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Abstract: 

Finding software defects as early as possible is a critical task that saves values. 
Fault prediction models identify faults by spotting error prone components, 
exploring design guidelines and thus directing test effort. These models gain 
knowledge from past mistakes to prevent future ones. This paper describes, 
applies, evaluates and compares modelling techniques of fault related code 
structures based on abstract complexity metrics. These complexity metrics are 
calculated from base metrics for all complexity aspects assuring statistical 
independence. Modelling techniques applied are MARS, Classification And 
Regression Trees, Association Rules and Bayesian Belief Networks. Their ability 
to interpret fault reasons and predict future possible faults is compared in this 
paper. 
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1 Introducing complexity aspects  

Embedded software is substituting specialized hardware in terms of 
functionality in technical systems. Even in safety critical environment, this 
process is increasing due to a better flexibility, the rising need for more 
functionality and cost effectiveness. Nowadays real time software is embedded 
in mission critical systems, like in avionics with the replacement of mechanical 
flap transmission due to the size and weight increase. Starting with a hydraulic 
power system we have now flight control systems giving direction based on 
sensor information. Many advantages are indicated by this change, although 
new quality assurance techniques had to be found where the old ones are not 
sufficient anymore. Quality aspects like failure causes and models have been 
improved for years, but the new systems brought additional failures with 
different causes. These failures are based on functionality which is controlled 
from software algorithms. These source code defects have to be found. 



Neumann Roland, Bibi Stamatia 

2 Software Measurement Conference 

 Source code defects in dependable systems induce a high risk of human or 
property damage in case of a failure. A failure with its source related to the 
software part of the system is caused by a program error or fault [4]. First a 
distinction between faults and failures is necessary. Failures in software are 
deviations of the delivered service from specific conditions [3]. Faults are code 
properties deviating from intended component behaviour. While faults can 
emerge from different possible reasons like disturbed concentration, the 
cognitive complexity is a main one. The cognitive complexity describes the 
difficulty to understand a source code part with all its relating communications. 
This study bases on structure for analysing cognitive complexity of object 
oriented software [5] to define metrics.   

In the rest of this paper a possibility to independently measure complexity 
aspects is presented, followed by a short description of the modelling 
techniques used. After that, the prospects of the models for inspecting fault 
influences are presented on a praxis example. Finally, the modelling and 
prediction quality is compared and the paper is concluded.   

2 Measuring complexity 

A fault may be induced in the architecture or implementation step by a human. 
Reasons for this insertion include a lack of understanding of the complex 
structure leading to an overlooked important interaction effect. These faults can 
be found investigating the complexity of the architecture or the complexity of 
code. Analysing complexity needs decomposition into different aspects. To 
weight these aspects they first have to become measurable.  

To quantify structural properties the usage of software metrics is necessary. 
Software metrics assign numbers to specific code properties according to a 
counting rule. There are prerequisites for using software metrics for predicting 
faults coming from measurement theory like scale types [6]. An introduction in 
software measurement and software metrics with their interpretation can be 
found in [7] or [8]. Though, there is a problem with interrelation when modeling 
fault influences from these metrics [13]. These interrelations can be removed 
using the principal components analysis technique. This leads to abstract 
metrics describing complexity aspects independently in this data set. The basic 
metrics have to comply to the ratio scale [6]. The meaning of these complexity 
aspect metrics is then interpreted using their factor loading values and 
Eigenvalues [5].  

With these independent and abstract complexity metrics, their fault relations can 
be modelled. These models gain knowledge from empirical data of software 
systems to prevent errors. This is one important goal in software engineering 
making a quality assessment of large systems easier. Especially, these large 
systems improve the empirical model quality with their large data sets.  
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3 Empirical data basis 

For the empirical validation of the various modelling techniques, a basis data 
set with known number of faults has to be selected. The data set comes from a 
component of a large railway operation interlocking system in C++. Its 
properties are measured using a set of 11 metrics. These metrics are then 
transformed to independent complexity aspects. The number of aspects used is 
restricted to five since they describe a sufficient amount of data (86%) though 
being few enough to give good examples. The aspect's meaning can be 
interpreted according to [5] as: 
KE1: Abstract size measuring count of Methods, foreign attributes, lines and nesting depth 

KE2: Inherited functionality measuring inheritance depth, inherited methods and parents 

KE3: Further inheritance measuring inheritance to and direct children 

KE4: Unused attributes measuring ancestor type attributes and foreign type attributes 
minus attribute usage count 

KE5: Data Storage measuring ancestor typed attributes and hidden attributes access 

4 Modeling fault proneness 

For building regression models, the right modelling technique has to be 
selected. Linear models tend to only fit locally while nonlinear models require 
preliminary knowledge of  interconnections. Neural nets (NN) [17] said to fit 
various relations are hard to interpret. To overcome these problems, a piecewise 
linear regression technique (MARS) with interpretable results and performing 
equal to NN is suggested in [17]. Its usage and prospects are presented and 
compared with concurrent techniques in the following. 

MARS (Multivariate Adaptive Regression Splines) is a data mining technique 
fitting piecewise linear functions to the input data. The parameters of these 
linear functions (the knots) are placed with a tree based partitioning algorithm. 
For maximum robustness, less important knots are removed. When applying the 
technique to interrelated metrics, multidimensional output functions are 
generated. With independent input variables, the modelling technique still 
generates dependent output functions for a better fit. Though this may produce a 
smaller modelling error, it decreases the prediction quality and has to prevented. 

Association Rules (AR), Classification And Regression Trees (CART), and 
Bayesian Belief Networks (BBN) provide probabilistic models of fault 
prediction based on historical data. Association rules [16] describe the 
underlying data relationships with a set of rules that jointly define the target 
variables. This technique finds frequent attribute combinations. An association 
rule is a simple probabilistic statement about the co-occurrence of certain data 
ranges at target values. 
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CART is a widely used statistical procedure in predictive modelling for 
producing classification and regression models with a tree-based structure [16]. 
The CART model consists of an hierarchy of univariate binary decisions. The 
algorithm used operates by choosing the best variable for splitting data into two 
groups at the root node. This splitting procedure is then repeated to the data in 
each of the child nodes recursively, for class labels being as homogeneous as 
possible.  

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), being causal 
networks that consist of a set of nodes and a set of directed noncyclical links 
between them [16]. Each node represents a random variable that can take finite, 
mutually exclusive values according to a probability distribution. Each link 
expresses probabilistic cause-effect relations among the linked variables and is 
depicted by an arc starting from the influencing variable and terminating on the 
influenced variable. The strength of the dependencies is measured with the help 
of conditional probabilities.  

Due to the discrete nature of these methods complexity aspects have to be 
separated into categories. One problem is the choice of the interval number of 
and width. Initially the interval number was selected from the number of 
records n according to Sturge’s rule [19] )log(3.31 nk += .  

The interval width was chosen for equal class number in each interval. While 
applying the methods the great number of complexity aspect intervals in some 
cases prevented the extraction of useful models. In these cases neighbour 
categories were merged. 

From these models, tentative conclusions can be drawn regarding the origins of 
faults by analyzing if the model indicates the dependency of fault number on 
certain complexity metrics. The models accuracy and robustness is then 
assessed and compared while sufficient experience from the use of these 
techniques has been acquired, indicating certain advantages and drawbacks of 
the methods.  

 

5 Interpreting the models 

To interpret the models, first the meaning of the input variables has to be 
known. These are a prerequisite to draw conclusions from the established 
models. For our data set, the complexity aspects are introduced previously. The 
fault prediction models consist of their base functions defining the relations 
between the complexity aspects and previous faults in this specific software. 
The MARS model, generated from the modelling data set, consists of the 
following base functions (Fig. 1): 
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Figure 1: MARS fault influences from complexity aspects 

The influence of the complexity aspects to the fault number can be drawn from 
these equations. For example, the complexity aspect KE1 accounts for a linear 
increasing fault number greater than a value of -1.7. Since this aspect is related 
to size, it depicts a fault influence from medium classes increasing with the 
class size, small to medium sized classes generate no faults. With this model, 
the complexity aspects of each class can be assessed to spot possible fault 
influences. 

The next modelling techniques do a different, probabilistic approach. Since 
most classes contain no faults the fault probability of every training data set will 
be not high though indicating possible problems. Usage of the Association 
Rules (AR) technique extracts a set of  rules from the data set. For this set, some 
rules with sufficient support could only be generated for concatenated fault 
classes (1 – 4 faults).  The AR technique involves the following steps with its 
rule set is shown in Table 1:  
1. Discretization of the target variable into four possible fault values  

2. Creation of the prediction model  

3. Transformation of fault category number into a continuous number when needed taking 
the centre of gravity of the class (the median of the class).  

 

 

Table 1:  AR rule set 

The first column of the rule set represents support values and the second 
column represents confidence value.  

Support Confidence Rule  

1.1 100.0 -0.191<KE3= -0.008 &  KE4 = -0.408 &  KE5 >-0.309 faults _2_3_4 

53.9 87.2 KE4 > -0.155 faults_0 

5.3 80.0 -0.914<KE3= -0.754 & KE4 = -0.155 faults_1 

11.1 70.0 KE4 = -0.155 & KE1> - 0.53 & KE2 > -1.104 faults_1_2_3_4 

5.5 63.6 -0.408<KE4= -0.155 & KE3= -0.614 & KE1 > -0.53 faults_1 

7.1 52.9 -0.191<KE3= 0.785 & KE4 = -0.155 & KE2>-1.104 faults_1_2_3_4 
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For example the fourth rule can be interpreted as following: If the fourth 
complexity aspect value falls between the first four classes and the values of the 
first and the second  complexity aspects fall into the last 6 classes then there is 
70% probability of the class being faulty with one fault most probable. This 
rules was generated from 11.1% of the modelling data set (42 classes of the 
modelling data set follow that rule). This rule set shows the usual drawback of 
association rules which is its inability to provide estimates for all possible cases. 
In the current data set, only two classes could not be estimated. In that case the 
answer is provided by the distribution of the projects given their fault values 
which points out that the most possible situation is that no faults will be found. 
Therefore the classes that could not be directly estimated by the model were 
considered having no faults. 

 The next applied method was CART with its results shown in Figure 2. The 
circular nodes represent the splitting nodes and the rectangular nodes represent 
the leaf nodes that provide the estimation.  Each leaf node is accompanied by a 
probability that is indicative of the validity of the estimation. 

         

Figure 2: CART estimation 
model 

Figure 3: BBN estimation 
model

For example the node that gives an estimation of 0 faults and is accompanied by 
the probability 81% can be interpreted as following: If the value KE2 is not less 
than -1.207 and not between 0.532 and 1.244 and the value of KE4 is between 
-0.416 and -0.362 or between -0.049 and 0.651 there is 81% possibility that no 
faults will be found in a class.  The model provides fault estimation for all 
possible classes even for those whose attributes have not been met in the 
modeling data set. CART results are limited since classes having 2 to 4 faults do 
not appear at all at the estimation tree.  
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This means that in the predictive data set all classes with 2, 3 or 4 faults are 
considered to have either 0 or 1 fault.  All the complexity aspects are included 
in the model apart from KE3. CART method tries to split the classes into sets as 
homogeneous as possible according to their fault. Not enough data points were 
provided to create sets of classes with 2 to 4 errors in preventing rules for these 
fault numbers.  

At construction of BBN, initially ten classes were considered for the values of 
each complexity aspect. With application of the k2 tool [19] no dependency 
between the complexity aspects and the fault number was found rendering the 
model inappropriate for fault estimation. The next step was to merge neighbor 
classes of the complexity aspects. In that case the BBN structure was better as it 
involved the fault number as well (Fig. 3). There the fault number depends only 
in the value of the fourth complexity aspect. Table 2 depicts the node 
probability table of fault node. 

 
Faults/ KE4  = -0.408 = -0.155 = -0.008 = 0.23 > 0.23 

0 0.385 0.519 0.902 0.8 0.797 

1 0.385 0.364 0.062 0.141 0.131 

2 0.141 0.091 0.012 0.035 0.024 

3 0.076 0.013 0.012 0.012 0.024 

4 0.013 0.013 0.012 0.012 0.024 

Table 2:   Node Probability Table for fault node  

As an interpretation example, when -0.155< KE4 = -0.08, there is 0.902 
probability that no faults will be found in the predicted class, 0.062 probability 
that one fault will be found in the class, 0.012 that two faults will be found in 
the class and so on. For KE4 being in the [-0.155; -0.08] range the BBN 
estimates no faults. In the second column where KE4 = -0.408 the possibility of 
finding no faults in a class is the same with the possibility of finding one fault 
in the class. Since we aim at the fault proneness, we assume that there is 0.616 
(0.385+0.141+0.076+0.013) possibility that the class will present 1 to 4 faults. 
This outweighs the possibility of finding no faults. As the no fault probability is 
quite high due to many fault free classes, only KE4 values less than -0.408 
provide strong probabilities for faultiness. 

In general all methods indicate the fourth complexity aspect as the main fault 
related factor. The unused attributes aspect seems important for this data set and 
its values should be kept greater than -0.155 to avoid faults. Another complexity 
aspect whose value affects the fault existence is KE3 that measures the further 
inheritance and direct children of a class. 
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6 Evaluating the models  

A comparison of model quality is possible through different methods. First the 
quality assessment has to be divided into modeling and prognosis part. 
Modeling describes how good the model fits the values of the training data set. 
The prognosis quality residuum RES, representing the difference between the 
real and the prognosted fault value, can only be assessed with an evaluation data 
set with known faults. Usually this is conducted with separation of the raw data 
into an training and an evaluation part.  

Evaluation methods generate a single value for the modeling and the prognosis 
quality. These values can be compared and interpreted. A standard though not 
uncritizised [18] method is MMRE (Mean Magnitude of Relative Error). In 
fault prognosis, the calculation of relative errors leads to a division by zero 
problem for error-free classes. Besides, the aim in fault prognosis is to prevent 
faults in classes leading to an zero aim value. This decreases the importance of a 
relative view on differences. The modeling difference at a class with many 
faults is as important as at a fault free class. The basis of all evaluation methods 
is the residuum RES, the unsigned difference between real and modeled / 
prognosted value. This can also be squared to amplify high single values. The 
sum of these unsigned and squared differences can also be weighted with the 
number of data points to generate an average difference-per-point value. 

An important method assessing discrete data is the hit rate describing the 
number of correct model values to total number of values. For the machine 
learning methods, hitrate1 is also presented which shows the ability of the 
methods to predict correctly the possible faults that may appear. Hitrate1 is used 
for estimation assessment of a fault interval (e.g. 2-4 faults). At calculation of 
hitrate1 the model is considered successful if the predicted class presents either 
2, 3 or 4 faults. The modeling results for the training data set are shown in Table 
3. The modeling accuracy of AR and BBN could not provided due to the lack of 
an automated method for providing such data. Future work involves the 
resolution of this problem. 
 

Methods  Hitrate |RES| (RES)^2 Rel. |RES| Rel.(RES)^2  

MARS 77.4 % 107,7 72,0 0,347 0,232 

CART 82.9 % 76,0 138,0 0,245 0,445 

Table 3:   Modelling evaluation criteria 

Though seemingly fitting better, the CART technique only generates discrete 
values for faults. This leads to a bigger difference for some data points 
generating higher squared deviances. MARS values tend to be not as good as 
CART for most data row but having not as extreme outliers.  
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For our prognosis study, we separated 30 classes from the raw data selected to 
represent the whole. These prognosis results are shown in Table 4, their values 
are compared in Figure 4. 
 

Methods  Hitrate Hitrate1 |RES| (RES)^2 Rel. |RES| Rel.(RES)^2  

MARS 46,7 %  23,3 29,2 0,775 0,972 

CART 40,0 % 40% 29,0 53,0 0,967 1,767 

AR 70,0 % 83.3% 13,0 21,0 0,433 0,700 

BBN 40,0 % 66.7% 25,0 41,0 0,833 1,367 

Table 4:  Prognosis evaluation criteria 
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Figure 4: Prognosis comparison 

The prognosis  assessment shows the same effects as the modeling assessment. 
The values for the  squared residuals are higher for CART, AR and BBN though 
seemingly fitting better due to discretisation. No model could fit extreme 
outliers since the few data rows. The MARS technique was also applied for 100 
separated data rows showing comparable results to the other techniques.  

AR performed well for prognosis data as they are able to correctly estimate the 
fault number of 70% of the classes. Only one rule is included which actually 
estimates the majority of fault free classes correctly. Since most (67,7%) classes 
in the data set have no faults, a class is considered to have no faults if it cannot 
be estimated by the rule set. The other five rules provide either a particular fault 
number or a possible range of faults that may appear in a class.  In the last case, 
when a particular fault number is needed the median of the fault category is 
used as explained previously. When AR method is evaluated according to its 
ability to predict a range of possible fault values its performance even greater 
estimating 83.3% of fault classes correctly .  

CART has a poor estimation accuracy due to their inability to estimate classes 
with 2, 3 or 4 faults or even a range of fault values involving these fault 
numbers. Although it is able to estimate the majority of classes with no faults 
correctly and have a high estimation accuracy on the modelling data. 
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BBN has a low estimation accuracy when a particular fault number has to be 
predicted, though their estimation accuracy is improved for prediction of 
possible faults. Its estimation accuracy then can be explained with the only 
usage of the fourth complexity aspect. 

7 Conclusions 

This paper presents current concepts for building fault prediction models and 
evaluates their suitability. As these models use independent complexity metrics 
as input variables, the model functions can be interpreted. With these models, 
fault reasons can be traced back to complexity structures in classes. This gains 
reusable knowledge from past errors. 

In conclusion, MARS, AR, CART, BBN are all data mining methods that offer a 
convenient way to solve problems that are not explained purely logically but 
rather probabilistically. Software fault estimation is one of these problems: we 
are not sure of the factors that affect the existence of faults directly and we 
expect a support from statistical methods to point out the underlying 
relationships that appear in fault data. The presented techniques have a principal  
difference, MARS predicts a continuous fault value while the other methods 
give a discrete one with a certain probability. 

Though there are more sophisticated evaluation techniques (e.g. 'leave one out', 
correctness / completeness graph [4], [11]) for further work, our study shows 
some good first results. All estimation methods suffer from possible overfitting 
the model data decreasing the prediction accuracy. This has to be prevented as 
with the tree pruning in MARS [2]. AR, CART and BBN seem promising as 
they are able to predict fault values of most classes correctly, though data set 
dependent only the fault proneness. One of the advantages of these methods is 
their ability to include uncertainty in the estimation models. Uncertainty is 
depicted by the existence of probabilities and also by the estimation of a range 
of possible fault values. The fault proneness prediction with a high confidence 
value is better (1, 2, 3 or 4) than the fault number prediction with a high 
possibility of wrong estimation.  

A combination of MARS method with AR would take advantage of the rules 
with high support and confidence values and would take advantage of the 
MARS equation when the rules will not be able to provide an estimate with 
high confidence. This could be the target of future work. In our survey, AR 
might perform best for the assessed data. Though not being able to generate 
estimations for every data row, MARS should be used when each class in a 
system has to be estimated. This might be necessary for comparison issues as 
inspections. Using the presented techniques, conclusions and actions from past 
faults can be drawn assessing measurable software properties to prevent faults 
in future classes.  
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