenance actions. For instance, the engineer can set initial evidence to the model, referring to the current status of the application, and by

performing Bayesian inference, he can update the beliefs of the network based on the new information provided. Figure 2 provides a simple exam-

ple of this process. Figure 2A presents the initial BN produced by the distribution of values of the metrics observed for all the releases of an appli-

cation. If at the particular point, the software engineer plans to reduce the number of functions so as to fall within the lowest class (s1), and he also

estimates that the changes required for the next release will belong to the highest class (s5), he can set the relevant evidence to the network (see

Figure 2B, Number of functions set to s1, and Changes set to s5) and test how the rest of the metrics will be affected. We see that in this example

the maintainability is expected to improve (lowest class means better maintainability assessment), the complexity is expected to be reduced (by

‡Genie: https://www.bayesfusion.com/

Weka: https://www.cs.waikato.ac.nz/ml/weka/

6 of 25 CHATZIMPARMPAS AND BIBI

https://www.bayesfusion.com/
https://www.cs.waikato.ac.nz/ml/weka/

64% probability will fall in the lowest interval), and cognitive complexity presents increased probabilities in classes s3, s4, and s5. As for the time

required for such changes, it is estimated within the two lowest classes (s1 interval is estimated by 25% probability and s2 interval by 19%

probability). Therefore, this phase is a two‐step procedure where the engineer inserts evidence to the model (step 3.1) and subsequently tests

the impact of the new information be updating the model and performing Bayesian inference (step 3.2).

5 | CASE STUDY DESIGN

In this section, we present the design of the case study performed to examine the effectiveness of the proposed approach in modeling the

relationships among the various maintainability indicators (internal/external quality metrics and process metrics), as presented in Section 4, on

(1) the actual maintainability rating of applications as assessed by SonarQube tool and (2) on the amount of changes and the time required for

the subsequent, following‐up release of an application. The case study was performed following the guidelines of Runeson et al32. In the following

subsections, we present the research questions, the data collection process, and the data analysis method employed.

5.1 | Research questions

The main goal of this study is to create and evaluate a decision support tool, employing BN and ARs that will aid software practitioners to identify

the most important maintainability indicators in the context of the application environment of interest helping them to monitor and plan mainte-

nance activities. The purpose of this tool is twofold: (1) to assess the maintainability of an application based on internal and external quality

metrics; (2) to predict the time intervals between releases and the number of changes required from one release to another. According to these

goals, two research questions are formulated:

TABLE 1 The steps for Bayesian network and association rules model extraction and evaluation

1. Development of the Bayesian network (step 2.1).

Input1: <internal quality metrics, external quality metrics, process metrics>

‐ define the order of variables

‐ set the maximum number of parents for each node

Output1 <1> <the BN model, the CPTs>

2. Evaluate the fitting accuracy of the BN model (step 2.2).

Input2: <BN model, CPTs>

‐ create the ROC curves and the confusion matrix so as to

1. Find the classes of the dependent variables that are assigned incorrectly to another class.

2. Find the classes that “dominate” other classes. In this case, the majority of cases are estimated to the “dominant” classes, causing the “omission” of
other classes during the estimation.

‐ examine the CPTs of the dependent variables

3. Isolate the rows that cannot actually provide an estimate, these are the rows that present equal probabilities between the different classes of the

dependent variable.

4. For these rows record the combination of the classes of the independent variables values that provide equal probabilities for estimating the

dependent variable.

Ouput2 <2.1> <classes of the dependent variables that present low classification accuracy>

<2.2> <classes of the independent variables that cannot estimate the dependent ones>

3. Association rules mining (step 2.3).

Input3: <Output1> <Output2>

‐ find all frequent and pertinent rules

5. Find the frequent rules, those presenting support values above a certain threshold.

6. Find the pertinent rules, those presenting confidence values above a certain threshold.

‐ filter the rules based on output 2

7. Select the rules that present as a head the classes of the dependent variables of output <2.1>.

8. Select the rules that present as a body the classes of the independent variables of output <2.2>.

Output3: <3> <a set of association rules that complete the BN model>

4. Combing the Bayesian network and the association rules models (step 2.4).

Input4: <Output1>, <Output3>

‐ sort the estimations of the CPTs of the BN model based on the confidence level (CPT probabilities) of the estimate

‐ sort the estimations of the AR model based on the confidence values.

‐ estimate a new observation based on the estimations provided by the model that presents higher confidence value

Final Ouput: <the combined estimation model>

CHATZIMPARMPAS AND BIBI 7 of 25

RQ1: Is it possible to assess the maintainability of applications based on internal/external quality indicators and process metrics by adopting the

proposed approach?

The aim of this question is to quantify the impact of internal and external quality indicators and process metrics on maintainability so as to be

able to assess the maintainability rating of a release. Our target is to create a model that is able to estimate accurately the maintainability rating of

a new release based on the quality and process metrics of the release. For this purpose, we identify and isolate the metrics that influence the most

the maintainability of an application. Because maintainability is a synthesized attribute that depends on several internal source code factors, the

activity of the developers, and on the end‐user community activity, it is interesting to see which of the associated metrics may affect the most the

maintainability of an application.

RQ2: Is it possible to accurately estimate a) the time required and b) the level of maintenance changes required for the next release, based on the

internal/external quality indicators, the process metrics, and the maintainability of the current release of the application by adopting the pro-

posed approach?

This question aims to identify the metrics that influence the most the level of changes performed between two successive releases and the

time required for them. Estimating accurately the level of changes between releases based on various maintainability indicators is very important

in scheduling time and effort intensive activities related to software maintenance.

5.2 | Case selection and data collection process

In order to evaluate the proposed approach, in terms of estimation accuracy, we analyzed release data coming from five popular JS applications

hosted in Github§ repository. The rationale behind the selection of these applications is summarized as follows:

• The applications are among the most popular ones (based on the number of forks) according to Github.

• More than 90% of the source code of the applications is written in JS (Many projects preceding in popularity were ignored due to the fact that

their source code presented smaller percentages of JS code).

• All of the applications present more than one hundred releases. Therefore, each one of them can provide a maintenance data set large enough

to be mined with the help of ML techniques.

Table 2 presents several descriptive statistics for the JS projects examined in this study.

5.3 | Evaluation process

To evaluate the proposed approach in terms of accuracy and representativeness, we split each of the five data sets, representing the five JS appli-

cations, into two sets the training set and the test set. The training set will be used to create the predictive models and the test set will be used to

§https://github.com/

FIGURE 2 A, Inserting evidence to the model and B, performing Bayesian inference

8 of 25 CHATZIMPARMPAS AND BIBI

https://github.com/

evaluate the models. In all of the applications, we employed 70% of the early releases as a training set while the rest 30% of releases (the most

recent ones) were used as a test set for evaluation purposes. To answer the first RQ, we will assess the value of maintainability metric, which will

be the dependent variable. In the second RQ, the dependent variables are the changes and duration, that serve as indicators of the level of changes

and the time required between successive releases, that will be the dependent variables. The evaluation process reporting of the empirical results

will be performed, by comparing the estimations provided for the three variables (1) by the BN model and (2) the combined BN, AR model to the

actual values of the variables. In an attempt to evaluate both regression and classification accuracy of the methods, we adopt two regression accu-

racy metrics and three classification accuracy metrics. For assessing the regression accuracy of the methods, we need to transform back into a

“single point estimate” the value of the class estimated. For this purpose, we use the median point of the suggested interval that a class estimates

that is considered as the “single point estimate.”

The two metrics used to calculate the regression accuracy of the models are

• Mean magnitude relative error (MMRE) that shows the magnitude of the difference between the actual value and the estimate. The MMRE is

defined as follows:

MMRE ¼ 100
n

∑
n

i¼1

∣Pi − Ei∣
Pi

where N is the number of instances in the test set, Pi is the actual value of the dependent variable, and Ei is the ‘single point estimate.’

• Pred (25) metric: The prediction within 25%, PRED (25), shows the percentage of cases that are estimated within 25% of the actual value.

In order to assess the classification accuracy of the proposed approach, we calculate the following metrics:

• Accuracy metric: Is the ratio between the correctly classified instances to the total number of instances used for evaluation purposes. It can be

defined as follows:

Accuracy ¼ cc
N

where cc is the number of correctly classified instances and N is the number of instances in the test set.

• Precisionmetric: Is the ratio between the correct classifications performed for a particular class of the dependent variable to the total number of

classifications performed pointing to this class. It can be defined based on the number of true positives and false positives as follows:

Precision ¼ tp
tpþ fp

where tp is the number of true positives and fp is the number of false positives for a particular class.

• Recall metric: Is the ratio between the correct classifications performed for a particular class of the dependent variable to the total number of

observations belonging to this class. It can be defined based on the number of true positives and false positives as follows:

Recall ¼ tp
tpþ fn

where tp is the number of true positives and fn is the number of false negatives for a particular class.

TABLE 2 JavaScript projects examined in this study

Progr. Languages Releases

First Release Last Release

Program Date Size (LoC) Date Size (LoC)

JQuery 93.8% JS, 5.4% HTML, 0.8% other 146 07/2006 1278 03/2017 54 957

Ghost 91.5% JS, 4.7% HTML, 3.7% CSS, 0.1% other 116 06/2013 13 052 08/2017 55 922

Vue 97.7% JS, 2.3% other 207 08/2013 12 840 07/2017 89 095

Video.js 96.3% JS, 3.6% CSS, 0.1% HTML 327 10/2011 5791 09/2017 19 552

Material‐UI 98.7% JS, 1.3% TypeScript 161 11/2014 2649 09/2017 34 480

CHATZIMPARMPAS AND BIBI 9 of 25

6 | RESULTS

In this section, we present the results of the case study performed on five JS applications to evaluate the accuracy and efficiency of the proposed

approach. At first, we exemplify the proposed approach, presented in Section 4, for assessing the maintainability of an application and monitoring

the maintenance process (Section 6.1). In Section 6.2, we evaluate the maintenance models derived previously for the five applications and answer

the two RQs.

6.1 | Creating the maintenance models

In the following subsections, we present an overview of the activities performed for modeling the maintainability and the maintenance indicators

for JS applications by applying BNs inference and rule induction. In Section 6.1.1, we discuss the data collection process and the data preparation

activities performed. In Section 6.1.2, we present the process of BN and AR model extraction and evaluation and the outputs of the two models.

6.1.1 | Data collection and preparation

During the data collection (step 1.1) phase, we downloaded the successive releases of the five applications from the date when the first release was

launched and collected the metrics presented in Table 3. Table 3 presents the name of each metric, a short description of the metric, and the

method/tool used to derive the metric.

We selected to employ these metrics for the following reasons:

a) Regarding the internal source code metrics, we selected the metrics referred to recent studies assessing software maintainability.33,34 We

employed metrics relevant to the source code size of an application, the modularity of the application, the redundancy (duplications in the code),

and the source code complexity of the applications. Therefore, we selected the metrics referenced in these studies that belong to the aforemen-

tioned categories. Additionally, we considered two cumulative metrics, code smells and internal bugs, as high‐level indicators of the weaknesses

in design and the reliability of the application correspondingly. Metrics though related to the object‐oriented nature of the language that are

also studied in the context of software maintainability (like depth of inheritance tree, cohesion, etc.) were excluded. Because JS language until

ECMAScript 6 supported an ad‐hoc procedure for defining and handling objects, it was not possible to extract object‐oriented metrics, for

most of the versions analyzed. Though, we still managed to have in all the releases a measurement regarding the number of classes in each

release which is included in the analysis.

b) Regarding the external quality indicators, the activity metrics, and the process metrics, we considered metrics that (1) take into account the open

source software nature of the applications under study and (2) that can be accurately derived from Github repository from which the applica-

tions were retrieved. Therefore, we selected to include in the analysis the metrics like number of forks, number of developers, NoCom, etc,

that were directly available from Github. We did not include the type of commit (bug fix, addition, deletion) because extracting such informa-

tion would require the subjective judgment of the authors, especially when in most cases the commits are accompanied by single line com-

ments. As a proxy of the maintenance activities, we considered the Number of Open/Closed Bugs reported in the Issue Tracker between

releases can be considered. This metric can indirectly assess the number of fixes performed between successive releases.

We acknowledge though that the maintainability indicators should be customized when the proposed methodology is applied in the context of

proprietary software maintenance activities.

The final set of metrics was collected with the following process:

• As a first step, we mined the webpage of Github projects to get general project information like releases dates and several activity metrics like

NoCom. We also extracted the synthesized variable duration that was derived by calculating the number of days between the release dates of

two sequential releases.

• Each release of the project was initially analyzed by SonarQube to get several source code complexity metrics and the maintainability assess-

ment. The maintainability metric assessment is performed by SonarQube based on the technical debt ratio, that is the ratio between the effort

to develop the application and the effort to fix all maintainability issues presented in the application. SonarQube has been employed in other

studies as well within the context of software maintainability1,35 and technical debt.36 More details about the calculation of maintainability can

be found in SonarQube's documentation.¶ Then, each release of the project was analyzed by JSClassFinder37 to get several source code size

and modularity metrics.

¶https://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions‐Reliability
4https://git‐scm.com/

10 of 25 CHATZIMPARMPAS AND BIBI

https://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions-Reliability
https://git-scm.com/

• As a last step, we calculated the value of the changes variable that represents the number of functions that have been added, changed, or

removed in total between two successive releases. This value has been extracted by using the “git diff” command of git with a similar approach

to Mens et al.38

During the data preparation (step 1.2), we checked for the existence of outliers, by visually inspecting the box plots of the three dependent

variables (maintainability, changes, and duration). We observe in Figure 3 that the maintainability attribute in four of the projects is well‐balanced,

without presenting significant outliers. On the other hand, duration and changes attributes present larger deviations in the values of projects Ghost

and Material‐UI projects. We further checked manually a sample of the outlier values and concluded that these values were “legitimate” and not

caused by the data collection tools inaccuracy. Therefore, we decided that these values should remain in the analysis and transformed into another

form (in our case the classes) as suggested by Osborne and Overbay.39 Keeping the releases that present values that exceed the expected ones is

very important as the target of the proposed approach is to estimate also the situations where “extreme” maintenance measures should be taken.

TABLE 3 Maintainability factors and the associated metrics

Factor Metric Name Calculation Method/Values for Each Release Tool

External

quality

indicators

#* of forks (forks) A fork is a copy of the repository. In Github, it is a very common practice as it allows

external developers to propose modifications to the master release of a project or

use a project as for their new ideas.

D**

of bugs (NoB) The number of bugs from Github's issues list (issue tracking). D

Activity #of developers (NoD) The number of developers/contributors involved in a specific release. D

of commits (NoCom) The number of commits for every release. D

Comments rate Density of comment lines in each release =

Comment lines/ (LoC + comment lines) * 100

SQ

Total lines of code Total lines = LoC + comment lines D

Source code

size

and

modularity

Lines of code (LoC) The number of physical lines that contain a character in each release (excluding a

whitespace or a tabulation or part of a comment line).

SQ

of attributes (NoA) The number of attributes for every release. JS

of classes (NoC) The number of classes in each release (including nested classes, interfaces, enums,

and annotations).

SQ

of subclasses (NoS) The number of subclasses of each release. JS

of functions (NoF) The number of functions in every release. SQ

of files (NoFil) The number of files of each release. SQ

of statements (NoStat) The number of statements in every release (ie, if, else, while, for) SQ

Source

code

complexity

and

duplications

Cyclomatic complexity

number (CCN)

The number of independent paths through the code for each release. This metric is

an indicator of the testability of source code.

SQ

Complexity Complexity = CCN/LoC

Complexity for each line of code in every release.

D

Complexity/class Complexity/class = CCN/NoC

Average complexity by class in each release.

D

Complexity/file Complexity/file = CCN/number of files

Average complexity by file for every release.

D

Cognitive complexity How hard it is to understand the code's control flow measured. SQ

Duplicated lines The number of lines involved in duplications of each release. SQ

Duplicated blocks The number of duplicated blocks of lines for every release. Ten successive and

duplicated statements determine a duplicated block.

SQ

Maintainability Source code bugs (SCB) The number of bug issues found in the source code. The bugs can refer to

handling of exceptions, security threats, or even unreachable code.

SQ

Code smells Total count of code smell issues. SQ

Maintainability Is a rating that relates to the value of the technical debt ratio.

Where technical debt ratio is measured as:

Remediation cost/ (cost to develop 1 line of code* LoC)

SQ

Maintainability

process

indicators

Changes The number of functions that have been added, removed, and modified in

total for every release.

D

Duration For every release date, we subtract the previous release date, starting from

the most recent release to the oldest. Consequently, the first release has

zero duration.

D

*#: Number of.

**SQ: SonarQube, JS: JavaScriptClassFinder, D: Derived by the authors.

CHATZIMPARMPAS AND BIBI 11 of 25

We then proceeded with the discretization of the variables that presented continuous values. The discretization process was performed in our

case as follows:

1) In the case of the independent variables with continuous values, we selected to perform equal frequency binning. The number of intervals was

defined to be five approximating very low values, low values, average values, high values, and very high values. According to Peng et al,31 equal

frequency binning is a method that provides (1) clear insights of the distribution of the observations, (2) creates more stable classes compared

with equal‐width binning, and (3) can handle more effectively the outliers compared with equal‐width binning. Equal‐width binning in our case

resulted in a single class concentrating the majority of observations, while the rest of the classes presented very few observations. Such a dis-

tribution of classes would provide no important information in the estimation models.

2) In the case of the dependent variables, we differentiated the discretization approach. As mentioned in Peng et al,31 discretization according to

intuition is more appropriate for simple and practically meaningful real data sets, especially in the case of the dependent variables, and it is less

vulnerable to outliers. Therefore, for the dependent variables, we selected the interval classes as following: (1) Because the maintainability var-

iable presented in most cases values concentrated within a certain range (see the boxplots of Figure 3), we selected three intervals as proxies

of high, average, and low maintainability. The cutting‐off points were decided based on the empirical distributions of the values considering the

25% and 75% percentile values. (2) For the duration and changes variables, which present larger deviations in their values, we selected five

intervals so as to handle more effectively the outlier values. The cutting‐off points for the effort variable were decided based on the empirical

distributions of the values considering the 25% and 75% percentile values and the upper and lower bounds defined in the whiskers of the

boxplots. The cutting‐off points for the duration variable were decided based on the empirical distributions of the values considering the

25%, 50%, and 75% percentile values and the upper bounds defined in the whiskers of the boxplots because the lower whisker is almost

the same as the lowest values of the observation belonging to the 1st percentile.

Table 4 presents the classes assigned to each variable and the correspondence of each class to continuous values for JS application.

6.1.2 | Bayesian network and association rules model extraction and evaluation

In this phase, as a first step of the analysis, we derived the Bayesian networks (step 2.1) based on the maintenance data collected for the five appli-

cations. The order of the variables was set according to the proposed approach (see Section 4.2) considering that for each new release, we are

aware, in time order, of the following: The number of bugs identified in the previous release, the activity so far by the developers, and the NoCom,

size metrics, complexity metrics, maintainability, and lastly maintainability indicators. The resulting networks for all five applications are presented

in Figure 4. Further on in this section, we will exemplify the proposed approach on JQuery application.

In JQuery application, we see that among the most important maintenance drivers, we find LoC metric as a representative of the size metrics,

influencing maintainability by 36%, and we also see the NoCom as a representative of the development team, influencing maintainability by 37%,

and the code smells influencing maintainability by 15%. Additionally, we can observe that maintainability influences the changes by 29% and the

duration by 29% which is also influenced by the LoC metric by 27%. Tables A1–A3 of the Appendix present indicatively the CPTs for the three

dependent variables for JQuery application.

As a next step, we evaluate the BN models (step 2.2) in terms of fitting accuracy that is the ability of the model to accurately estimate the obser-

vations from which it has been trained. Table 5 presents values of the precision, the recall, and the accuracy metrics for the BN model of Figure 4.

FIGURE 3 Boxplots for maintainability, changes, and duration for the five JS projects

12 of 25 CHATZIMPARMPAS AND BIBI

We observe that the fitting accuracy of the JQuery model for the maintainability indicator is very high as the estimation accuracy of the model

is 93.1%. The changes indicator is estimated correctly in 39.2% of the cases, and the duration indicator presents accuracy 47%. Due to the low

estimation percentages of the duration nodes and the changes nodes, we further investigate the confusion matrix of the two nodes along with

the ROC curves. Figure 5 presents the confusion matrix for duration node and Figure 5 the ROC curve for the same indicator for the class s5

where many misclassifications are observed. The ROC curve originates from information theory and provides a way of expressing the quality

of an estimation model. The x‐axis of Figure 5A (specificity) refers to the false positive estimations, while the y‐axis (sensitivity) refers to the true

positive estimations.

Originally, the ROC curve is used for binary classifications, but in our case the ROC curve is built for each class of the target variable, consid-

ering the rest of the classes as one that represents the negative value. The dim diagonal line shows a baseline ROC curve of a hypothetical clas-

sifier that has no value as we expect that a strong classifier will present a ROC curve above this diagonal line. Above the curve, we see the area

under the ROC curve (AUC) displayed. The ROC curve also can provide us information regarding the probability threshold that is used for classi-

fying each point, the sensitivity of the estimation, and its specificity. For example, in the plot of Figure 5A, we highlighted one point in the curve in

which the model provides a probability threshold value P = 0.1, sensitivity (true positive rate) = 0.4, a false positive rate 0.125, and a specificity

(true negative rate) 1 − 0.125 = 0.875. From the plot of Figure 5, we reach the conclusion that there is a high probability to misclassify a project

to the fifth class of the duration variable as many points are concentrated to the false‐positives high values. By inspecting the misclassification

matrix, we focus on the classes of the dependent variable that are highly misclassified and try to identify rules related to these classes in the next

step (step 2.3).

As a next step, we proceed with the Association rules mining (step 2.3), so as to extract representative patterns for estimating the three main-

tenance indicators, focusing on the classes where the estimation accuracy of BNs is low. Therefore, we apply the a priori rule mining algorithm to

identify relevant rules that will be able to identify patterns between maintainability, changes, and duration as target classes and the rest of the

maintainability metrics. The derived rules for the three dependent variables for JQuery application are presented in Table 6. The derived rules

for the rest of the four applications are presented in Table A4 of the Appendix.

TABLE 4 Details about metrics' categorization for JQuery application

S1 S2 S3 S4 S5

Number of forks 0> >1258 >3524 >7640 10 124‐13 250

Number of bugs 2> >49 >67 >85 118‐182

Number of developers 1> >50 >100 >150 240‐268

Number of commits 48> >1098 >1679 >2860 4791‐6156

Comments rate 7.8%> >9.5% >10.8% >13.3% 14.4%‐57.2%

Total lines 2037> >29 430 >36 302 >43 934 64 983‐78 846

Lines of code 1278> >22 550 >27 440 >32 239 45 672‐54 947

Number of attributes 141> >169 >224 >265 331‐358

Number of classes 44> >56 >63 >68 72‐81

Number of functions 177> >2469 >3007 >3380 4595‐5596

Number of files 9> >69 >76 >83 159‐203

Number of statements 882> >13 937 >17 470 >20 125 25 959‐30 483

Cyclomatic complexity 553> >5972 >8601 >10 386 13 828‐16 364

Complexity 0.259> >0.291 >0.301 >0.317 0.346‐0.405

Complexity/class 16.15> >90.80 >131.21 >169.72 187.51‐228.98

Complexity/file 34.6> >74.7 >96.1 >111.7 140‐177.5

Cognitive complexity 585> >6953 >11 444 >13 661 21 509‐26 615

Source code bugs 4> >5 >7 >9 18‐32

Duplicated lines 0> >2070 >9780 >16 612 25 801‐40 082

Duplicated blocks 0> >70 >113 >209 423‐536

Code smells 285> >994 >1702 >2411 3119‐3828

Maintainability 1.5> >2.4 >2.8 ‐ ‐

Changes ‐1280> >0 >100 >200 400‐2176

Duration 0> >3 >10 >22 40‐93

CHATZIMPARMPAS AND BIBI 13 of 25

For example, the first rule classifies the maintainability of a project to the lowest interval when the values of NoF variable are at the second

interval with a support value at 20.5% and a confidence value at 85.7%.

In Figure 5, we can see the improved ROC curve for the class s5 of variable duration and the misclassification matrix for the proposed approach

that combines BN and AR models.

(A)

(B)

(C)

(D)

(E)

FIGURE 4 The Bayes networks obtained for the five JS applications. A, The Bayes network obtained for JQuery. B, The Bayes network obtained
for ghost. C, The Bayes network obtained for Vue. D, The Bayes network obtained for Video.js. E, The Bayes network obtained for Material‐UI

14 of 25 CHATZIMPARMPAS AND BIBI

Estimation example

Let us assume that the current release presents the data of Table 7.

The rationale now behind making a new estimation for the maintainability metric is summarized as following:

1. Advice the CPT for making an initial estimation. According to the CPT (see the Appendix, Table A1), we need the values of the LoC variable,

NoCom and Code Smells. In our case, LoC has the value s3 and NoCom the value s1 and Code Smells the value s3. According to the CPTs, all the

classes of maintainability present equal probability, and therefore we cannot make a secure estimation in that case.

2. We continue by inspecting the rules of Table 6. The first rule that applies in our case is rule number 2, as the NoC variable has the value s4. We

see that the rule also presents relatively high support and confidence values and therefore can be considered a representative rule for

performing the estimate.

6.1.3 | Evidence‐based estimation and inference

After creating the BN model of Figure 4, we are interested to test which actions can be performed during the maintenance process of an appli-

cation that can help towards improving its maintainability. Therefore, in the BN model of Figure 4A, we set initial evidence relevant to the node of

maintainability and assign its value to category s1 (which is a representative of increased maintainability). This assignment is instantiated as evi-

dence in the initial BN model that is then updated through the inference mechanism.4 Figure 6 presents the updated BN model that presents each

node as a bar chart that shows the probability of the node to receive a particular value.

The assumptions we reach by observing the distribution of values of the nodes associated with the maintainability node are:

• Increased maintainability is associated with very low or low code smells, low or average lines of code (LoC), average or high number of classes

(NoC) and very low or low complexity. This fact shows that caution should be taken for keeping code smells and source code complexity

low. Also, developers should be careful when inserting new lines of code. A possible increase in LoC can be caused by the addition of new

(B)
(A)

FIGURE 5 ROC curves for duration metric (class s5) and misclassification matrix for JQuery application. A, ROC curve for duration metric and
value s5 for the BN model and the proposed approach. B, Confusion matrix for variable duration for the BN model and the proposed approach

TABLE 5 Precision, recall, and accuracy of Bayes network for the training set of JQuery

Precision Recall Accuracy

Maintainability 93.1 93.1 93.1

Changes 22.2 39.2 39.2

Duration 45.5 47 47

CHATZIMPARMPAS AND BIBI 15 of 25

functionality; if that is the case, no precautions can be taken to avoid LoC increase. Although in the case of JQuery application, we observe that

the increase in LoC was also caused by leaving lines of code that are no longer in use, in new releases. We noticed that there are large fluctu-

ations in terms of lines of code between releases with certain portions of code being removed between them without adding new code. More-

over, we see that the modularization of code in classes, even in languages such as JS that is loosely object‐oriented, helps towards creating

applications that are easily maintainable. Also, we observe that low or average LoC is associated with low or very low complexity.

• Additionally, regarding the activity variables, we see that the number of bugs reported in the case of increased maintainability belong to the

high interval (category s4, 41%), a fact that shows that releases with increased maintainability usually are preceded by extensive bug reporting,

which in the case of JQuery is performed by the end‐user community that are IT, professionals. Additionally, we see that in that case the

NoCom, that is a representative metric of the number of interventions performed reside on the average category (category s3, 43%) which

shows that it is not necessary to perform high NoCom to resolve issues.

TABLE 7 Characteristics of the project under estimation

Variable Value Variable Value Variable Value

NoCom s1 LoC s3 Complexity s1

NoB s2 Comments rate s4 CCN s5

Maintainability s1 Changes s3 Complexity function s3

NoF s5 Duration s2 Complexity/file s2

NoA s5 Duplicated files s5 Complexity/class s5

NoC s4 Duplicated lines rate s4 Cognitive complexity s5

NoFil s5 Duplicated blocks s4 Function size s4

NoS s4 Duplicated lines s5 Source code bugs s2

Code smells s3

TABLE 6 Association rules mined for JQuery application

A/A Rule Support Confidence

Maintainability

1 (NoF = s2) = > maintainability = s1 20.5% 85.7%

2 (NoC = s4) = > maintainability = s1 9.8% 70%

3 (NoC = s3) and (Total lines = s3) = > maintainability = s1 2.9% 100%

4 (NoCom = s5) = > maintainability = s3 29.4% 100%

5 (NoStat = s2) and (comments rate = s2) = > maintainability = s3 4.9% 80%

6 (code smells = s2) = > maintainability = s1 11.0% 100%

7 (code smells = s1) = > maintainability = s1 10.0% 100%

8 (code smells = s4) = > maintainability = s2 3.0% 66.6%

Duration

1 (complexity/file = s5) and (cognitive complexity = s2) = > duration = s1 6.8% 71.4%

2 (NoFil = s2) and (duplicated blocks = s3) = > duration = s3 11.7% 58.3%

3 (NoF = s2) and (duplicated lines = s4) = > duration = s2 5.8% 83.3%

4 (NoA = s4) = > duration = s4 13.7% 64.2%

Changes

1 (NoF = s5) = > changes = s4 12.7% 69.2%

2 (CCN = s2) = > changes = s5 21.% 59%

3 (cognitive complexity = s4) = > changes = s1 13.7% 71.4%

4 (cognitive complexity = s2) and (NoA = s1) = > changes = s1 3.9% 100%

5 (NoA = s4) = > changes = s1 7.8% 62.5%

16 of 25 CHATZIMPARMPAS AND BIBI

• Lastly, regarding the maintenance process indicators, we observe that high maintainability is associated with average (category s3, 35%) and

very high (category s5, 32%) changes and long (s4, 39%) or very long (s5, 34%) duration between releases. The first inference relevant to the

changes can be explained considering the fact that if a release has already increased maintainability (is already in category s1), then average

changes (category s3) need to be performed; this is observed in successive releases that present increased maintainability. On the other hand,

there are also many cases where a release presents low maintainability, and it seems that effort has been made to improve the maintainability

of the subsequent release. In those cases, the changes performed belong to the highest category.

6.2 | Evaluation results

In this subsection, we evaluate the maintenance models derived previously and answer the two research questions presented in Section 5.1 by

assessing the predictive accuracy of the proposed combined approach and compare it against the accuracy of BN alone in the test sets of the five

applications participating in this case study. As mentioned, the test sets consist of 30% of the releases of each application, the most recent ones.

Table 8 presents the predictive accuracy of BN and compares it against the proposed approach. Moreover, in Table 8, we can observe the MMRE

and PRED(.25) values of BN which are compared with the proposed approach.

We can see that the proposed approach achieves an improvement in accuracy for all the three dependent variables. Maintainability value pre-

sents a limited improvement due to the already high estimation accuracy of BN. The high estimation accuracy for this metric is related to the fact

that maintainability values remain, in all five projects, within certain intervals through the successive releases without presenting extreme values in

the majority of cases. Also, it seems that the metrics selected for assessing maintainability are good indicators of its value. The maintainability

value for all the five applications considered in this case study depends highly on the code smells presented in the source code, the NoCom,

and the LoC of each release. On the other hand, the value of code smells is affected by different metrics based on the nature of the project. Other

important metrics identified by ARs are the NoF (number of functions), NoC (number of classes), comments rate, and the NoStat (number of state-

ments). Hence, regarding RQ1, we can say that the maintainability of an application can be estimated with high confidence based on the proposed

approach.

FIGURE 6 Updated BN model based on evidence inserted for the node maintainability

CHATZIMPARMPAS AND BIBI 17 of 25

The changes variable can be accurately estimated in most of the cases, with the proposed approach achieving an improvement of 21.6% in total

for the five applications in the accuracy metric compared with the BN model. Apart from the maintainability value that affects the changes, other

important metrics appointed by AR model are NoA (number of attributes), NoF (number of functions), and the complexity.

In the case of duration, the proposed approach achieves a smaller improvement of 16.8% compared with the BN model accuracy. Additionally,

we can say that estimating the duration required for successive releases of open source JS applications is a challenging task that in some cases like

the Ghost application is not easy to achieve high estimation accuracy. Probably, this can be explained by the fact that duration in OSS is not an

actual measure of the time required for the changes but just a calendar time between successive releases that does not exactly reflect the reality.

Apart from the maintainability and the LoC metrics that affect the duration, other important metrics appointed by the AR model are the duplicated

blocks, NoFil (Number of Files), NoA (Number of Attributes), NoF (Number of Functions), cognitive complexity, and complexity/file. Hence, regarding

RQ2, we can say that the maintenance process indicators of an application, like changes and duration, can be estimated with high confidence based

on the proposed approach.

We should mention that the regression metrics presented inTable 8 are also encouraging showing the ability of the proposed approach to pro-

vide both class‐estimated and “single point estimates.”

The findings of this study were further discussed with eight OSS contributors, which at the moment are postgraduate, MSc, or PhD students,

possessing more than 5‐year experience in participating in OSS projects. In terms of monitoring the maintainability, it seems that contributors are

mostly interested in avoiding “breaking points,” which means they want to estimate the phase during which (1) the maintainability of an application

exceeds normal values and the source code needs immediate refactoring so as to allow further changes; (2) a software application requires large

amount of changes so as to meet user needs. The majority of the participants stated that three classes for maintainability assessment are enough

and provide highly relevant information on whether the maintainability is at low, normal, or high levels. Some contributors stated that even a rough

estimation of “pass” and “fail” in terms of maintainability would be appropriate for projects that present small deviations in the maintainability rat-

ing. Regarding the duration metric, they intuitively confirmed the results of Figure 4 that appoints a relationship between NoCom

‐ > maintainability ‐ > duration. They all agreed that the duration metric is highly dependent on the activity of the community because an active

community will directly correct a reported bug a fact that leads to short release cycles. Regarding the changes metric, the contributors stated that

their main interest is to be able to foresee the “extreme” situations that require large amount of changes. Therefore, they thought that reserving in

the estimation model a class with “extreme values” of changes is highly appropriate.

7 | DISCUSSION

In this section, we summarize some interesting implications for researchers and practitioners and discuss the threats to validity identified for this

study.

TABLE 8 Classification and regression accuracy metrics of the proposed approach compared against BN models

Bayes Networks Proposed Approach

Program Prec. Rec. Acc. MMRE Pred (25) Prec. Rec. Acc. MMRE Pred (25)

Maintainability 95.8 95.4 95.4 21.23 100 97.8 97.7 97.2 7.23 100

JQuery Changes 54.7 54.5 54.5 76.08 36.36 67.6 63.6 63.6 37.16 88.63

Duration 51.7 65.3 65.3 41.36 22.72 58.7 70.5 70.4 20.90 52.72

Maintainability 80.0 80.0 80.0 18.52 100 97.7 97.5 97.5 6.95 100

Ghost Changes 54.5 63.6 63.6 153.2 52 66.3 64.2 64.2 74.8 63.5

Duration 36.3 45.7 45.7 156.5 48.57 64.6 63.0 63.0 80.8 61.42

Maintainability 96.6 96.6 96.5 10.1 98.38 98.4 98.3 98.3 2.64 98.38

Vue Changes 72.5 67.7 67.7 27.47 43.54 82.4 82.3 82.2 14.03 79.90

Duration 63.4 59.6 59.6 79.48 50 73.6 72.6 72.5 39.76 75.80

Maintainability 93.7 93.8 93.8 10.40 100 98.1 98.0 97.9 7.40 100

Video.js Changes 39.9 42.8 42.8 85.11 29.59 59.7 53.1 53.0 20.62 68.36

Duration 45.5 54.0 54.0 40.58 58.16 60.7 61.2 61.2 13.37 81.63

Maintainability 97 97 97.2 9.41 100 100 100 100 3.41 100

MaterialUI Changes 26.2 41.6 41.6 105.51 29.16 65.2 60.4 60.4 51.64 72.08

Duration 56.7 64.5 64.5 57.57 60.41 68.2 66.7 66.7 39.91 66.66

18 of 25 CHATZIMPARMPAS AND BIBI

7.1 | Implications to researchers and practitioners

The major findings of this study show that the proposed approach that combines two popular ML techniques, BN as a predictive model and AR as

a descriptive model, can be very effective for modeling the maintenance process and needs to be further explored.

We believe that researchers need to concentrate on developing tools that will automate the learning process of the combined BN and AR

models. These tools should be able to easily incorporate (1) expert knowledge and (2) knowledge coming from new releases without the need

to rebuild the whole models. The existence of flexible decision support tools that focus on modeling the maintenance process of software appli-

cations will help towards improving the efficiency of maintenance activities. Additionally, researchers are encouraged to evaluate the proposed

approach on maintenance activities performed within company software. From such a study, it would be interesting to observe differences in

activity variables (development team size, team expertise, realistic time and effort recorded, etc.) that participate in the calculation of maintainabil-

ity and also see the level to which expert knowledge regarding the assessment of the maintainability factor (instead of the assessment performed

by third‐party tools) can affect the estimation of the maintenance changes and duration variables. In such case, the first phase of the proposed

approach can be further updated with new metrics and procedures to calculate them.

Regarding practitioners, we encourage them to adopt the proposed approach, in monitoring the maintenance process by (1) estimating the

maintainability of the application along with the changes and the duration required when performing maintenance activities and (2) performing

evidence‐based inference to test the impact of changes on certain maintainability indicators. Additionally, we encourage practitioners to trust

the tools employed in this study for the metrics calculation and the creation of the BN and AR models. The fact that (1) the majority of the metrics

that are used for quantifying the maintenance variables can be automatically calculated from freely available tools and (2) the BN and AR models

can be easily derived by existing ML suites is expected to boost the adoption of the proposed approach, and its practical benefits. Finally, we

believe that the fact that the proposed approach is based on classification models (ie, models that predict a particular class, not a finite value)

and can provide a more accurate, coarse‐grained approach within the context of software maintenance prediction, can be valuable to software

engineers that wish to adopt a safer estimation process. Still, the class estimates can be transformed to “single point estimates” in the case where

a particular value is required.

7.2 | Threats to validity

In this section, we discuss the threats to validity that we have identified for this study. Regarding conclusion validity that refers to how reasonable

are the findings of the analysis, we mention that regarding the statistical power of the results, we calculated a variety of regression and classi-

fication accuracy metrics (five in total) to validate the proposed approach, showing an improvement in the accuracy of the proposed approach

compared with the Bayesian analysis. Also, regarding the error rate problem, we selected a common, predefined validation procedure for the five

data sets that utilized 70% of the observations as a training set and the last, most recent ones, 30% of the observations as a test set so as to

avoid bias on the sets selected. In addition, regarding the heterogeneity of data, we used project‐specific data sets to ensure the relativity of

the data included in the analysis. The findings of this study were also discussed with eight OSS contributors that intuitively confirmed the output

of the analysis (Section 6.2). Regarding construct validity, we should mention that the set of metrics used to assess the maintainability of appli-

cations may affect the findings and the accuracy of the proposed approach. Our rationale behind selecting these metrics was based on the find-

ings of current literature33 and the special characteristics of JS programming language. We emphasized on the size and complexity source code

metrics as performed by Kyriakakis et al34 who identified maintenance patterns in PHP applications, omitting though several object‐oriented

metrics, as explained in Section 6.1. Therefore, we acknowledge the fact that important object‐oriented metrics were excluded, but we plan

to experiment in other more recent JS applications that fully adopt object‐oriented attributes of the language as future work. Because the scope

of the study is to demonstrate the proposed explorative approach in terms of efficiency and predictive accuracy, we believe that the exclusion of

several object‐oriented metrics did not affect the overall performance of the method. Additionally, we acknowledge that information regarding

the type of the maintenance activities was not included in the analysis, because such information on OSS application development would

demand at a great point the subjective assessment of the value of this metric by the authors. We believe that such information that may be

available in the case of in‐house development would help towards the improvement of the accuracy of the proposed approach and should be

included in such an analysis in the future. Regarding internal validity, an attempt by this study to associate internal and external quality factors

and process characteristics to software maintainability over time is presented. The causal relationships identified in this study and presented in

Figure 4 are indicators of possible cause‐effect relationships among the participating variables without though excluding other relationships

between variables that may affect the maintainability of applications that did not participate in this study (ie, development team experience).

With respect to reliability, we believe that the replication of our research is safe and the overall reliability is ensured. The process that has been

followed in this study has been thoroughly documented in Section 6.1.1, so as to be easily reproduced by any interested researcher. The struc-

tural metrics calculation and the overall extraction of the defined data set were performed with the use of two widely used research tool

(SonarQube and JSClassFinder). Concerning the external validity and in particular the generalizability supposition, changes in the findings might

CHATZIMPARMPAS AND BIBI 19 of 25

occur if the applications for which the sample releases are analyzed is altered. A future replication of this study, on maintenance data from other

projects, would be valuable to verify these findings.

8 | CONCLUSION

Software maintenance is one of the most demanding activities during the software lifecycle as it depends on a variety of software artifacts that are

interrelated and the environment in which the application operates. In this study, we presented and validated an approach to model activity, pro-

cess and product metrics related to both the maintainability of an application and the maintenance process with the help of two ML methods; BN

and ARs. We exploited the predictive power of BNs and their ability to perform inference so as to estimate the maintainability of an application

and the changes and the duration required for performing maintenance activities. Association rules were adopted in order to identify frequently

appearing patterns in the cases where BNs were not able to perform precise estimates. To investigate the validity of the proposed approach, we

performed a case study on five JS applications analyzing in total 957 releases of JS applications, testing the estimation accuracy of the derived

models on 287 releases. The results from the case study suggested that the proposed approach is capable of providing accurate maintainability

and maintenance process assessments. The combined approach outperforms the BN method alone in terms of estimation accuracy. Based on

these results, implications for researchers and practitioners have been provided.

ORCID

Angelos Chatzimparmpas https://orcid.org/0000-0002-9079-2376

Stamatia Bibi https://orcid.org/0000-0003-4248-3752

REFERENCES

1. Amanatidis T, Chatzigeorgiou A, Ampatzoglou A. The relation between technical debt and corrective maintenance in PHP web applications. Inf Softw

Technol. 2017;90:70‐74. https://doi.org/10.1016/j.infsof.2017.05.004

2. Van Vliet H. Software Engineering: Principles and Practice. Hoboken, NJ: John Wiley & Sons; 2008 ISBN: 0470031468.

3. IEEE Standard for Software Maintenance. in IEEE Std 1219‐1998, vol., no., pp.i‐, 1998. https://doi.org/10.1109/IEEESTD.1998.88278

4. Nielsen TD, Jensen FV. Bayesian Networks and Decision Graphs. New York: Springer Science & Business Media; 2009.

5. Hand DJ, Mannila H, Smyth P. Principles of Data Mining (Adaptive Computation and Machine Learning). Cambridge, MA: MIT Press; 2001 ISBN: 0‐262‐
08290‐X 9780262082907.

6. Settas D, Bibi S, Sfetsos P, Stamelos I, Gerogiannis V. Using Bayesian belief networks to model software project management antipatterns. in

Software Engineering Research, Management and Applications, 2006. Fourth International Conference on, pp. 117‐124. IEEE, 2006. https://doi.org/
10.1109/SERA.2006.68

7. Bibi S, Stamelos I, Angelis L. Combining probabilistic models for explanatory productivity estimation. Inf Softw Technol. 2008;50(7‐8):656‐669. https://
doi.org/10.1016/j.infsof.2007.06.004

8. Niessink F, Van Vliet H. Predicting maintenance effort with function points. In Software Maintenance, 1997. Proceedings., International Conference on,

pp. 32‐39. IEEE, 1997. https://doi.org/10.1109/ICSM.1997.624228

9. Dagpinar M, Jahnke JH. Predicting maintainability with object‐oriented metrics—an empirical comparison. in null, p. 155. IEEE, 2003. https://doi.org/

10.1109/WCRE.2003.1287246

10. Misra SC. Modeling design/coding factors that drive maintainability of software systems. Softw Qual J. 2005;13(3):297‐320. https://doi.org/10.1007/
s11219‐005‐1754‐7

11. Fioravanti F, Nesi P. Estimation and prediction metrics for adaptive maintenance effort of object‐oriented systems. IEEE Trans Softw Eng.

2001;27(12):1062‐1084. https://doi.org/10.1109/32.988708

12. Aggarwal KK, Singh Y, Chandra P, Puri M. Measurement of software maintainability using a fuzzy model. J Comput Sci. 2005;1(4):538‐542.

13. Aggarwal KK, SinghY, Kaur A, Malhotra R. Application of artificial neural network for predicting maintainability using object‐oriented metrics. Trans Eng

Comput Technol. 2006;15:285‐289.

14. Zhou Y, Leung H. Predicting object‐oriented software maintainability using multivariate adaptive regression splines. J Syst Softw.

2007;80(8):1349‐1361. https://doi.org/10.1016/j.jss.2006.10.049

15. Kaur A, Kaur K, Malhotra R. Soft computing approaches for prediction of software maintenance effort. Int J Comput Appl. 2010;1(16):80‐86. https://doi.
org/10.5120/339‐515

16. Jin C, Liu J‐A. Applications of support vector mathine and unsupervised learning for predicting maintainability using object‐oriented metrics. in

Multimedia and Information Technology (MMIT), 2010 Second International Conference on, vol. 1, pp. 24‐27. IEEE, 2010. https://doi.org/

10.1109/MMIT.2010.10

17. Elish MO, Elish KO. Application of treenet in predicting object‐oriented software maintainability: a comparative study. in Software Maintenance and

Reengineering, 2009. CSMR'09. 13th European Conference on, pp. 69‐78. IEEE, 2009. https://doi.org/10.1109/CSMR.2009.57

18. Fontana FA, Mäntylä MV, Zanoni M, Marino A. Comparing and experimenting machine learning techniques for code smell detection. Empir Softw Eng.

2016;21(3):1143‐1191.

20 of 25 CHATZIMPARMPAS AND BIBI

https://orcid.org/0000-0002-9079-2376
https://orcid.org/0000-0003-4248-3752
https://doi.org/10.1016/j.infsof.2017.05.004
https://doi.org/10.1109/IEEESTD.1998.88278
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1016/j.infsof.2007.06.004
https://doi.org/10.1016/j.infsof.2007.06.004
https://doi.org/10.1109/ICSM.1997.624228
https://doi.org/10.1109/WCRE.2003.1287246
https://doi.org/10.1109/WCRE.2003.1287246
https://doi.org/10.1007/s11219-005-1754-7
https://doi.org/10.1007/s11219-005-1754-7
https://doi.org/10.1109/32.988708
https://doi.org/10.1016/j.jss.2006.10.049
https://doi.org/10.5120/339-515
https://doi.org/10.5120/339-515
https://doi.org/10.1109/MMIT.2010.10
https://doi.org/10.1109/MMIT.2010.10
https://doi.org/10.1109/CSMR.2009.57

19. Idri A, Khoshgoftaar TM, Abran A. Can neural networks be easily interpreted in software cost estimation?" in Fuzzy Systems, 2002. FUZZ‐IEEE'02. Pro-
ceedings of the 2002 IEEE International Conference on, vol. 2, pp. 1162‐1167. IEEE, 2002. https://doi.org/10.1109/FUZZ.2002.1006668

20. Okutan A, Yıldız OT. Software defect prediction using Bayesian networks. Empir Softw Eng. 2014;19(1):154‐181. https://doi.org/10.1007/s10664‐012‐
9218‐8

21. Fenton N, Neil M, Marsh W, et al. Predicting software defects in varying development lifecycles using Bayesian nets. Inf Softw Technol.

2007;49(1):32‐43. https://doi.org/10.1016/j.infsof.2006.09.001

22. Wagner S. A Bayesian network approach to assess and predict software quality using activity‐based quality models. Inf Softw Technol.

2010;52(11):1230‐1241. https://doi.org/10.1016/j.infsof.2010.03.016

23. Bibi S, Ampatzoglou A, Stamelos I. A Bayesian belief network for modeling open source software maintenance productivity. In IFIP International Con-

ference on Open Source Systems, pp. 32‐44. Springer, Cham, 2016. https://doi.org/10.1007/978‐3‐319‐39225‐7_3

24. Catolino G, Palomba F, De Lucia A, Ferrucci F, Zaidman A. Enhancing change prediction models using developer‐related factors. J Syst Softw.

2018;143:14‐28.

25. Druzdzel MJ. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: a development environment for graphical decision‐theoretic
models. In Aaai/Iaai, pp. 902‐903.1999. ISBN: 0‐262‐51106‐1.

26. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor Newslett.

2009;11(1):10‐18.

27. McCabe TJ. A complexity measure. IEEE Trans Softw Eng. 1976;SE‐2(4):308‐320. https://doi.org/10.1109/TSE.1976.233837

28. Bansiya J, Davis CG. A hierarchical model for object‐oriented design quality assessment. IEEE Trans Softw Eng. 2002;28(1):4‐17. https://doi.org/
10.1109/32.979986

29. Sturge H. The choice of class interval. J Am Stat Assoc. 1926;21(153):65‐66.

30. Torgo L, Gama J. Regression using classification algorithms. Intell Data Anal. 1997;1(4):275‐292.

31. Peng L, Qing W, Yujia G. . Study on comparison of discretization methods. In Artificial Intelligence and Computational Intelligence, 2009. AICI'09. Inter-

national Conference on (Vol. 4, pp. 380‐384). IEEE.

32. Runeson P, Host M, Rainer A, Regnell B. Case Study Research in Software Engineering: Guidelines and Examples. John Wiley & Sons; 2012 https://doi.org/

10.1002/9781118181034

33. Baggen R, Correia JP, Schill K, Visser J. Standardized code quality benchmarking for improving software maintainability. Softw Qual J.

2012;20(2):287‐307.

34. Kyriakakis P, Chatzigeorgiou A. Maintenance patterns of large‐scale PHP web applications. in Software Maintenance and Evolution (ICSME), 2014 IEEE

International Conference on, pp. 381‐390. IEEE, 2014. https://doi.org/10.1109/ICSME.2014.60

35. Wolski M, Walter B, Kupiński S, Chojnacki J. Software quality model for a research‐driven organization—an experience report. J Softw Evol Process.

2018;30(5).

36. Digkas G, Lungu M, Avgeriou P, Chatzigeorgiou A, Ampatzoglou A. How do developers fix issues and pay back technical debt in the Apache ecosystem?

in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 153‐163. IEEE, 2018. https://doi.org/
10.1109/SANER.2018.8330205

37. Silva LH, Hovadick D, Valente MT, Bergel A, Anquetil N, Etien A. JSClassFinder: a tool to detect class‐like structures in JavaScript." arXiv preprint

arXiv:1602.05891 2016.

38. Mens T, Fernández‐Ramil J, Sylvain D. The evolution of eclipse. In Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pp.

386‐395. IEEE, 2008. https://doi.org/10.1109/ICSM.2008.4658087

39. Osborne JW, Overbay A. The power of outliers (and why researchers should always check for them). Pract Assess Res Eval. 2004;9(6):1‐12.

How to cite this article: Chatzimparmpas A, Bibi S. Maintenance process modeling and dynamic estimations based on Bayesian networks

and association rules. J Softw Evol Proc. 2019;31:e2163. https://doi.org/10.1002/smr.2163

CHATZIMPARMPAS AND BIBI 21 of 25

https://doi.org/10.1109/FUZZ.2002.1006668
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1007/s10664-012-9218-8
https://doi.org/10.1016/j.infsof.2006.09.001
https://doi.org/10.1016/j.infsof.2010.03.016
https://doi.org/10.1007/978-3-319-39225-7_3
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/32.979986
https://doi.org/10.1002/9781118181034
https://doi.org/10.1002/9781118181034
https://doi.org/10.1109/ICSME.2014.60
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/ICSM.2008.4658087
https://doi.org/10.1002/smr.2163

APPENDIX A

TABLE A1 CPT for maintainability metric

Number of Commits Code Smells LoC

Maintainability

s1 s2 s3

s1 s1 s3 0.9 0.05 0.05

s2 s4 0.93 0.04 0.04

s3 s4 0.21 0.75 0.04

s5 0.26 0.69 0.05

s4 s4 0.15 0.7 0.15

s5 0.49 0.49 0.02

s2 s1 s2 0.94 0.03 0.03

s3 0.87 0.06 0.06

s2 s3 0.81 0.09 0.09

s3 s5 0.12 0.86 0.02

s4 s4 0.15 0.7 0.15

s5 0.02 0.95 0.02

s3 s1 s2 0.87 0.06 0.06

s3 0.7 0.15 0.15

s2 s2 0.94 0.03 0.03

s3 0.97 0.01 0.01

s3 s4 0.02 0.96 0.02

s4 s2 s2 0.33 0.6 0.06

s3 0.09 0.81 0.09

s5 s1 0.7 0.15 0.15

s2 0.26 0.26 0.49

s3 0.02 0.95 0.02

s4 0.26 0.72 0.02

s5 s1 s1 0.01 0.01 0.98

s3 s1 0.09 0.09 0.81

s4 s1 0.02 0.02 0.97

s5 s1 0.05 0.05 0.9

s2 0.09 0.09 0.81

TABLE A2 CPT for duration metric

Maintainability LoC

Duration

s1 s2 s3 s4 s5

s1 s1 0.10 0.10 0.10 0.10 0.60

s2 0.01 0.08 0.33 0.39 0.20

s3 0.02 0.02 0.02 0.58 0.36

s4 0.07 0.07 0.40 0.07 0.40

s5 0.03 0.03 0.03 0.37 0.53

(Continues)

22 of 25 CHATZIMPARMPAS AND BIBI

TABLE A2 (Continued)

Maintainability LoC

Duration

s1 s2 s3 s4 s5

s2 s1 0.20 0.20 0.20 0.20 0.20

s2 0.04 0.24 0.24 0.44 0.04

s3 0.32 0.22 0.22 0.12 0.12

s4 0.18 0.52 0.18 0.02 0.10

s5 0.01 0.01 0.01 0.44 0.51

s3 s1 0.08 0.39 0.08 0.14 0.32

s2 0.46 0.03 0.17 0.17 0.17

TABLE A3 CPT for changes metric

Maintainability

Changes

s1 s2 s3 s4 s5

s1 0.10 0.10 0.35 0.13 0.32

s2 0.37 0.08 0.19 0.24 0.11

s3 0.23 0.29 0.43 0.03 0.01

TABLE A4 Association rules for Ghost, Vue, Video.js, and Material‐UI applications

Ghost

Maintainability

1 (SCB = s5) and (duplicated blocks = s2) = > maintainability = s1 22.0% 100%

2 (code smells = s5) = > maintainability = s3 24.0% 100%

3 (code smells = s4) = > maintainability = s2 21.0% 100%

4 (code smells = s3) = > maintainability = s3 8.0% 100%

Duration

1 (comments rate = s3) = > duration = s3 5.0% 60%

2 (comments rate = s2) and (NoStat = s4) and NoC = > duration = s2 5.0% 50%

3 (comments rate = s1) and (NoStat = s5) = > duration = s2 5.0% 100%

4 (comments rate = s1) and (NoCom = s2) and (NoFil = s4) = > duration = s4 5.0% 66.6%

5 (comments rate = s1) = > duration = s3 5.0% 75%

6 (NoA = s2) and (complexity/class = s4) = > duration = s5 5.0% 60%

7 (NoA = s2) = > duration = s5 10.0% 50%

8 (code smells = s5) = > duration = s1 5.0% 50%

9 (NoStat = s1) = > duration = s3 5.0% 75%

Changes

1 (NoCom = s3) = > changes = s1 7.0% 71.5%

2 (duplicated blocks = s4) and (code smells = s4) and (complexity/class = s1) = > changes = s5 6.0% 83.4%

3 (NoFil = s4) = > changes = s2 2.0% 100%

4 (NoCom = s5) and (maintainability = s3) and (NoA = s2) = > changes = s1 5.0% 100%

5 (NoCom = s5) and (maintainability = s1) = > changes = s5 5.0% 66.6%

6 (NoStat = s1) = > changes = s3 7.0% 71.5%

(Continues)

CHATZIMPARMPAS AND BIBI 23 of 25

TABLE A4 (Continued)

Ghost

7 (NoStat = s5) and (code smells = s5) = > changes = s3 5.0% 50%

8 (NoFil = s5) = > changes = s3 5.0% 50%

Vue

Maintainability

1 (complexity = s1) = > maintainability = s1 31.0% 100%

2 (complexity = s5) = > maintainability = s3 28.0% 96.4%

3 (complexity = s2) = > maintainability = s1 20.0% 100%

4 (duplicated lines = s1) and (NoStat = s1) and (duplicated blocks = s1) = > maintainability = s2 30.0% 93.3%

5 (SCB = s4) = > maintainability = s1 16.0% 100%

6 (SCB = s4) and (code smells = s4) = > maintainability = s2 15.0% 100%

Duration

1 (code smells = s4) and (duplicated blocks = s4) = > duration = s4 10.0% 50%

2 (code smells = s5) and (complexity = s4) = > duration = s5 11.0% 45.4%

3 (code smells = s4) = > duration = s5 7.0% 71.4%

4 (complexity/class = s2) = > duration = s4 5.0% 100%

Changes

1 (comments rate = s3) = > changes = s1 14.0% 100%

2 (NoCom = s4) = > changes = s5 14.0% 100%

3 (code smells = s5) and (complexity = s5) = > changes = s2 5.0% 100%

4 (maintainability = s2) and (NoFil = s4) and (code smells = s3) = > changes = s4 9.0% 66.6%

5 (NoC = s5) and (maintainability = s3) = > changes = s1 5.0% 75.0%

6 (NoFil = s5) and (maintainability = s2) and (NoF = s4) = > changes = s3 7.0% 57.1%

7 (code smells = s4) = > changes = s5 6.0% 66.6%

Video.js

Maintainability

1 (code smells = s2) and (SCB = s3) = > maintainability = s2 43.0% 100%

2 (NoCom = s3) and (code smells = s3) = > maintainability = s3 23.0% 100%

3 (code smells = s2) = > maintainability = s1 13.0% 84.6%

4 (code smells = s1) = > maintainability = s1 10.0% 100%

Duration

1 (SCB = s5) = > duration = s4 5.0% 100%

2 (NoC = s3) and (complexity/class = s3) = > duration = s2 11.0% 90.9%

3 (NoC = s3) and (NoStat = s4) = > duration = s2 21.0% 57.1%

4 (NoStat = s3) and (Total lines = s3) = > duration = s2 12.0% 83.3%

5 (NoC = s3) = > duration = s3 14.0% 64.2%

6 (SCB = s3) = > duration = s2 5.0% 60%

Changes

1 (SCB = s5) = > changes = s1 9.0% 66.6%

2 (code smells = s3) and (NoCom = s4) and (NoFil = s4) = > changes = s1 7.0% 50%

3 (code smells = s3) and (duplicated blocks = s4) and (total lines = s5) = > changes = s4 13.0% 38.4%

4 (code smells = s3) and (NoFil = s4) = > changes = s4 9.0% 66.6%

5 (code smells = s1) = > changes = s5 7.0% 85.7%

6 (NoFil = s4) and (complexity/class = s5) = > changes = s3 5.0% 60%

7 (SCB = s3) and (duplicated blocks = s2) = > changes = s4 5.0% 50%

(Continues)

24 of 25 CHATZIMPARMPAS AND BIBI

TABLE A4 (Continued)

Ghost

8 (SCB = s1) = > changes = s5 5.0% 80%

9 (complexity/class = s3) and (comments rate = s3) = > changes = s4 5.0% 100%

10 (complexity/class = s4) = > changes = s2 22.0% 50%

11 (complexity/class = s2) = > changes = s4 9.0% 44.4%

Material‐UI

Maintainability

1 (complexity = s5) = > maintainability = s1 20.0% 100%

2 (NoFil = s4) = > maintainability = s2 13.0% 100%

3 (NoFil = s3) = > maintainability = s3 5.0% 100%

4 (duplicated blocks = s5) = > maintainability = s3 11.0% 100%

Duration

1 (duplicated lines = s3) = > duration = s5 9.0% 88.8%

2 (duplicated lines = s2) and (CCN = s3) = > duration = s4 5.0% 66.6%

3 (duplicated blocks = s1) = > duration = s2 19.0% 63.1%

4 (duplicated blocks = s5) = > duration = s4 11.0% 54.5%

5 (comments rate = s4) = > duration = s3 5.0% 50%

Changes

1 (complexity = s2) = > changes = s1 13.0% 53.8%

2 (NoCom = s2) and (comments rate = s5) = > changes = s3 6.0% 66.6%

3 (NoCom = s4) and (cognitive complexity = s4) = > changes = s5 8.0% 53.8%

4 (NoCom = s5) = > changes = s5 5.0% 80%

5 (CNN = s2) and (NoCom = s3) = > changes = s3 5.0% 100%

6 (CCN = s2) = > changes = s4 4.0% 75%

7 (NoF = s3) = > changes = s2 5.0% 66.6%

CHATZIMPARMPAS AND BIBI 25 of 25

