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Abstract 
 Defining the required productivity in order to complete successfully and within time and 

budget constraints a software development project is actually a reasoning problem that 
should be modelled under uncertainty. One way of achieving this is to estimate an interval 
accompanied by a probability instead of a particular value. In this paper we compare 
traditional methods that focus on point estimates, methods that focus both on point and 
interval estimates and methods that produce only predefined interval estimates. In the case of 
predefined intervals, software cost estimation becomes a classification problem. All the 
above methods are applied on two different data sets, namely the COCOMO81 dataset and 
the Maxwell dataset. Also the ability of classification techniques to resolve one classification 
problem in cost estimation, namely to determine the software development mode based on 
project attributes, is assessed and compared to reported results. 

 
1. Introduction 

Estimating the cost required for a software development project is one of the crucial 
aspects of project planning and management but still remains an open issue, due to the 
diversity of cost factors, their unclear contribution to productivity, the high degree of 
uncertainty and the lack of information in the early stages of software development. For these 
reasons, low accuracy and unsuccessful estimations seem to have been inevitable so far. 

Software cost estimation actually involves the estimation of productivity or effort needed 
to complete a project. Most methods proposed produce point estimates of these attributes, 
along with prediction intervals, in an attempt to consider the uncertainty or risk associated to 
the estimation process. However, because software cost data sets are small (counting tenths 
of projects in most cases), estimate intervals are often too large to be useful for practical cost 
estimation. Therefore, researchers tend to neglect estimate intervals, focusing on the point 
estimates. This is controversial to the fact that the development of a software artifact is a 
human driven procedure, where unexpected problems may arise. 

For a more realistic approach, it is necessary to consider both uncertainty and risk, 
weighing the chance of events occurring and the impact they might have. It is useful to reflect 
the level of uncertainty in the estimate and interval estimates can lead to that direction. 
Usually interval estimates are created during the estimation process by firstly making a point 
estimate and then assessing prediction intervals. However, there is also the possibility to pre-
define the intervals of productivity before the estimate generation. This can be done in order 
to control the estimation procedure, distribute the projects in the training data set as 
uniformly as possible into the various productivity intervals and ensure that estimate intervals 
will not be too large.  

The target of this study is to identify techniques that are capable to produce predefined 
intervals and to provide some evidence of the prediction accuracy of those techniques, 
comparing them also to techniques that have traditionally focused on point estimates. 
Classification and Regression Trees (CART) is a technique that may produce both point and 
interval estimates. Two techniques that produce interval estimates only are Bayesian Belief 
Networks (BBN) and Association Rules (AR). Known techniques focusing on point estimates 
are Ordinary Least Squares (OLS) and Forward Pass Residual Analysis (FPRA) and Analogy 
Based Estimation (ABE). Also the comparison between learning-oriented techniques (OLS, 
FPRA), machine learning techniques (CART, BBN, A.R) and expertise-based techniques 
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(ABE) is inevitable. All the above methods are applied on two different data sets, namely the 
COCOMO81 dataset and the Maxwell dataset. The differences in estimation accuracy 
between the techniques are presented and discussed in both cases. 

An additional research target is to compare the classification techniques in classification 
problems that occur within software cost estimation. A typical example is the determination 
of the software development mode in the COCOMO81 dataset. The ability of the 
classification techniques to determine the software development mode based on project 
attributes is assessed and compared to reported results obtained through two other methods, 
namely hierarchical clustering and discriminant analysis [23].  

Various studies have been conducted so far concerning the comparison and evaluation of 
different cost estimation techniques  [3], [9], [17], [1]. In particular, some of them suggest the 
estimation of intervals [10], [12], [22] and one the estimation of predefined intervals [21]. 
Machine learning techniques such as Neural Networks [8], CART [20] have also been 
implemented but all producing point estimates. Especially for association rules only two 
studies have been found in the literature involving effort estimation [14], [15]. In these 
studies rules are extracted from decision trees, not from exploring frequently appearing item 
sets. This study examines the applicability of machine learning methods in estimating 
predefined productivity intervals. 

This paper starts with the description of the data sets and data preparation in Section 2. 
Section 3 presents briefly the estimation techniques. Section 4 provides the results of each 
technique. In Section 5, the perceived advantages and the disadvantages of each technique as 
well as future work are discussed. 

 
2. Data Set Description 

The first dataset that was used in this analysis is the COCOMO81 dataset coming from 
TRW defense systems. This dataset consists of 63 projects. Apart from the general attributes, 
a set of 17 attributes, called cost drivers, is used in order to extract useful patterns. These 
attributes, based on the analysis of Kitchenham in [11], can take the following values: Super 
Low (SL), Extra Low (EL),Very Low (VL), Low (L), Nominal (N), High (H),Very High 
(VH), Extra high (EH), Super High (SH). Also KDSI is included, the delivered source 
instructions and adjusted KDSI. The data set is analytically presented in [11].  

The second dataset that was used in order to extract models and evaluate them is a dataset 
coming from bank applications published in [16]. This database contains 63 projects from 
which 60 were used, the ones with no missing values. 22 variables are taken into 
consideration in order to establish their relationship with productivity. The following 
variables are contained: application type (customer service, MIS, transaction processing, 
production control, Information/On-line service), the hardware platform (networked, 
mainframe, pc, mini computer and multi-platform), the database architecture (relational, 
sequential, other), the user interface (graphical/gui, text user interface/tui), source (insource, 
outsourced). Another 15 variables influencing productivity are also present: customer 
participation (custpart), development environment adequacy (devenvad), staff availability 
(staffav), standards use (standuse), methods use (methuse), tools use (tooluse), software’s 
logical complexity (cplx), requirements volatility (reqvol), quality requirements (qualreq), 
efficiency requirements (effreq), installation requirements (installation_req), staff analysis 
skills (staffanal), staff application knowledge (stappknow), staff tool skills (staff_tool_skills), 
staff team skills (stateam). The values that these variables take are Very Low(1), Low(2), 
Nominal(3), High(4), Very High(5). 
 For applying classification techniques and for extracting association rules the values of 
productivity were transformed from continuous to categorical by being classified into 
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predefined intervals. One problem that arises is the choice of the number of intervals and the 
width of each interval. The number of intervals may be selected automatically according to 
various rules that are proposed in the statistical literature, or may be determined manually, 
keeping in mind that the narrower the interval, the more useful the estimate is. In this study 
we took the second approach, although the former definitely deserves further attention. 

We preferred to consider intervals that may be appealing to software managers: relatively 
few intervals were chosen (because of the low number of projects in the datasets) with 
rounded lower and upper limits, so as to be easily identifiable by a human. This is best seen 
in the case of COCOMO81 dataset. Another issue is the width of the intervals. When 
possible, we chose intervals that grew progressively larger, so as to allow larger magnitude 
errors for higher productivity values. This approach had an additional important benefit: the 
projects were as uniformly as possible divided among the intervals, since in both datasets 
many projects are concentrated in small productivity values. The intervals chosen for the two 
datasets are presented in table 1. 

 
Table 1: Productivity Intervals 

COCOMO   
DSI/MM 

<30 30-60 60-100 100-
160 

160-
270 

270-
450 

450-
750 

>750 

MAXWELL 
FP/TotalHours 

<0.043 0.043-
0.058 

0.058-
0.085 

0.085-
0.12 

0.12-
0.145 

0.145-
0.17 

>0.17  

 
3. Methods used for Cost Estimation 

This section briefly describes the techniques applied by the authors in software cost 
estimation data. The selected techniques are the ones that are able to produce interval 
estimates taking into consideration the uncertainty that characterize our problem. Also these 
techniques produce results that are easily interpreted, understood and reproduced.  

 
3.1. Classification And Regression Trees (CART) 

CART is a widely used statistical procedure for producing classification and regression 
models with a tree-based structure in predictive modeling [4]. The CART tree model consists 
of an hierarchy of univariate binary decisions. The algorithm used operates by choosing the 
best variable for splitting data into two groups at the root node. It can use any of several 
different splitting criteria, all produce the effect of partitioning the data at an internal node 
into two disjoint subsets in such way that the class labels are as homogeneous as possible. 
This splitting procedure is then applied recursively to the data in each of the child nodes. A 
greedy local search method to identify good candidate tree structures is used. Finally, a large, 
high depth tree is produced and specific branches of this tree are pruned according to the 
stopping criteria, so as to avoid overfitting of the data and over-specialization of the model. 

  
3.2. Association Rules (AR) 

   Association rules [7] are among the most popular representations for local pattern 
detection. Their target is to find frequent combinations of attribute values that lay in 
databases. An association rule is a simple probabilistic statement about the co-occurence of 
certain events in a database, and has the following form:      

IF A1=X AND A2=Y THEN A3=Z 
                                             A1_X+A2_Y→A3_Z 
where A1_X+A2_Y is considered to be the rule body and A3_Z is considered to be the 

rule head. This rule is interpreted as following: when the attribute A1 has the value X and 
attribute A2 has the value Y then there is a probability p that attribute A3 has the value Z, 
where p=p(A3=Z|A1=X,A2=Y). This probability is called confidence. Another 
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probability that defines each rule is support = p(A1=X, A2=Y, A3=Z). Certain constraints on 
confidence and support are used in order to select the most representative rules.  

  
3.3. Bayesian Belief Networks (BBN) 

Bayesian Belief Networks (BBN) [6] are graphical models and have become attractive 
because of their ability to represent uncertainty and to efficiently perform reasoning tasks. 
The knowledge that they manage is in the form of dependence and independence 
relationships, two basic notions in human reasoning. Both relationships are coded by means 
of the qualitative component of the model, the Directed Acyclic Graph (DAG). Each node 
represents a random variable that can take discrete or continuous values according to a 
probability distribution, which can be different for each node. Each link expresses 
probabilistic cause-effect relations among the linked variables and is depicted by an arc 
starting from the influencing variable (parent) and terminating on the influenced variable 
(child node). The presence of links in the graph may represent the existence of direct 
dependency relationships between the linked variables (that sometimes may be interpreted as 
causal influence or temporal precedence). The absence of some links means the existence of 
certain conditional independency relationships between the variables.  

The strength of the dependencies is measured by means of numerical parameters such as 
conditional probabilities. Formally, the relation between the two nodes is based on Bayes’ 
Rule: P(X|Y) = P(Y|X)P(X)/P(Y). 

The rest of the methods considered for comparison are well known: COCOMO [2] is a 
widely known software cost model. OLS is also a statistical technique [5], applied often in 
cost estimation. Analogy-based estimation is based on the similarity of the target project to 
historical ones [1]. 

The methods that have been directly applied by the authors for this paper are CART, 
Association Rules, BBN and Analogy based estimation, with the help of several open source 
tools that can be found in [13], [18], [19]. For the rest of the methods the results are coming 
from other studies on this topic. In particular, for FPRA and CART we consulted [11], for 
OLS the results can be found in [16]. 

 
4.  Results 

Before discussing the results it is useful to define the accuracy metrics that will be used in 
order to compare and evaluate the results of each model. In particular, Mean Magnitude 

Relative Error will be used, defined as: ∑
=

−
=

n
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100  where Pi is the actual 

productivity and Ei is the estimate and n is the number of projects. 
Also,  will be used, i.e. the percentage of projects (k) for which the prediction 

falls within the Y% of the actual value. We employ Pred(25) for both datasets used. In 
COCOMO81 data set, PRED(20) is also presented in some methods. In the case of interval 
estimates, relative errors are calculated by considering the mean of the interval. 

)(YPRED

Also will be used for the estimation of mode[10], i.e. the percentage of projects for 
which mode has been successfully estimated. Usually the validation of a model is done by 
removing one data point at the a time from the data set, recalculating the model and 
estimating the value of the project that was left out (a method known as JackKnifing).  

hitrate

 
4.1. COCOMO81  data set 

First, the results for the COCOMO81 data set are presented. The techniques that have been 
applied are CART, BBN, AR, ABE. The model derived from the COCOMO81 data set by 
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applying FPRA [11] included the following variables: TIME, PCAP, RVOL, with TIME 
contributing to productivity at 45.3%, PCAP at 18.3%, RVOL at 11.6% and duration at 1,8%. 
The CART technique (the ordinal scales have been taken from [11]) suggested the structures 
shown in figures 1,2 :  
 
 
 
                                          H,VH,EH,SH                                                      N 
                                                                                                                                                   
  
 
      EL,L,N,H,VH                           VL                                                       H,N,L,VL                              EH,VH 

 
    

                                                                                  N,L,VL,SL                    SH,VH,H  CTL,HMI,SUP,SYS                   BUS,SCI   
                                                                                                   

TIME

RELY MODP

TYPEP=112.951 
projects=30 

P=290.387 
projects=4 

P=546.571 
projects=5

P=443.112 
projects=6 

P=862.809 
projects=5

PCAP

P=224.145 
projects=13 

 

Figure 1: CART(1) tree for COCOMO81 data set 
 

 
                     
                                               E                                                         ORG,SD 
                                                                                 
                                                                                               
                                                                                                                  SL,VL,VH                                 

             HMI,SUP,BUS                          SYS,CTL,SCI         
                                                                                                                                            L,N,H,SH 

 
 

                                                                                                            SL,L,VH,SH                                 VL,N,H 
                                                                                                                       
 

                                                   

MODE

PCAP 60 < P ≤ 100 
projects=17 

160 < P ≤ 270 
projects=6 

450 < P ≤ 750 
projects=16 

Appl_type ACAP 

270 < P ≤ 450 
projects=13 

100 < P ≤ 160 
projects=11 

 
                                Figure 2: Another CART(2) tree for COCOMO81 data set 

 

In the attempt to extract association rules from COCOMO81 data set various problems 
have been encountered. First of all the suitable, i.e. most representative and powerful, rules 
should be selected. In addition, the selected rules should be able to provide estimates for all 
of the 63 projects of COCOMO81 and be as general as possible, so as, given the attributes of 
a new unknown project, to be able to provide an estimate. For that purpose, rules with high 
confidence and as high support as possible have been preferred. In order to satisfy the second 
constraint, rules with few attributes in the rule head were selected so as to avoid over 
specialization and in cases where the existing preferred rules were not able to provide an 
estimate, the support or confidence threshold had to be reduced. Eventually, 36 rules were 
selected with support threshold 4,7% (3 projects), which were used for the evaluation of the 
model. For instance some rules concerning two categories of productivity are the following in 
priority order: 
Support            Confidence                                             Rule Body                                             Rule Head   
6.3              80.0  [NOM]+[H_VH_EH_SH_RVOL]+[H_VH_TURN] ==> [PROD_3]  
6.3                      66.6  [ACAP_H]+[DATA_N]    ==> [PROD_4] 
 
 The second rule can be interpreted as follows: When the programmers’ analysis capability 
is high and the database size is nominal then the productivity is likely to be in the fourth 
category (100<PROD<160). This pattern is presented in 6.3% of the dataset projects (4 
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projects) and 66.7% of the projects that present ACAP high and DATA nominal fall into the 
fourth category of productivity (4 out of 6 projects). 
 In order to compare the AR model with the models of the other methods, we created each 
time the rules out of 62 projects and tried to estimate the one left. In this case the confidence 
and the support of each rule were slightly different. For example if we selected to exclude the 
one project that has ACAP high and DATA nominal, but doesn’t belong to the fourth 
productivity category and also this project satisfies all the criteria of the first rule, then the 
priority of the two rules changes and the new “unknown” project is misclassified into the 
fourth category: 

 
      Support         Confidence                  Rule Body                                            Rule Head   
              6.4   80.0  [ACAP_H]+[DATA_N]    ==> [PROD_4] 
       4.8  75.0  [NOM]+[H_VH_EH_SH_RVOL]+[H_VH_TURN] ==> [PROD_3] 
 

Bayesian Belief Networks have been also applied on the COCOMO81 data set for the 
determination of the model structure as well as for the calculation of the conditional 
probabilities table. In the beginning, a heuristic search algorithm, namely K2 [18] was used 
to define the conditional independencies for the productivity model. 

The above algorithm suggested as parent nodes to productivity node, the programmers 
capacity and the software development mode, considering that if the values of these two 
attributes are known, productivity is independent of the other variables. Based on intuition, 
two other parent nodes were added, the application type of the project and the platform in 
which the project was developed. So the final BBN that was used for the cost estimation 
model was the one shown in fig.3. 

The calibration phase of the analogy based estimation led to the use of the following 
attributes in order to make an estimation: database size, programmer’s capability, 
requirements volatility and development mode. The Chebychev distance metric was used 
with one analogy. 

The Jackknifing accuracy of each of the previous methods is presented in table 2. We 
should point out that there are differences in the accuracy validation methods that were used.  

 

 
Figure 3:BBN for the COCOMO81 data set 

 
 In [11] FPRA is reported to have a PRED(20) of 49% and a MMRE of 36% Also 
CART(1) was found to have a PRED(20) of 29% and MMRE of 62%. The original 
COCOMO81 model is within 20 percent of the actual effort 68 percent of the time and in that 
case has a MMRE equal to 18.4%. It is hard to beat COCOMO in its database because it is an 
ad-hoc model and cannot be validated using JackKnifing and training and test datasets. 
 
    

Table 2: Comparison of the models used in the COCOMO81 dataset 
 CART(2) AR BBN ABE 

 PRED(25)% 49.2 63.4 44.8 23.8 
 MMRE% 105.7 29.5 59.9 49.8 
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4.2. Maxwell data set 

The techniques that are applied in this data set are CART, AR, BBN and ABE. The 
procedures that have been used for each of these techniques are the same as the ones 
described previously for COCOMO81. 

OLS results are taken from [16]: two models are described, taking into consideration 
projects with start date until 1991. The first model includes four variables that explain 79% of 
the variance in effort. These variables are: interface, ln(size), time and quality requirements. 
The second model points out ln(size), requirements volatility, and quality requirements as the 
variables that affect productivity. The results presented here refer to the second one, which is 
the most effective. CART, AR, BBN and ABE have been applied both to the entire data set 
and to projects until 1991.  

   CART suggested the structure presented in figure 4. 
 
 

 
                                              
                                                                        L                                                   VL,N,H,VH        
 

           
                                                                     TUI              

                                                                                                              GUI         
                            L                                            VL,N,H                                                                                        10 < fp ≤ 30 
                                                                                                                                                                             100 < fp ≤ 300    
 
                                                                               
                                                                                           fp ≤ 10, 30 < fp ≤ 100   
                                                                                                        fp > 300                      MULTI,NET                                PC,MFR,MINI   

 
 

 

Staff tool skills

Tool use 

43 < P ≤ 58 
projects=8 

Interface

FP

Platform 

120 < P ≤ 145 
projects=8 

85 < P ≤ 120 
projects=14 

170 < P ≤ 500 
projects=5 

58 < P ≤ 85 
projects=20 

0 < P ≤ 43 
projects=5 

 
Figure 4: CART for MAXWELL data set 

 

 
Figure 5: BBN for MAXWELL data set 

 
Association rules came up with 36 rules with support threshold 5.0% (3 rules) that are able 

to estimate all the projects in Maxwell data set. When applying Bayesian Belief Networks the 
same steps as in the case of COCOMO81 were taken and the suggested network has the 
structure of fig.5. 

Finally the analogy-based method suggested that the more suitable attributes to compare 
the new project with the historical one’s are language, requirements volatility, and size. The 
distance metric used is the Canberra distance and four analogies were chosen by the 
calibration phase. 
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The models described were extracted from the entire data set. The results of these methods 
by removing one data point at a time are presented, which are more representative. As 
mentioned above, in order to make the results comparable with OLS, additional models were 
extracted from projects with starting date 1991 and earlier and the estimations were made for 
projects with starting dates 1992,1993. The accuracy metrics of each model are presented in 
table 3. The “*” indicates the evaluation of models estimating projects with starting dates 
1992, 1993 , for the other metrics JackKnifing is considered. 

 
Table 3: Comparison of the models used in MAXWELL dataset 

 OLS* A.R* BBN* ABE* CART* A.R BBN ABE CART 
PRED(25) % 58 75 45.4 41.6 41.6 60 50 45 53.3 

MMRE % 32 23.5 45.4 56.6 119.1 42.5 54.3 42.6 46.9 
 
 
 

4.3. Software development Mode estimation. 
Our target here is to classify the projects in COCOMO81 database into the three groups 

defined by Boehm. The user of the COCOMO model has to classify a new project in the 
appropriate development mode in order to apply the correct COCOMO equation to estimate 
effort. Failing in this task would produce quite different estimates, since the equations are 
very sensitive to the coefficients that depend on the development mode. Our target is to 
propose an automated, systematic approach to the definition of a project’s mode. The 
methods that are applied are CA, DA, CART, AR and BBN.  

The results for the first two methods are taken from [23]. Apart from splitting the projects 
into categories of mode, according to some of their attributes, also confirm the existence of 
three software development modes. 
Clustering uses an algorithm based on Euclidean’s inter-object distance starting considering 
each object at each own cluster. According to the similarities between the different clusters, 
their number gradually diminishes, resulting in the final clusters. Complete linkage method 
was used, based on the maximum linkage between the projects. This method finally classifies 
correctly 34 of the 63 projects with 17 overlaps and 12 misclassifications.   
  

 
 
        L,H,VH                            EL,VL,N   
 
 
 
 
                  ≤ 60                                                 >60 
               

 

 
       Figure 6: BBN for MODE                                          

RELY

MODE=E 
Projects=26 

Adj.KDSI 

MODE=SD 
Projects=8 

MODE=ORG 
Projects=29 

                                                                             Figure 7: CART tree for MODE                                              
                                                                                                                                                       

 

Discriminant analysis on the other hand considers a subset of five attributes in order to 
classify a project into one of the three possible modes. The data base size is used, DATA, the 
time execution constraint TIME, the use of a virtual machine, VIRT, personnel continuity, 
CONT, and the use of modern programming practices, MODP.  
The structures proposed by CART method and the BBN are presented in figures 6,7. 

Eleven association rules were extracted with support threshold 7,9% (5 projects). 
The results are presented in table 4: 
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Table 4: Comparison of the models used in MODE estimation 

 CA DA CART AR BBN 
Hitrate 54 73.2 80.9 84.1 75.8 

 
5. Conclusions 

 In this paper, methods producing interval estimates have been identified. 
Subsequently, the accuracy of these methods has been compared to the accuracy of methods 
that produce point estimates, by applying them to two public datasets. It must be stressed that 
these results cannot be used to draw any general conclusions. However, some tentative 
conclusions may be produced, while sufficient experience from the use of novel techniques 
has been acquired, indicating certain advantages and drawbacks of each technique.  

 In COCOMO81 dataset the results show that association rules that produce interval 
estimates, is a competitive method to FPRA. BBN results are not impressive, but they might 
be better evaluated in more appropriate estimation conditions, involving larger data sets. On 
the other hand, CART demonstrate a poor performance. In general, classification techniques 
are based on combinations of independent variable values. Consequently, their performance 
suffers when applied on small, unbalanced datasets. CART, due to pruning, tend to reduce 
the number of eligible intervals, misclassifying the projects that should belong to pruned 
intervals. In the Maxwell dataset, association rules appear again one of the most accurate 
methods, along with OLS. There is also a slight improvement in the performance of BBN, 
since in this case probability combinations cover more projects. This can be explained from 
the homogeneity of the data set and the fact that the parents can take values from a smaller 
value range. However, while applying JackKnifing, in 12 cases a particular combination of 
the parents’ values was excluded from the training set, rendering the model incapable of 
making an estimation. CART still have a poor performance due to the exclusion of some 
intervals. 

 In the estimation of software development mode a comparison between the different 
machine learning methods can be obtained in a pure classification problem. Association 
Rules and CART have a very good performance classifying correctly the majority of the 
projects. DA and BBN also produce competitive results, unlike CA that misclassifies a great 
deal of the projects. 

 Actually, machine-learning techniques have been compared with model-based 
techniques. It can be said that a slight superiority of the machine learning techniques has been 
observed. FPRA and regression models are more reliable at identifying the relevant factors 
that affect the dependent variable, though their result is often difficult for humans to interpret. 
On the other hand, models from machine-learning techniques are easily interpreted, allow 
human interventions, and their results can be used to support expert judgment. However, 
CART did not produce accurate estimates, while BBN and association rules, although they 
find powerful and often used patterns that can be confirmed intuitively, suffer from the 
inability to provide always an estimation. This undesirable situation occurs when the 
attributes of the new “unknown “ projects have not been met in the training data set. In 
general BBNs can integrate partial knowledge and data concerning a project in the form of 
‘observed’ values of some nodes.  

Future research needs to focus on confirming and enriching the results of machine 
learning methods in larger muti-organizational datasets such as those coming from ISBSG. 
Of course their accuracy must be compared again to that of model-based techniques. In 
particular, association rules, seems promising and could be developed further more, as well 
as BBNs that should be evaluated and judged on more appropriate circumstances, where a 
large training set will be provided. The choice of estimate intervals is another issue, and 
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further experimentation is needed to understand the implications of the various available 
approaches. 
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