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Abstract. This paper suggests several estimation guidelines for the choice of a 
suitable machine learning technique for software development effort 
estimation. Initially, the paper presents a review of relevant published studies, 
pointing out pros and cons of specific machine learning methods. The 
techniques considered are Association Rules, Classification and Regression 
Trees, Bayesian Belief Networks, Neural Networks and Clustering, and they 
are compared in terms of accuracy, comprehensibility, applicability, causality 
and sensitivity. Finally the study proposes guidelines for choosing the 
appropriate technique, based on the size of the training data and the desirable 
features of the extracted estimation model. 

1 Introduction 

Cost estimation refers to the prediction of the human effort (typically measured in 
man-months) and time needed to develop a software artifact [5]. The estimation is 
based on various attributes of the software project, such as language type, personnel 
skills, computer platform, project constraints, etc. Such information is found in 
historical cost data bases that may be small data sets coming from the estimating 
software organization or large multi-organizational data bases. Although commercial 
cost estimation models are available, ad hoc models, based on selected past project 
data are considered the best approach. 

Many studies have been published so far regarding the applicability of machine 
learning approaches to software cost estimation. Due to the different parameters of 
the experiments, the different data sets used and the varying evaluation methods no 
general conclusions can be directly drawn concerning the suitability of each method. 
Target of this study is to examine the compiled knowledge and experience coming 
from the application of machine leaming techniques. The final result is the extraction 
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of a set of guidelines that will help an estimator select the appropriate method based 
on the environment in the context of which the estimation is performed. 

In the following, the basic criteria for judging a cost estimation technique are 
presented as research questions: 

How comprehensible is the extracted model? This is important in a problem 
domain such as project effort prediction since the estimator must trust the model's 
output, otherwise the prediction may be rejected by management. 

How applicable is the method? The cost, effort and time needed to learn and 
extract an estimation model may be crucial for estimation environments that lack 
human experts, time or money to devote to such activities. It is important to possess 
effective tools that will support method application. 

Does the model address causality? When a software project is less productive 
compared to others it is important to have a clue of the main reasons that caused this. 
Estimation should include causality, in a way that it is easily interpreted. A simple 
cost estimate is not enough any more, it should be accompanied with supporting 
evidence justifying the reasons for this estimate. 

Does the method handle missing values? In software engineering data sets noise 
is a usual phenomenon. If a method can ignore missing values without excluding 
projects or independent variables then it has an advantage compared to a method that 
can handle only complete data. This is an important feature for software data sets 
that are usually small and incomplete. 

Is uncertainty considered in the models? In every estimation process, 
uncertainty is an inevitable element that should be well managed. This element is 
even more important in software cost estimation models, where money, time, 
resources and customer relationships depend on this estimation. 

What is the accuracy of the models? The accuracy of an estimation model is 
among the most important features of a method. Due to the fact that each study has 
different parameters direct comparison of the accuracy of the models cannot be 
performed. Though, several conclusions can be drawn about the situations under 
which each method outperforms the rest. 

Does the method support a dynamic approach to the problem? For estimation 
problems that evolve over time, such as software cost estimation, techniques that can 
deal with updated information have an advantage over static techniques. 

What is the sensitivity of the method? The sensitivity of a method involves its 
ability to produce accurate estimations even when several parameters change. 

The paper is structured as follows: Section 2 shows how machine learning 
techniques are applied for estimating software development cost. Section 3 reports 
the results of published research studies and compares techniques. Section 4 
compiles estimation guidelines for determining the appropriate technique(s) 
according to the data in hand. Section 5 concludes the paper and provides research 
directions. 
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2 Machine Learning Techniques in Software Cost Estimation 

In this section we will demonstrate how the five machine learning methods can be 
used for softeware cost estimation. 

An AR [1] coming from the domain of software cost estimation will have as Rule 
Body certain software project attribute values and as a Rule Head a productivity (or 
cost, or effort) value. A simple example of an AR is presented in table 1. 

Table 1. Association Rule for Software Productivity Estimation 

If language used = cobol and development type= enhancement 
then 40<productivity <60 support=5% confidence= 85% 

This rule is interpreted as following: If the language that will be used for the 
development of new project is COBOL and the development type of the project is 
enhancement then there is 85% (confidence value) probability that the productivity 
value of the project will be between 40 and 60 lines of code per hour. This rule is 
classifies correctly 5% of the instances in the training data set. 

Bayesian Belief Networks [13] in software cost estimation are directed acyclic 
graphs with each node representing a software project variable, or software 
development effort. A simple Bayes Network estimating software effort is the one 
presented in figure 1. 

Fig. 1. A BBN for software effort estimation 

Attached to the node of effort there is a node probability table that provides 
possible values of the effort based on the combination of values that the 
programming language and the development platform nodes take. 

CART is a widely used statistical procedure for producing classification and 
regression models with a tree-based structure in predictive modeling [2]. The CART 
tree model of figure 2 for software cost estimation consists of an hierarchy of 
univariate binary decisions that leads to the prediction of software productivity. 

Clustering [9] is the process of decomposing or partitioning a data set into groups 
so that the points in one group are similar to each other and are as different as 
possible from the points in other groups. In software cost estimation to our 
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knowledge clustering have been used mainly for selecting similar groups of project 
in which another estimation technique will be used to provide a prediction. 

Fig. 2. CART for software productivity estimation 

NNs [11] are massively parallel systems comprising simple interconnected units, 
artificial neurons. The neuron computes a weighted sum of its inputs and generates 
an output if the sum exceeds a certain threshold. This output then becomes an 
excitatory or inhibitory input to other neurons in the network. The process continues 
until one or more outputs are generated. In software cost estimation the inputs are the 
project attribute values, the output is the estimation of productivity. 

3 Machine learning in software cost estimation 

In this section we review the results obtained by various researchers and provide a 
comparative table based on the model quality criteria we proposed in the 
Introduction. 

Rule induction has been the target of several studies [1], [2], [6], [11], [15]. The 
studies are differentiated by the algorithm used to extract rules. Studies [1], [2] 
extract association rules directly from the learning data set. Study [11] extracts 
mutually exclusive rules that can form regression trees, while studies [6] and [15] 
utilize rules as a support to fuzzy models. The accuracy of the method is a central 
theme to almost all studies apart from [11]. 

The studies considered identify comprehensibility of the results as a clear 
advantage of the method. Rules are among the most representative forms of human 
notion, they are transparent and therefore easily read and understood. Rule 
representation style helps the estimator understand the prediction and any underlying 
assumptions upon which it is based. Rules may be rephrased and provided to offer a 
clearer explanation as to how a prediction has been made and the evidence on which 
the prediction is based. Additionally, rules have the ability to include uncertainty in 
the prediction as each rule is accompanied by two probabilities that show the 
statistical validity and strength of the rule in the learning data set. 

The accuracy of AR as an estimation method depends mainly on the number of 
rules extracted and whether AR has support from other methods. For example in 
study [11] when the pruned set of rules is evaluated the accuracy is decreased. In 
studies [1], [2] the number of rules extracted is large and therefore the estimation 
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accuracy increased. The main problem of the method is that when rule induction is 
used, estimation accuracy is relatively low. On the other hand when association rules 
are used accuracy is higher but it cannot be guaranteed that the model will be able to 
classify all new projects. Another problem of the method is its sensitivity to 
parameter selection (number of rules, independent variables participating in the 
model, size of the training set). Changing one of the parameters may cause large 
model output fluctuation and reduce the accuracy of the estimates. 

Bayesian Belief Networks is a relatively new approach to the problem of 
software cost estimation. Direct appHcation of BBN on software cost estimation is 
found in two studies [3], [13], while [4] utilized Bayesian analysis for calibrating the 
well-known COCOMO II model. Bayesian analysis is a well-defmed and rigorous 
process of inductive reasoning. A distinctive feature of the Bayesian approach is that 
it permits the investigator to use both sample (data) and prior (expert-judgment) 
information in a logically consistent manner in making inferences [4]. This is done 
by using Bayes' theorem to produce a 'postdata' or posterior distribution for the 
model parameters. Using Bayes' theorem, prior (or initial) values are transformed to 
postdata views. 

Among the other advantages of the method is its ability to represent domains that 
evolve over time. BBN can offer a dynamic approach to the problem of software cost 
estimation as they are able to update their estimates when more information is 
included in the model. In general, using BBN estimation uncertainty is captured 
elegantly in the node probability tables that accompany each model and causality is 
addressed by pointing out the variables that mainly affect cost. Among the 
disadvantages of the method is that in small data sets BBN can be inaccurate, when 
particular combination of values of the independent variables are excluded from the 
learning set. Also the method cannot handle missing values, and though BBN 
support visual representation of the results the estimator has to be knowledgeable of 
the method in order to interpret the quantitative results as well. 

Classification and Regression Trees are explored and applied in the comparative 
studies [2], [4], [7], [8]. In these studies the accuracy of the method usually is 
average to low and it is a fact that CART has never achieved the best performance 
among the compared methods. The main advantage of the method is that it is easily 
applied and produces comprehensible models. Additionally CART has the ability to 
classify all potential projects to a cost value even if the attributes of the project under 
estimation have not appeared in the training data set. CART can also handle missing 
values but the performance of the method increases when there is no noise in the 
learning data. Among the problems of the method is that the splitting of the data in 
each node sometimes seam unreasonable, as the method cannot deal with scale 
variables. Also due to the automated pruning of the tree that CART tools support, in 
order to avoid over-fitting to the data, several cost values that are loosely represented 
in the data tend to be omitted, resulting in the misclassification of projects belonging 
to minor cost intervals. 

Neural networks have been often applied and compared in the domain of 
software cost estimation [6], [9], [11], [12], [14]. Most studies concerned with the 
use of NNs to predict software development effort have focused on comparing their 
accuracy with that of algorithmic models, rather than on the suitability of the 
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approach for building software effort prediction models. In most studies where NN 
have been utilized the technique has relatively high accuracy and usually 
outperforms the rest of the techniques. We note, however, that other factors such as 
explanatory value and configurability are poorly addressed by the method. NN 
produce results in the form of a "black box" and therefore it is difficult for an 
estimator to understand the rationale under which the prediction has been made. Also 
the application of NN is a difficult, time consuming procedure. Among the main 
drawbacks of the method is its sensitivity to the data. Overfitting of the models to the 
training data is another reported problem. 

Clustering has been applied on software cost estimation in combination with 
other methods [9]. First data are split into homogeneous clusters and then another 
method is applied. Clustering provides important information when the initial 
estimation models from the training data set are not satisfying and the models have 
to be re-generated using a part of the data. Clustering is useful for selecting data that 
will be in the same set for extracting estimation models. 

Table 2 summarizes the results of the examined studies and provides a tool for 
comparing the various machine learning techniques. 

Table 2. Comparison of machine learning methods in terms of quality criteria 

Methods/ 
Criteria 
comprehensibility 
applicability 
causality 
missing values 
uncertainty 
accuracy 
dynamic update 
sensitivity 

AR 

high 
medium 
high 
yes 
medium 
depends 
NA 
high 

BBN 

medium 
medium 
high 
no 
high 
medium 
high 
medium 

CART 

high 
high 
medium 
yes 
medium 
low 
NA 
Medium 

CLUSTERING 

medium 
high 
medium 
yes 
medium 
NA 
NA 
low 

NN 

low 
low 
low 
no 
low 
high 
high 
high 

4 Choosing the appropriate technique 

A standard approach in practical software cost estimation is to apply more than 
one technique [10], in order to avoid biased estimates. Based on the above 
assumptions we suggest a decision tree for selecting the appropriate technique 
according to the size of the data set and the importance that the estimator assigns to 
each model criterion. The overall approach is presented in the form of a decision tree 
presented in figure 3. 

When the number of training data is relatively large (e.g. a large multi-
organization data base or a rich local cost data base is used) the suggested method is 
BBN. BBN have the ability to represent various aspects of the cost estimation 
problem and when applied to large data sets potential disadvantages of the method 
are handled. In case the estimator is interested only in high accuracy of the estimates, 
and has the available resources to apply the method then the use of NN is suggested. 
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Fig. 3. Decision tree for selecting software cost estimation method 

In small data sets (typically local software cost data bases) the selection of the 
method varies based on the situation of the estimation. When there is little time or 
the available tools and the estimation model must classify all possible projects then 
the use of CART is suggested, although accuracy may be a problem. On the other 
hand if uncertainty and causality of the model play important role in managerial 
decisions such as selection of tools, staff and platform for the project, the use of AR 
is proposed. AR will show which attributes affect the effort of a software project and 
the level they influence it. Finally if none of the previous hypotheses is valid and the 
models extracted directly from one machine learning technique are not satisfactory, 
the use of clustering is suggested along with re-application of the first technique. 

5 Conclusions and future work 

In this paper we examined five machine learning techniques in terms of accuracy, 
comprehensibility, causality, applicability, sensitivity, uncertainty, handling of 
missing values and dynamic update. Several advantages and disadvantages of AR, 
BBN, CART, clustering and NN have been indicated. Based on the assumptions 
coming from current literature regarding machine learning techniques, we suggested 
a number of guidelines for selecting the appropriate estimation methods based on the 
needs and the resources of the estimator. 

It is obvious that for more detailed analysis of the above issues ftirther research 
has to be done applying and comparing directly the above methods under the same 
estimation situation. Future work may also involve the application of the methods in 
large data sets, with missing values and noise. Also possible combination of machine 
learning methods for software cost estimation is definitely an interesting approach 
for solving the problems each method has alone. 
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