
Software Reuse and Evolution in JavaScript
Applications

Anastasia Terzi
Department of Electrical and Computer

Engineering
University of Western Macedonia

Kozani, Greece
a.terzi@uowm.gr

Orfeas Christou
Department of Electrical and Computer

Engineering
University of Western Macedonia

Kozani, Greece
ece01253@uowm.gr

Pantelis Angelidis
Department of Electrical and Computer

Engineering
University of Western Macedonia

Kozani, Greece
paggelidis@uowm.gr

 Stamatia Bibi
Department of Electrical and Computer

Engineering
University of Western Macedonia

Kozani, Greece
sbibi@uowm.gr

Abstract—JavaScript (JS) is one of the most popular
programming languages on GitHub. Most JavaScript
applications are reusing third-party components to acquire
various functionalities. Despite the benefits offered by software
reuse there are still challenges, during the evolution of
JavaScript applications, related to the management and
maintenance of the third-party dependencies. Our key
objective is to explore the evolution of library dependencies
constraints in the context of JavaScript applications in terms of
(a) the changeability (i.e., number of removed, added, or
maintained libraries) (b) the update frequency of the library
dependencies. For this purpose, we conducted a case study on
the 86 most forked JavaScript applications hosted on GitHub
and analyzed reuse data from a total of 2.363 successive
releases. In general, 39% of the packages introduced in the
first version of the project are being reused in the entire
project’s lifetime. The number of package dependencies
slightly grows over time, while several other are being
permanently removed. Regarding the evolution of third-party
applications, it is observed that developers do not update the
dependencies constraints to a most recent version, waiting to
reach probably “breaking points” when the updates will be
inevitable.

Keywords— software reuse, JavaScript, software evolution,
maintenance, changeability.

I. INTRODUCTION
Today, almost every computing device in the world,
including desktop and mobile devices, sensors, and smart
devices, have active JavaScript (JS) interpreters installed.
The reason of JS popularity involves the sole characteristics
of the language that provide interactivity by supporting the
run-time, on-demand response to the end-users needs. The
JavaScript developer community is a very active one and
maintains over 1M packages on the npm registry and more 1

than 645K repositories on GitHub , that are ready to be 2

reused and freely shared. JS developers nowadays have
access to a plethora of development frameworks and
libraries that are systematically maintained and can be
reused to boost productivity and accelerate the development
pace. A large number of reusable packages available makes
program creation and evolution easier but does not come
without challenges. Among these challenges is the need to
maintain and update the reused third-party packages [2], [3],

[16]. JS developers that reuse third-party libraries, often
have to answer the following questions during the lifecycle
of the applications:

• Are existing third-party library dependencies
sufficient to fulfil the application requirements at the
time? Often during the lifespan of an application, it is
observed that reused libraries do not cover anymore the
needs of the hosting applications. This may be caused
either by the new functionalities or technologies adopted
in the recent versions of the hosting application that are
no longer compatible with the reused libraries or by the
fact that the reused libraries are no longer maintained and
therefore related bugs, fixes, and updates are not
supported. In that case, developers are forced to replace
packages with other related ones that offer the required
functionality. This procedure is related to the
changeability of the reused packages.

• Should third-party library dependencies constraints
be updated to a more recent version? In this case, the
developer should decide whether it is necessary to update
a specific library constraint towards a newer version of
the same library. Such a decision is related to the features
added on the recent version, the compatibility compared
to the current version, its popularity, and the community
support [7]. A library dependency update in the hosting
application may be optional (i.e., the update is not
necessary for the hosting application to continue to
operate) or mandatory (i.e. the hosting application will
not be able to operate). In both cases, the process of
updating a third-party dependency may require a lot of
effort.

In this paper, our goal is to investigate (a) the changeability
of third-party library dependencies in JavaScript
applications. With the term changeability we refer to the
libraries that are added, removed, or maintained in the
hosting application during its evolution. We believe that
such information will help JS developers understand
whether the initial reuse choices were opportunistic [16]
(i.e., indicative of reuse choices that during the project’s
lifespan need to be reconsidered) and should further on
follow a more systematic approach to software reuse and (b)

 https://www.npmjs.com/1

 https://github.com/2

263

2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-6654-6152-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SEAA56994.2022.00048

20
22

 4
8t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

A
dv

an
ce

d
A

pp
lic

at
io

ns
 (S

EA
A

) |
 9

78
-1

-6
65

4-
61

52
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
A

A
56

99
4.

20
22

.0
00

48

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

the update frequency of third-party l ibrary
dependencies in JavaScript applications. Our goal is to
explore to which extent third-party library dependency
updates are performed in JavaScript applications. Such
information will help JS developers organise and schedule
future third-party library updates based on current evidence
and practice. Specifically, we performed an embedded
multiple case study on the 86 most forked JavaScript
applications hosted on GitHub and analysed reuse data from
2.363 successive releases.

The rest of the paper is organised as follows: Section II
discusses a summary of related research. Section III presents
the case study design while Section IV presents the results
organised by the research question, in Section V there is an
interpretation of the results along with the threats to the
validity of our study. In Section VI, we conclude the paper.

II. RELATED WORK
The evolutionary process for applications that facilitate
third-party reuse is quite different from applications built
completely from scratch since software developers need to
update both the part of the application implemented
internally and the dependencies to third-party libraries [7].
Currently, in literature, some studies examine third-party
library reuse evolution [4], [7], [14], [15], [19] from the
scope of packages hosted on npm. Zerouali et al. [20]
examined the update lag of library dependencies in package
networks, to assess how outdated a software package is
compared to the latest available releases of its dependencies.
The authors observed that developers in order to avoid
backward-incompatible changes are using strict dependency
constraints or the exact version number leading to technical
lag. In their research they pointed out that even though npm
packages are constantly updating the dependency
constraints on the same packages are not being updated,
increasing the likelihood of dependent packages suffering
from an increased technical lag. The researchers concluded
that developers are more likely to update dependencies in
major version project upgrades than in minor or micro-
updates while they suggested developers not start using
newly available packages immediately because of the
possible bugs.

In general, third-party dependencies are not updated on a
regular basis, while the reuse evolution depends on the
project evolution rate according to Kula et al. [8]. For
projects that present a high evolution rate (indicated by
frequent releases) third-party dependencies are added more
regularly, and the changes are of a lower scale, while for
projects that present a low evolution rate third-party library
dependencies evolve less frequently but with a greater
influence on the system [8]. The difference rate between a
package update and a project dependencies update causes
the technical lag problems that will increase over time, even
in the beginning of a project’s lifetime [5]. The problem
increases even more as developers prefer to even downgrade
library dependencies for the sake of project stability [8],
[20]. Stringer et al. [15] studied the update lag of third-party
dependencies and concluded that this lag is slightly
correlated with the amount of change introduced in a new
version of the reused library, in the sense that many changes
to the new library version tend to increase the update lag.
Also, this study highlights that the update of a library
depends on the importance of the library for the project [15].
This study experiments in JavaScript applications along
with Java and concludes that even though the majority of
dependencies are outdated the lag is identified in 1 or 2

versions before [15]. Despite the frequency of the project
update, studies have shown [8], [15], [19] that developers’
response to a library update opportunity is slow and lagging.
This finding is also confirmed by Zaimi et al. [19] that
concluded that once a library is imported into a Java system,
it is unlikely to be deleted or changed to a more recent
version [19]. The same research reveals that when library
deletions and updates occur, the most likely reason is a re-
assessment of a reuse decision in the previous version, i.e.,
the addition of multiple libraries that did not fit well into the
project, and not necessarily the upgrade of the system itself
[19]

According to Seo et al. [14] even well-thought
modifications such as the removal, addition, or upgrade of a
library may result in system problems and quality
degradation, which may lead to a system crash [14]. As a
response, developers are cautious, and changes to third-
party library dependencies are implemented slowly or not at
all. This method of handling third-party dependencies
causes the common build issue [14]. Cox et al. [4] suggested
that the selection of the most appropriate version of a
dependency can be a) context-specific; b) the most stable
version, c) a long-term support version, or d) the latest
version of the library dependency [4].

As part of our research, we are going to quantify the
evolution of dependencies in the context of applications
developed in JavaScript programming language, to further
explore previous findings.

III. CASE STUDY DESIGN
The goal of the research is to examine the evolution of third-
party library dependencies in the context of applications
developed in JavaScript programming language. For this
reason, we conducted a case study and analysed 20 versions
of 86 JavaScript projects hosted on GitHub. In this section,
we describe the case study, which was designed and
reported according to the guidelines proposed by Runeson
and Host [12]

A. Goal and Research Questions
The goal of this study, described with the help of the Goal-
Question-Metric formalism is: “to analyse third-party
library dependencies with respect to (a) the changeability of
the library dependencies and (b) the release updates of
library dependencies constraints on the point of view of
software engineers in the context of JavaScript application
development”. Therefore, we formulated the following
Research Questions (RQs):

[RQ1]: Is there a trend in the changes observed in the
library dependencies constraints of JavaScript
applications? In this question, we want to examine the
number of library dependencies that are added, removed, or
maintained in consecutive releases of the hosting application
during its evolution. Such information will help JS
developers understand whether initial reuse choices were
well-aimed (i.e., indicated by dependencies during the
project’s lifespan that remains stable) or whether these
choices were often reconsidered.

[RQ2]: Is there a trend in the update frequency of library
dependencies in JavaScript applications? Our goal here is
to explore the extent to which third-party library
dependency updates are performed in JavaScript
applications. Outdated library dependencies may involve
potential risks related to API incompatibility, security
threats, bug fixes etc. Therefore, the answer to this question

264

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

will help JS developers organise and schedule future third-
party library updates based on current evidence and practice.

B. Selection of cases
The case study of this paper is a multiple-case study [12],
the context is open-source JavaScript applications, and the
cases of analysis are the third-party library dependencies
observed in the projects. Overall, we gathered data from 86
JS applications hosted on GitHub and analysed 2.363
releases presenting 98.638 library dependencies.

The criteria that we have used for selecting projects are
discussed below:

• JavaScript should be the major scripting language in
which the projects are developed.

• Projects should have a lifespan of at least 2 years

• Projects should have at least 1k stars on GitHub

• Projects should present at least 20 releases to justify
evolution analysis (this information is provided by the
GitHub repositories)

The process we followed to retrieve reuse information from
JS applications hosted on GitHub is the following: Initially,
we browsed JavaScript projects and sorted the results by the
most to least forked. Forks are frequently used in open-
source software to test ideas or improvements before
submitting them back to the main repository and can be
used as a metric factor to indicate both the popularity and
the sustainability of a project [13]. After getting all the
results, we filtered out the ones that did not match the
aforementioned criteria. 100 projects have been initially
chosen, out of which 14 were excluded due to a lack of
publicly available dependency data. To clarify the
versioning factor, we should mention that we did not rely on
Semver since there is a large number of developers that do
not follow the suggested way of package, and project
versioning [18] and we did not want to exclude any
successive project’s version. For each project, the library
dependencies were recorded based on configuration files
(package.json and package-lock.json files). These files
support various mechanisms (e.g., inheritance, version
range, variable expansion, and dependencies trees) to
declare library dependencies. We developed a tool that
extracts a library dependency via parsing three fields: Id,
type of dependency and dependency constrain version for
each release. For each of the library dependency, we retrieve
from npm, data about the date of release and the total
number of these library versions. These data were used to
calculate the metrics presented in Table I to identify trends
related to the changes and the updates of the library
dependencies observed in JS applications. The same data
were used to calculate the trend in the evolutionary
behaviour of the project.

C. Data Analysis
In order to explore the research questions, we performed
descriptive statistical analysis and hypothesis testing. The
analysis plan is presented in Table II. To answer the RQs of
the study we followed a similar process where we
employed:

• descriptive statistics (i.e., min, max, median, and
standard deviation) to examine the related metrics, for
each JS application under study separately. Also, for
several of these metrics ([V12], [V13], [V14], [V15],
[V16], [V17]) we calculated the accumulative descriptive
statistics for all participating JS applications.

• box-plots to visualise the distribution of values of certain
metrics ([V3], [V4], [V5], [V6], [V7], [V8]) for all
participating applications. Also, we adopted line charts to
visualise the evolution of the number of library
dependencies ([V3]), across all project’s version, for
every application separately.

I. DEPENDENCY METRICS

• the Man-Kendall trend test for hypothesis testing. The
Man- Kendall trend test [10] involves the following
hypotheses:

H0: There is no trend supported by the software
data analysed, so the RQ cannot either be
confirmed or contradicted.

Alias Metric

Number of library dependencies that exist in a project version

Number of removed library dependencies on each project version

Number of added library dependencies on each project version

Number of removed library dependencies that are re-added on
next versions

Total number of dependency changes in each project version

Number of updated library dependencies that exist in every
project version

Number of outdated library dependencies that exist in every
project version

Number of library dependencies that exist in every project
version

Total number of library dependencies observed in the project

Total number of removed library dependencies

Total number of added library dependencies

Percentage of outdated library dependencies
[V7]
[V8]

100 %

[V8]
[V9]

100 % Percentage of library dependencies that exist

in all project versions

[V10]
[V7]

100 % Percentage of removed dependencies during

project’s lifetime

[V3]

[V12]

[V1]

[V14]

[V9]

[V4]
[V10]

100 % Percentage of non permanent library

 dependencies removal

[V3]
[V11]

100 % Percentage of added dependencies during project’s lifetime

[V10]

[V4]

[V5]

[V7]

[V8]

Percentage of updated library dependencies
[V6]
[V8]

100 %

[V6]

[V13]

[V15]

[V17]

[V2]

[V11]

[V16]

265

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

H1: There is a negative, non- null, or positive trend
regarding the RQ.

In this case we formed pairs that include the initial version
and the latest version of the application under study, where
we explored whether there is a trend in the evolution of the
library dependencies. For RQ1 we examined whether
variables [V2], [V3], and [V4] present a particular trend
(increasing, decreasing or remain stable through each
project’s lifecycle). For RQ2 we examined [V6], [V7],
[V16] and [V17] variables.

II. DEPENDENCY METRICS

IV. RESULTS
In this Section we present the results of this case study,
organised by research question.

[RQ1]: Is there a trend in the changes observed in the
library dependencies of JavaScript applications?

III. DESCRIPTIVE STATISTICS-RQ1

In this question we examine whether the number of library
dependencies that are added, removed or maintained in
consecutive releases of the hosting JavaScript applications
present a particular trend. To answer RQ1 we:

• Extracted the dependencies on every project version of
the JS applications under study based on the information
of package.json and package-lock.json files. Then we
calculated the number of dependencies that exist in every
project version [V8] and the total number of dependencies
[V9] used accumulatively by each project.

• Analysed the dependencies on each version of the project
to determine which were imported [V3] and which were
removed [V2] in subsequent versions.

• Produced a list of dependent libraries that remained
consistent throughout all versions [V12].

• Calculated the values of percentage variables [V14] and
[V15].

Table III presents the descriptive statistics of percentage
variables ([V12], [V13], [V14], [V15]) for all projects while

in Table IV we present the values of variables [V4], [V8],
[V9] and [V10] for every project. Figure 1 visualises with
the help of box-plots the number of dependencies that are
(a) added [V10], (b) removed [V11], and (c) maintained on
project level [V8]. As shown in Table IV less than 50% of
the total amount of third-party dependencies are maintained
in all project versions. As shown on Figure 1 projects
present the same evolution trend. Although there are
projects (i.e., browserify) where we observe sudden
increases/ decreases in the number of the dependencies (see
[V11], Table VI) that can be interpreted as wrong reuse
choices that are subsequently corrected. The number of
third-party dependencies presents overall small increases
and decreases through the evolution of projects as shown in
Figure 2.

IV. RESULTS OF ALL METRICS ON ALL PROJECTS

We run Man-Kendall for variables: (a) [V1] (number of
library dependencies in project version) we found that there
is an increasing trend in the number of library dependencies
through time, since 65 out of 86 projects presented
significant p-value for sign.value<0.01. (b) [V2] (number of
removed library dependencies in a project version) we did
not find any significant trend and therefore the null
hypothesis cannot be rejected and for (c) variable [V3]
(number of added library dependencies in project version)
where the null hypothesis cannot be rejected.

Research
Question

Metrics Analysis

[RQ1] Descriptive Statistics
Mann-Kendall Analysis
Box-plots
Line chart

[RQ2] Descriptive Statistics
Mann-Kendall Analysis
Box-plots

[V12], [V13], [V14], [V15]

[V1], [V2], [V3]

[V8], [V10], [V11]

[V3]

[V16], [V17]

[V6], [V7]

[V6], [V7]

Variable N Minimum Maximum Median Std.Deviation

86 0% 100% 36.29% 35.0%

86 0% 97,01% 6,78% 19,81%

86 0% 668% 42% 75%

86 0% 700% 27% 77%

[V12]

[V13]

[V14]

[V15]

266

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

[RQ2]: Is there a trend in the update frequency of library
dependencies in JavaScript applications?

Our goal here is to explore the extent to which third-party
library dependency updates are performed in JavaScript
applications. For this purpose, we examine the number of
different versions of a library that are used during the course
of the project.

V. DESCRIPTIVE STATISTICS-RQ2

For the RQ2 we followed the procedure detailed above:

• For the library dependencies that are maintained in all
versions of the project (as a number indicated in [V8],
calculated on RQ1) we recorded whether updates were
performed on the dependency constraints in each project
version. In the end, we classified the library dependencies

into two groups based on whether their constraints were
updated or not and derived the following metrics:

 [V6] represents the library dependencies that have been
upgraded at least once in the project’s lifetime and,

 [V7] represents the library dependencies that have not been
upgraded.

• Next, we calculated the values of percentage variables
[V16] and [V17].

In Table IV we present the values of variables [V16] and
[V17 for every project while Table V presents the
descriptive statistics of percentage variables ([V16], [V17].)
for all projects. Figure 3 visualises with the help of box-
plots the number of library dependencies that are (a)
outdated ([V7]) and (b) updated ([V6]) at the project level.
As we can see in Table V on average a JavaScript
application updates reach 39% of the libraries, while 46 %
of the libraries remain outdated, the rest of 15% are the
libraries that are libraries that do not employ a specific
version (i.e., in the package.json file this is indicated by a
*). From the box-plots of Figure 3, we see that most projects
present the same update frequencies while several projects
performregular updates (i.e., webpack, grunt, browserify,
eslint.js) and projects that do perform very scarcely updates
(i.e., bootstrap, express).

For the RQ we run Man-Kendall for variables: (a) [V7]
(number of outdated library dependencies) were we found
that there is an increasing trend in the number of library
dependencies that are outdated through time since 72 out of

Variabl
e

N Minimu
m

Maximum Median Std.Deviation

86 0% 100% 39% 41.99%

86 0% 100% 46% 43.17%

[V16]

[V17]

Fig. 1. Box-plots Changeability

Fig. 3. Box-plots Update of library dependencies

Fig. 2. Changes on the amount of dependencies on each project version

267

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

86 projects presented significant p-value <0.01. (b) [V6]
(number of library dependencies that are updated where we
did not find any significant trend and therefore the null
hypothesis cannot be rejected.

V. DISCUSSION
In this section, we first interpret the results of the research
questions and then we discuss the threats to validity of the
research.

A. Interpretation of Results
This study examined the evolution of third-party library
dependencies in the context of JavaScript application
development. Most of the results are in accordance with
existing literature, while there are some results that are
surprising. We observed that:

The number of library dependencies remain relatively stable
presenting a small increase during the evolution of JS
applications. It seems that overall JS developers reuse a pre-
defined number of libraries that implement specific
functionality. New libraries may be added during the
project’s evolution, but this increase remains stable as we
did not observe sudden peaks in the reuse intensity. This
finding agrees with Zerouali et al. [20] who concluded that
on package level the number of dependencies, rarely
changed. They point out that dependencies are added or
removed mostly in major releases, but they did not
determine if there is a change at the total number of
dependencies. Our result shows that developers overall
preserve the organizational stability of the applications in
terms of third-party dependencies keeping under control the
maintenance effort required to manage the dependencies.
Zaimi et al. [19] also argue that reuse intensity presents an
increase over time. The result implies that even though
developers tend to use more and more third-party packages
in their projects there is a concern of increasingly adding
features during project’s lifetime.

The majority of reuse decisions are often revisited:
Despite the fact that overall, the number of dependencies in
JS applications remain stable, it seems that within
successive versions there are changes (both additions and
removals) in third-party dependencies. Usually, library
removals occur simultaneously with library additions, a fact
that implies a library substitution and not a removal of
functionality. This finding is in contrast with Zaimi et. al
[19] who argue that reuse decisions are not revisited in Java
applicatios, while Zerouali et al. [20] showed that on
package level dependencies are revisited at least on major
updates of the package. In our case this finding can be
explained by the fact that we chose to examine highly
forked projects which means that third-party developers
suggest changes to improve the initial project. Those
changes are put under test in the main repository and
sometimes are being removed on the next versions. Beside
that JS developers in general seem to be more informed and
experienced when reusing third-party dependencies in the
sense that for several reused functionalities they are willing
to test through the application’s lifecycle several different
emerging choices.

The library dependencies that remain during the
evolution of the project are limited: Overall, just 39% of
the initial dependencies remain unaltered in the applications
until the latest versions. By carefully examining the libraries
that remained stable we reached the conclusion that these
are the libraries that are involved in the structural
development of the application (i.e., programming or testing

frameworks, compilers) and therefore are more difficult to
replace compared to those that have not an important role in
the application core (i.e., chart libraries, graphics).

Library version update is sparse: In this finding we reach
an agreement with prior studies [6], [8], [19], [20] as we
have verified that JS developers’ response to library update
opportunities are slow and lagging causing huge technical
lag. This is a sign that JS developers hesitate to
systematically update third-party dependencies probably due
to the effort required, and the risk of introducing instability
to the hosting application.

B. Threats to Validity
This section presents Runeson and Höst’s [12] four key
forms of threats to validity for quantitative research in
software engineering: construct, internal, external, and
reliability validity. Construct validity refers to how well an
experiment performs in relation to its claims. In this study
construct validity is subject to the selection of the metrics
adopted to monitor the evolution of third-party libraries in
JavaScript applications, that may not precisely reflect the
phenomenon under study. To mitigate this threat, we
selected metrics for quantifying the library dependencies
evolution trend that (a) are already employed by related
literature [8], [17], [19] (b) can be directly available from
publicly available dependency managers (c) are calculated
automatically with the help of tools, excluding
vulnerabilities introduced by manual, subjective
calculations. Internal validity, in this case is not applicable
since the examination of causal relationships is out of the
scope of the study.

Regarding External validity, that refers to the extent to
which the results of a study are generalisable (i.e., represent
the entire population) we identified two threats. The study
findings are limited to third-party library dependencies in
JavaScript applications and therefore cannot be generalised
in applications developed in other Programming languages.
Additionally, we used a rather limited sample of 86 JS
applications, therefore we encourage the replication of the
study in applications developed in different languages and in
more samples. In order to increase the Reliability of the
study, that reflects the reproducibility of a study, i.e. defined
as the capacity of other researchers to duplicate the same
process and reach the same conclusions we applied two
mitigation actions: (a) we recorded the case study design
protocol in detail and (b) we uploaded the relevant tools that
were used to obtain the data, along with the collected data in
a GitHub repository.

VI. CONCLUSIONS
The goal of this work was to investigate the evolution of
library dependencies in the context of JavaScript
applications in terms of (a) the changeability of library
dependencies (i.e., the number of removed, added, or
maintained libraries) and (b) the updates performed in the
versions of the library dependencies. For this purpose, we
performed a case study on the 86 most forked JavaScript
applications hosted on GitHub for this purpose, and we
examined reuse data from 2.363 subsequent releases.

The findings concerning the changeability of third-party
library dependencies, demonstrate that in JS applications
new library dependencies are frequently added and several
libraries are simultaneously removed, while the total
number of dependencies presents a slight increase over time.
Also, we observed that 39% of the total number of library
dependencies are maintained in all studied project versions

268

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

without a change in the version constraints. These libraries
usually represent the frameworks on which the core
functionality of the hosting application is built. In most of
the cases developers prefer to keep the library dependencies
in outdated versions, probably in an attempt to lower the
risk of incompatibilities that a new version may cause. As a
future work we intend to work on methods that will support
the developers in the process of updating dependencies in
more recent versions. Specifically, we plan to work on
methods for tracking the changes caused by the updates and
the level to which third-party library interdependencies are
affected.

ACKNOWLEDGMENT
This research was co-funded by the European Union

and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship, and
Innovation, grant number T1EDK-04873.

REFERENCES
1. H. Borges, A. Hora, and M. T. Valente, “Understanding the Factors

That Impact the Popularity of GitHub Repositories,” in 2016 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), Oct. 2016, pp. 334–344.

2. E. Constantinou and I. Stamelos, “Architectural stability and
evolution measurement for software reuse,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing, Apr. 2015, pp.
1580–1585.

3. E. Constantinou and I. Stamelos, “Identifying evolution patterns: a
metrics-based approach for external library reuse,” Software: Practice
and Experience, vol. 47, no. 7, pp. 1027–1039, Mar. 2017.

4. J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring
Dependency Freshness in Software Systems”, IEEE International
Conference on Software Engineering, May 2015, pp. 109–118.

5. A. Decan, T. Mens, and E. Constantinou, “On the Evolution of
Technical Lag in the npm Package Dependency Network,” in 2018
IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2018, pp. 404–414.

6. A. Javan Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N.
Tsantalis, “Dependency Smells in JavaScript Projects,” in IEEE
Transactions on Software Engineering, 2021, pp. 1–1.

7. K. Kaur, “Analyzing Growth Trends of Reusable Software
Components,” in Designing, Engineering, and Analyzing Reliable
and Efficient Software, 2013, pp. 40–54

8. R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?,” in Empirical Software
Engineering, May 2017, vol. 23, no. 1, pp. 384–417.

9. W. C. Lim, “Effects of reuse on quality, productivity, and economics,”
IEEE Software, vol. 11, no. 5, pp. 23–30, Sep. 1994.

10. H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica,
vol. 13, no. 3, p. 245, Jul. 1945.

11. P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An
empirical study of software reuse vs. defect-density and stability26th
International Conference on Software Engineering, pp. 282–291

12. Per Runeson, HöstM., Austen Rainer, and Björn Regnell, Case Study
Research in Software Engineering Guidelines and Examples.
Hoboken, Nj, Usa John Wiley & Sons, Inc, 2012.

13. G. Robles and J. M. González-Barahona, “A Comprehensive Study of
Software Forks: Dates, Reasons and Outcomes,” in IFIP Advances in
Information and Communication Technology, 2012, pp. 1–14.

14. H. Seo et al., “Programmers’ build errors: a case study (at google),” in
Proceedings of the 36th International Conference on Software
Engineering, May 2014, pp. 724–734.

15. J. Stringer, A. Tahir, K. Blincoe, and J. Dietrich, “Technical Lag of
Dependencies in Major Package Managers,” in 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), Dec. 2020, pp.
228–237.

16. A. Taivalsaari, T. Mikkonen, and N. Makitalo, “Programming the Tip
of the Iceberg: Software Reuse in the 21st Century,” in 45th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Aug. 2019, pp. 108–112.

17. A. Terzi, S. Bibi, and P. Sarigiannidis, “Reuse Opportunities in
JavaScript applications,” 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2021, pp. 387–391.

18. E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of
the JavaScript package ecosystem,” 13th International Workshop on
Mining Software Repositories - MSR ’16, 2016, pp. 351–361.

19. A. Zaimi et al., “An Empirical Study on the Reuse of Third-Party
Libraries in Open-Source Software Development,” 7th Balkan
Conference on Informatics Conference, Sep. 2015, pp. 1–8.

20. A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-
Barahona, “An Empirical Analysis of Technical Lag in npm Package
Dependencies,” in New Opportunities for Software Reuse, 2018, pp.
95–110. doi: 10.1007/978-3-319-90421-4_6.

269

Authorized licensed use limited to: University of Western Macedonia. Downloaded on April 22,2023 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

