
Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 1

Building fault prediction models from abstract cognitive
complexity metrics - analyzing and interpreting fault related

influences

Roland Neumann1, Stamatia Bibi2
1Hasso-Plattner-Institute for Software Systems Engineering GmbH at the University

Potsdam,
2Aristotle University of Thessaloniki, Greece

neumann@hpi.uni-potsdam.de1, sbibi@csd.auth.gr2

Abstract:

Finding software defects as early as possible is a critical task that saves values.
Fault prediction models identify faults by spotting error prone components,
exploring design guidelines and thus directing test effort. These models gain
knowledge from past mistakes to prevent future ones. This paper describes,
applies, evaluates and compares modelling techniques of fault related code
structures based on abstract complexity metrics. These complexity metrics are
calculated from base metrics for all complexity aspects assuring statistical
independence. Modelling techniques applied are MARS, Classification And
Regression Trees, Association Rules and Bayesian Belief Networks. Their ability
to interpret fault reasons and predict future possible faults is compared in this
paper.

Keywords

Software metrics, fault prediction, complexity, MARS, CART, Bayesian Networks

1 Introducing complexity aspects

Embedded software is substituting specialized hardware in terms of
functionality in technical systems. Even in safety critical environment, this
process is increasing due to a better flexibility, the rising need for more
functionality and cost effectiveness. Nowadays real time software is embedded
in mission critical systems, like in avionics with the replacement of mechanical
flap transmission due to the size and weight increase. Starting with a hydraulic
power system we have now flight control systems giving direction based on
sensor information. Many advantages are indicated by this change, although
new quality assurance techniques had to be found where the old ones are not
sufficient anymore. Quality aspects like failure causes and models have been
improved for years, but the new systems brought additional failures with
different causes. These failures are based on functionality which is controlled
from software algorithms. These source code defects have to be found.

Neumann Roland, Bibi Stamatia

2 Software Measurement Conference

 Source code defects in dependable systems induce a high risk of human or
property damage in case of a failure. A failure with its source related to the
software part of the system is caused by a program error or fault [4]. First a
distinction between faults and failures is necessary. Failures in software are
deviations of the delivered service from specific conditions [3]. Faults are code
properties deviating from intended component behaviour. While faults can
emerge from different possible reasons like disturbed concentration, the
cognitive complexity is a main one. The cognitive complexity describes the
difficulty to understand a source code part with all its relating communications.
This study bases on structure for analysing cognitive complexity of object
oriented software [5] to define metrics.

In the rest of this paper a possibility to independently measure complexity
aspects is presented, followed by a short description of the modelling
techniques used. After that, the prospects of the models for inspecting fault
influences are presented on a praxis example. Finally, the modelling and
prediction quality is compared and the paper is concluded.

2 Measuring complexity

A fault may be induced in the architecture or implementation step by a human.
Reasons for this insertion include a lack of understanding of the complex
structure leading to an overlooked important interaction effect. These faults can
be found investigating the complexity of the architecture or the complexity of
code. Analysing complexity needs decomposition into different aspects. To
weight these aspects they first have to become measurable.

To quantify structural properties the usage of software metrics is necessary.
Software metrics assign numbers to specific code properties according to a
counting rule. There are prerequisites for using software metrics for predicting
faults coming from measurement theory like scale types [6]. An introduction in
software measurement and software metrics with their interpretation can be
found in [7] or [8]. Though, there is a problem with interrelation when modeling
fault influences from these metrics [13]. These interrelations can be removed
using the principal components analysis technique. This leads to abstract
metrics describing complexity aspects independently in this data set. The basic
metrics have to comply to the ratio scale [6]. The meaning of these complexity
aspect metrics is then interpreted using their factor loading values and
Eigenvalues [5].

With these independent and abstract complexity metrics, their fault relations can
be modelled. These models gain knowledge from empirical data of software
systems to prevent errors. This is one important goal in software engineering
making a quality assessment of large systems easier. Especially, these large
systems improve the empirical model quality with their large data sets.

Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 3

3 Empirical data basis

For the empirical validation of the various modelling techniques, a basis data
set with known number of faults has to be selected. The data set comes from a
component of a large railway operation interlocking system in C++. Its
properties are measured using a set of 11 metrics. These metrics are then
transformed to independent complexity aspects. The number of aspects used is
restricted to five since they describe a sufficient amount of data (86%) though
being few enough to give good examples. The aspect's meaning can be
interpreted according to [5] as:
KE1: Abstract size measuring count of Methods, foreign attributes, lines and nesting depth

KE2: Inherited functionality measuring inheritance depth, inherited methods and parents

KE3: Further inheritance measuring inheritance to and direct children

KE4: Unused attributes measuring ancestor type attributes and foreign type attributes
minus attribute usage count

KE5: Data Storage measuring ancestor typed attributes and hidden attributes access

4 Modeling fault proneness

For building regression models, the right modelling technique has to be
selected. Linear models tend to only fit locally while nonlinear models require
preliminary knowledge of interconnections. Neural nets (NN) [17] said to fit
various relations are hard to interpret. To overcome these problems, a piecewise
linear regression technique (MARS) with interpretable results and performing
equal to NN is suggested in [17]. Its usage and prospects are presented and
compared with concurrent techniques in the following.

MARS (Multivariate Adaptive Regression Splines) is a data mining technique
fitting piecewise linear functions to the input data. The parameters of these
linear functions (the knots) are placed with a tree based partitioning algorithm.
For maximum robustness, less important knots are removed. When applying the
technique to interrelated metrics, multidimensional output functions are
generated. With independent input variables, the modelling technique still
generates dependent output functions for a better fit. Though this may produce a
smaller modelling error, it decreases the prediction quality and has to prevented.

Association Rules (AR), Classification And Regression Trees (CART), and
Bayesian Belief Networks (BBN) provide probabilistic models of fault
prediction based on historical data. Association rules [16] describe the
underlying data relationships with a set of rules that jointly define the target
variables. This technique finds frequent attribute combinations. An association
rule is a simple probabilistic statement about the co-occurrence of certain data
ranges at target values.

Neumann Roland, Bibi Stamatia

4 Software Measurement Conference

CART is a widely used statistical procedure in predictive modelling for
producing classification and regression models with a tree-based structure [16].
The CART model consists of an hierarchy of univariate binary decisions. The
algorithm used operates by choosing the best variable for splitting data into two
groups at the root node. This splitting procedure is then repeated to the data in
each of the child nodes recursively, for class labels being as homogeneous as
possible.

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), being causal
networks that consist of a set of nodes and a set of directed noncyclical links
between them [16]. Each node represents a random variable that can take finite,
mutually exclusive values according to a probability distribution. Each link
expresses probabilistic cause-effect relations among the linked variables and is
depicted by an arc starting from the influencing variable and terminating on the
influenced variable. The strength of the dependencies is measured with the help
of conditional probabilities.

Due to the discrete nature of these methods complexity aspects have to be
separated into categories. One problem is the choice of the interval number of
and width. Initially the interval number was selected from the number of
records n according to Sturge’s rule [19])log(3.31 nk += .

The interval width was chosen for equal class number in each interval. While
applying the methods the great number of complexity aspect intervals in some
cases prevented the extraction of useful models. In these cases neighbour
categories were merged.

From these models, tentative conclusions can be drawn regarding the origins of
faults by analyzing if the model indicates the dependency of fault number on
certain complexity metrics. The models accuracy and robustness is then
assessed and compared while sufficient experience from the use of these
techniques has been acquired, indicating certain advantages and drawbacks of
the methods.

5 Interpreting the models

To interpret the models, first the meaning of the input variables has to be
known. These are a prerequisite to draw conclusions from the established
models. For our data set, the complexity aspects are introduced previously. The
fault prediction models consist of their base functions defining the relations
between the complexity aspects and previous faults in this specific software.
The MARS model, generated from the modelling data set, consists of the
following base functions (Fig. 1):

Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 5

- 0 , 4

0 , 1

0 , 6

1, 1

- 4 , 0 - 3 , 0 - 2 , 0 - 1, 0 0 , 0 1, 0 2 , 0 3 , 0 4 , 0

KE1

KE2

KE3

KE4

KE5

Figure 1: MARS fault influences from complexity aspects

The influence of the complexity aspects to the fault number can be drawn from
these equations. For example, the complexity aspect KE1 accounts for a linear
increasing fault number greater than a value of -1.7. Since this aspect is related
to size, it depicts a fault influence from medium classes increasing with the
class size, small to medium sized classes generate no faults. With this model,
the complexity aspects of each class can be assessed to spot possible fault
influences.

The next modelling techniques do a different, probabilistic approach. Since
most classes contain no faults the fault probability of every training data set will
be not high though indicating possible problems. Usage of the Association
Rules (AR) technique extracts a set of rules from the data set. For this set, some
rules with sufficient support could only be generated for concatenated fault
classes (1 – 4 faults). The AR technique involves the following steps with its
rule set is shown in Table 1:
1. Discretization of the target variable into four possible fault values

2. Creation of the prediction model

3. Transformation of fault category number into a continuous number when needed taking
the centre of gravity of the class (the median of the class).

Table 1: AR rule set

The first column of the rule set represents support values and the second
column represents confidence value.

Support Confidence Rule

1.1 100.0 -0.191<KE3= -0.008 & KE4 = -0.408 & KE5 >-0.309 faults _2_3_4

53.9 87.2 KE4 > -0.155 faults_0

5.3 80.0 -0.914<KE3= -0.754 & KE4 = -0.155 faults_1

11.1 70.0 KE4 = -0.155 & KE1> - 0.53 & KE2 > -1.104 faults_1_2_3_4

5.5 63.6 -0.408<KE4= -0.155 & KE3= -0.614 & KE1 > -0.53 faults_1

7.1 52.9 -0.191<KE3= 0.785 & KE4 = -0.155 & KE2>-1.104 faults_1_2_3_4

Neumann Roland, Bibi Stamatia

6 Software Measurement Conference

For example the fourth rule can be interpreted as following: If the fourth
complexity aspect value falls between the first four classes and the values of the
first and the second complexity aspects fall into the last 6 classes then there is
70% probability of the class being faulty with one fault most probable. This
rules was generated from 11.1% of the modelling data set (42 classes of the
modelling data set follow that rule). This rule set shows the usual drawback of
association rules which is its inability to provide estimates for all possible cases.
In the current data set, only two classes could not be estimated. In that case the
answer is provided by the distribution of the projects given their fault values
which points out that the most possible situation is that no faults will be found.
Therefore the classes that could not be directly estimated by the model were
considered having no faults.

 The next applied method was CART with its results shown in Figure 2. The
circular nodes represent the splitting nodes and the rectangular nodes represent
the leaf nodes that provide the estimation. Each leaf node is accompanied by a
probability that is indicative of the validity of the estimation.

Figure 2: CART estimation
model

Figure 3: BBN estimation
model

For example the node that gives an estimation of 0 faults and is accompanied by
the probability 81% can be interpreted as following: If the value KE2 is not less
than -1.207 and not between 0.532 and 1.244 and the value of KE4 is between
-0.416 and -0.362 or between -0.049 and 0.651 there is 81% possibility that no
faults will be found in a class. The model provides fault estimation for all
possible classes even for those whose attributes have not been met in the
modeling data set. CART results are limited since classes having 2 to 4 faults do
not appear at all at the estimation tree.

Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 7

This means that in the predictive data set all classes with 2, 3 or 4 faults are
considered to have either 0 or 1 fault. All the complexity aspects are included
in the model apart from KE3. CART method tries to split the classes into sets as
homogeneous as possible according to their fault. Not enough data points were
provided to create sets of classes with 2 to 4 errors in preventing rules for these
fault numbers.

At construction of BBN, initially ten classes were considered for the values of
each complexity aspect. With application of the k2 tool [19] no dependency
between the complexity aspects and the fault number was found rendering the
model inappropriate for fault estimation. The next step was to merge neighbor
classes of the complexity aspects. In that case the BBN structure was better as it
involved the fault number as well (Fig. 3). There the fault number depends only
in the value of the fourth complexity aspect. Table 2 depicts the node
probability table of fault node.

Faults/ KE4 = -0.408 = -0.155 = -0.008 = 0.23 > 0.23

0 0.385 0.519 0.902 0.8 0.797

1 0.385 0.364 0.062 0.141 0.131

2 0.141 0.091 0.012 0.035 0.024

3 0.076 0.013 0.012 0.012 0.024

4 0.013 0.013 0.012 0.012 0.024

Table 2: Node Probability Table for fault node

As an interpretation example, when -0.155< KE4 = -0.08, there is 0.902
probability that no faults will be found in the predicted class, 0.062 probability
that one fault will be found in the class, 0.012 that two faults will be found in
the class and so on. For KE4 being in the [-0.155; -0.08] range the BBN
estimates no faults. In the second column where KE4 = -0.408 the possibility of
finding no faults in a class is the same with the possibility of finding one fault
in the class. Since we aim at the fault proneness, we assume that there is 0.616
(0.385+0.141+0.076+0.013) possibility that the class will present 1 to 4 faults.
This outweighs the possibility of finding no faults. As the no fault probability is
quite high due to many fault free classes, only KE4 values less than -0.408
provide strong probabilities for faultiness.

In general all methods indicate the fourth complexity aspect as the main fault
related factor. The unused attributes aspect seems important for this data set and
its values should be kept greater than -0.155 to avoid faults. Another complexity
aspect whose value affects the fault existence is KE3 that measures the further
inheritance and direct children of a class.

Neumann Roland, Bibi Stamatia

8 Software Measurement Conference

6 Evaluating the models

A comparison of model quality is possible through different methods. First the
quality assessment has to be divided into modeling and prognosis part.
Modeling describes how good the model fits the values of the training data set.
The prognosis quality residuum RES, representing the difference between the
real and the prognosted fault value, can only be assessed with an evaluation data
set with known faults. Usually this is conducted with separation of the raw data
into an training and an evaluation part.

Evaluation methods generate a single value for the modeling and the prognosis
quality. These values can be compared and interpreted. A standard though not
uncritizised [18] method is MMRE (Mean Magnitude of Relative Error). In
fault prognosis, the calculation of relative errors leads to a division by zero
problem for error-free classes. Besides, the aim in fault prognosis is to prevent
faults in classes leading to an zero aim value. This decreases the importance of a
relative view on differences. The modeling difference at a class with many
faults is as important as at a fault free class. The basis of all evaluation methods
is the residuum RES, the unsigned difference between real and modeled /
prognosted value. This can also be squared to amplify high single values. The
sum of these unsigned and squared differences can also be weighted with the
number of data points to generate an average difference-per-point value.

An important method assessing discrete data is the hit rate describing the
number of correct model values to total number of values. For the machine
learning methods, hitrate1 is also presented which shows the ability of the
methods to predict correctly the possible faults that may appear. Hitrate1 is used
for estimation assessment of a fault interval (e.g. 2-4 faults). At calculation of
hitrate1 the model is considered successful if the predicted class presents either
2, 3 or 4 faults. The modeling results for the training data set are shown in Table
3. The modeling accuracy of AR and BBN could not provided due to the lack of
an automated method for providing such data. Future work involves the
resolution of this problem.

Methods Hitrate |RES| (RES)^2 Rel. |RES| Rel.(RES)^2

MARS 77.4 % 107,7 72,0 0,347 0,232

CART 82.9 % 76,0 138,0 0,245 0,445

Table 3: Modelling evaluation criteria

Though seemingly fitting better, the CART technique only generates discrete
values for faults. This leads to a bigger difference for some data points
generating higher squared deviances. MARS values tend to be not as good as
CART for most data row but having not as extreme outliers.

Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 9

For our prognosis study, we separated 30 classes from the raw data selected to
represent the whole. These prognosis results are shown in Table 4, their values
are compared in Figure 4.

Methods Hitrate Hitrate1 |RES| (RES)^2 Rel. |RES| Rel.(RES)^2

MARS 46,7 % 23,3 29,2 0,775 0,972

CART 40,0 % 40% 29,0 53,0 0,967 1,767

AR 70,0 % 83.3% 13,0 21,0 0,433 0,700

BBN 40,0 % 66.7% 25,0 41,0 0,833 1,367

Table 4: Prognosis evaluation criteria

Faul t M odel s

0

1

2

3

4

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

ErrorsReal
MARS-Estimate
CART-Estimate
AR-Estimate
BBN-Estimate

Figure 4: Prognosis comparison

The prognosis assessment shows the same effects as the modeling assessment.
The values for the squared residuals are higher for CART, AR and BBN though
seemingly fitting better due to discretisation. No model could fit extreme
outliers since the few data rows. The MARS technique was also applied for 100
separated data rows showing comparable results to the other techniques.

AR performed well for prognosis data as they are able to correctly estimate the
fault number of 70% of the classes. Only one rule is included which actually
estimates the majority of fault free classes correctly. Since most (67,7%) classes
in the data set have no faults, a class is considered to have no faults if it cannot
be estimated by the rule set. The other five rules provide either a particular fault
number or a possible range of faults that may appear in a class. In the last case,
when a particular fault number is needed the median of the fault category is
used as explained previously. When AR method is evaluated according to its
ability to predict a range of possible fault values its performance even greater
estimating 83.3% of fault classes correctly .

CART has a poor estimation accuracy due to their inability to estimate classes
with 2, 3 or 4 faults or even a range of fault values involving these fault
numbers. Although it is able to estimate the majority of classes with no faults
correctly and have a high estimation accuracy on the modelling data.

Neumann Roland, Bibi Stamatia

10 Software Measurement Conference

BBN has a low estimation accuracy when a particular fault number has to be
predicted, though their estimation accuracy is improved for prediction of
possible faults. Its estimation accuracy then can be explained with the only
usage of the fourth complexity aspect.

7 Conclusions

This paper presents current concepts for building fault prediction models and
evaluates their suitability. As these models use independent complexity metrics
as input variables, the model functions can be interpreted. With these models,
fault reasons can be traced back to complexity structures in classes. This gains
reusable knowledge from past errors.

In conclusion, MARS, AR, CART, BBN are all data mining methods that offer a
convenient way to solve problems that are not explained purely logically but
rather probabilistically. Software fault estimation is one of these problems: we
are not sure of the factors that affect the existence of faults directly and we
expect a support from statistical methods to point out the underlying
relationships that appear in fault data. The presented techniques have a principal
difference, MARS predicts a continuous fault value while the other methods
give a discrete one with a certain probability.

Though there are more sophisticated evaluation techniques (e.g. 'leave one out',
correctness / completeness graph [4], [11]) for further work, our study shows
some good first results. All estimation methods suffer from possible overfitting
the model data decreasing the prediction accuracy. This has to be prevented as
with the tree pruning in MARS [2]. AR, CART and BBN seem promising as
they are able to predict fault values of most classes correctly, though data set
dependent only the fault proneness. One of the advantages of these methods is
their ability to include uncertainty in the estimation models. Uncertainty is
depicted by the existence of probabilities and also by the estimation of a range
of possible fault values. The fault proneness prediction with a high confidence
value is better (1, 2, 3 or 4) than the fault number prediction with a high
possibility of wrong estimation.

A combination of MARS method with AR would take advantage of the rules
with high support and confidence values and would take advantage of the
MARS equation when the rules will not be able to provide an estimate with
high confidence. This could be the target of future work. In our survey, AR
might perform best for the assessed data. Though not being able to generate
estimations for every data row, MARS should be used when each class in a
system has to be estimated. This might be necessary for comparison issues as
inspections. Using the presented techniques, conclusions and actions from past
faults can be drawn assessing measurable software properties to prevent faults
in future classes.

Building fault prediction models from abstract cognitive complexity metrics

IWSM/MetriKon 2004 11

References

1. R.D. De Veaux, D.C. Psichogios, L.H. Ungar, A Comparison of two Nonparametric
Estimation Schemes: MARS and Neural Networks, Computers Chemical
Engineering, CACE Int. Journal, Vol 17, N. 8, pp. 819-837, 1993.

2. G. H. Dunteman. Principal Components Analysis. Sage , Newbury Park, CA, 1989.
3. J.C. Laprie, Dependability: concepts and terminology, LAAS-CNRS, Toulose,

PDCS Meeting Durham, U.K., Oct. 11-13, 1989.
4. A. Bondavalli, L. Simoncini, Failure Classification with Respect to Detection, in

Predictably Dependable Computing Systems -- First year Report, Task B, Volume 2,
May 1990.

5. R. Neumann, D. Klemann, Metrication of object oriented complexity, SOQUA04,
to appear, 2004.

6. H. Zuse, A Framework of Software Measurement, de Gruyter, Dec. 1997.
7. M. Lorenz, J. Kidd. Object-Oriented Software Metrics. Prentice Hall, Englewood

Cliffs, N.J., 1994.
8. S.A. Whitmire, Object-Oriented Design Measurement, New York: Wiley, 1997.
9. L. Briand, J. Daly, J. Wüst, A Unified Framework for Coupling Measurement in

Object-Oriented Systems, Technical Report ISERN-96-14, 1996.
10. S.R. Chidamber, C.F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE

Trans. on Software Eng., 20 no. 6, June 1994, pp. 476-493.
11. L.C. Briand, W.L. Melo, J. Wüst, Assessing the applicability of fault-proneness

models across object-oriented software projects, IEEE trans. Software Engineering
28 no. 7, pp. 706-720, 2002.

12. R. Neumann, A Categorization for Object Oriented Software Metrics in Fault
Prediction, proc. SMEF04, Rome, Italy, Jan. 2004

13. R.E. Courtney, D.A. Gustafson, Shotgun correlations in software measurement,
Software Engineering Journal, Jan. 1993, pp. 5-13

14. S.N. Cant, B. Henderson-Sellers, D.R. Jeffery, Application of cognitive complexity
metrics to object-oriented programs, Journal of Object-Oriented Programming, pp.
52-63, July-August 1994.

15. K. El-Emam, S. Benlarbi, N. Goel, S. Rai, The Confounding Effect of Class Size on
the Validity of Object-Oriented Metrics, IEEE Transactions on Software
Engineering 27 no.7, pp. 630-650, 2001.

16. D. Hand, H. Mannila, P. Smyth, Principles of Data Mining, MIT Press, 2001.
17. L. Francis: Martian chronicles: Is MARS better than Neural Networks?, proc. CAS

casualty actuarial society forum Winter, 2003.
18. T. Foss, E. Stensrud, B. Kitchenham, I. Myrtveit, A Simulation Study of the Model

Evaluation Criterion MMRE, IEEE trans Software Eng 29 no. 11, 2003.
19. G. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic

networks from data, Machine Learning 9, pp. 309-347, 1992.

