
Reuse Opportunities in JavaScript applications

Anastasia Terzi

Dep. of Electrical & Computer Engineering
University of Western Macedonia

Kozani, Greece
anastassia.terzi@gmail.com

Stamatia Bibi

Dep. of Electrical & Computer Engineering
University of Western Macedonia

Kozani, Greece
sbibi@uowm.gr

Panagiotis Sarigiannidis

Dep. Of Electrical & Computer Engineering
University of Western Macedonia

Kozani, Greece
psarigiannidis@uowm.gr

Abstract— JavaScript nowadays is among the most popular
programming languages, used for developing web and IoT
applications. Currently, the majority of JavaScript applications is
reusing third-party components to acquire various
functionalities. In this paper we isolate popular reused
components and explore the type of functionality that is mostly
being reused. Additionally, we examine whether the client
applications adapt to the most recent versions of the reused
components, and further study the reuse intensity of pairs of
components that coexist in client applications. For this purpose,
we performed a case study on 9389 components reused by 430
JavaScript applications hosted in GitHub. The results show that
Compiler and Testing Frameworks are the most common types of
functionality being reused, while the majority of client
applications tend to adopt the recent versions of the reused
components.

Keywords—component, JavaScript, reuse, reuse intensity

I. INTRODUCTION
Undoubtedly, JavaScript is among the most widely used

programming languages for developing web and IoT
applications [3]. A recent survey on over 17,000 developers, in
159 countries, between November 2019 and February 2020
appointed that over 12.2 million developers are currently using
JavaScript worldwide, rendering the language as the most
popular one [2]. The growth and penetration of JavaScript is
more or less expected mainly due to the fact that it is a
lightweight, highly dynamic language, that can be used for a
variety of purposes (i.e. front-end and back-end application
development), enjoying the added value of well-funded
frameworks like AngularJS, React, and Vue.js. Currently, there
is growing evidence that JavaScript code development is
becoming more distributed and collaborative [12]. Developers
have access to a plethora of available open-source software
packages that can be freely used to enjoy the benefits of
software reuse.

Software reuse according to McIlroy and M.D [10], is “the
process of creating software systems from existing software,
rather than building software systems from scratch”. The
benefits acquired when reusing software involve the
minimized development cost, the increased efficiency and
maintainability and the improved quality [8]. When it comes
to JavaScript application development there are already
available a series of package managers (i.e. npm, nexus, yarn)
that can facilitate the reuse of JavaScript components. Despite
this fact the challenge of selecting the right functionality to be
reused and determining the appropriate components that will
synthesize the newly developed application remains.

In this paper, we address this challenge by investigating
the available JavaScript components that are most commonly
being reused along with the functionalities that they offer. Our
goal is to shed light on the reuse opportunities offered in the
context of JavaScript development. For this purpose, we
performed an exploratory case study on 9389 JavaScript
components retrieved from the GitHub repository. This case 1

study investigates:
• JavaScr ip t component s func t iona l i t y :
Considering the fact that software reuse is more
efficiently performed within the same application
domain [11], we investigate the availability of the
components with respect to the functionality that they
offer. The functionalities are extracted from the
description of the components as found in the hosting
websites. The studied functionalities involve compilers,
development frameworks, Testing Frameworks, user
interface components, and interoperability units.
• JavaScript components coexistence intensity:
Exploiting the full benefits of reuse, most of the time,
practitioners, tend to reuse simultaneously a variety of
components that serve different purposes It is important
to identify common pairs of components that are
frequently reused together in the context of a single
application. Such evidence can help developers decide
upon the functionalities that can be reused within the
same context and complement each other.

Current literature on engineering JavaScript applications
focuses on trends related to development frameworks [4], the
language features [5], and the dynamics of the language [1].
When it comes to the potentials of reuse the research is
limited. Kikas, R., Gousios, G., Dumas, M. and Pfahl, D. [6]
studied the dependency network formed by the applications
that reuse components and examined the consequences caused
by the removal of a popular component. Also, Li et al. [9]
proposed a framework to reuse JavaScript code snippets found
in question and answer websites. This study differentiates
from the aforementioned since a) we emphasize the reuse of
components implementing a variety of functionalities and not
just frameworks and b) we identify common pairs of
components that are reused simultaneously in the client
application.

The rest of the paper is organized as follows: In Section II
we present the study design in the form of a case study
protocol. In Section III we provide the results, organized by
the research question, and discuss them in Section IV along
with the threats to the validity of our study. In Section V, we
conclude the paper.

 https://github.com/search?l=JavaScript&o=desc&p=5&q=JavaScript&s=forks&type=Repositories1

387

2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-6654-2705-0/21/$31.00 ©2021 IEEE
DOI 10.1109/SEAA53835.2021.00057

20
21

 4
7t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

A
dv

an
ce

d
A

pp
lic

at
io

ns
 (S

EA
A

) |
 9

78
-1

-6
65

4-
27

05
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
A

A
53

83
5.

20
21

.0
00

57

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:09:07 UTC from IEEE Xplore. Restrictions apply.

II. CASE STUDY DESIGN
In this section, we present the protocol that has been

adopted for designing this case study according to the
guidelines of Runeson and Höst [13]
A. Research Questions

The goal of this case study is to identify open-source
components with respect to their reusability from the point of
view of software engineers in the context of JavaScript
application development. In order to achieve this goal, we
decompose the goal to three research questions:

[RQ1]: Which JavaScript open-source components are
mostly being reused with respect to the functionality offered?

This research question aims at identifying highly reusable
JavaScript components and recording the functionality that
they offer. The analysis will provide an overall view of the
types of functionalities that are highly reused within the scope
of JavaScript application development.

[RQ2]: What is the reusability of open-source JavaScript
components with respect to their version?

This question examines the reused components with
respect to the version that is being reused. Our target is to
reach a conclusion on whether it is necessary to reuse the
latest version of a JavaScript component. The analysis will
provide insight on whether client applications need to
immediately absorb changes in the reused components in order
to produce a stable operating environment.

[RQ3]: What is the intensity of popular open-source
JavaScript reusable pairs of components?

This question aims to identify the pairs of JavaScript
components that are frequently reused in the context of a
single application. The results of this research question are
expected to provide insights on common practices when
selecting open-source JavaScript components for reuse.
B. Data Collection and Analysis

The case study of this paper use the 430 most forked
JavaScript projects hosted in GitHub by February 2021 We
selected applications that have at least a two-year period
lifespan, present more than 10 releases, and have at least a
new version released in the past year. For each JavaScript
project, we have downloaded the file “package.json” and
recorded information relevant to the project's dependencies.
The project’s dependencies indicate the components that are
being reused by the particular project. In total, we identified
9389 reused components. The first set of metrics used in the
scope of this study are in the component-level. Most of these
metrics come from the metadata provided by “package.json”
files, these include the

• name of the client application that the component
is being reused
• name of the reused component,
• version of the reused component.
• Additionally, for each component, we recorded the
type of functionality that it offers. Based on the
descriptions given on the GitHub repository of each
component, we concluded on a set of 5 types of
functionality such as frameworks that provide an
integrated environment for developing js applications,
testing frameworks, compilers used for browser
compatibility, user interface components and

interoperability components, that are used for
connecting different third-party applications.

The second set of metrics calculated are related to the
popularity and the intensity of the reused components within
the context of the JavaScript application development
ecosystem as proposed by Kula, R.G., De Roover, C.,
German, D.M., Ishio, T. and Inoue, K. [7]. In this context we
calculated the following metrics:

1. UsedBy indicates the components that
r e u s e t h e c o m p o n e n t u . F o r e x a m p l e
UsedBy(eslint)={novnc, shelljs, atom,webpack}

2. Popularity for a component (u) indicates the number of
UsedBy relationships .

3. Popularity of coexistence pairs is calculated for pairs
of reused components (u,v) and indicates the number of
times that components u,v commonly exist in UsedBy
relationships.

4. Intensity is the normalized frequency count of popular
pairs. For a given set of reused components I for pairs x, y
ϵ I we define intensity as following:

where x, y ϵ I and max returns the number of times that the
most popular pair of components is being reused.

Regarding the data analysis methods employed, for RQ1
we present the related descriptive statistics regarding the
reused components identified per functionality type.
Additionally, we present the details of the most popular
components that explain more than 70% of the variance. For
RQ2 we present a stacked bar chart presenting the most
popular reused components, where each bar represents the
different versions of a component that is being reused. For
RQ3 we present a heat-map presenting the Intensity of the
most popular coexistence pairs of reused components.

III. RESULTS
This section, presents the results of the case study per RQ.
RQ1: Which JavaScript open-source components are

mostly being reused with respect to the functionality offered?
Table I presents the most popular JavaScript components,

along with the functionalities that they implement. The
components presented explain over 70% of the total variance.
It can be observed that Compilers, followed by Testing
Frameworks and Interoperability Units components are
among the most reused ones. Table ΙΙ presents the basic
descriptive statistics obtained by splitting the reused
components based on the functionality that they implement.In
terms of the maximum components offered per functionality
type, we observe that the maximum value again exists for
Interoperability Units and Compilers whereas the least
components per functionality type are found in User Interface
Category.

{v1,v 2,…, v n}

Used B y (u) ≡ {υ |υ → u} (1)

popu l ar i t y (u) ≡ |Used B y (u) | (2)

popu l ar i t y (u , υ) ≡ |Used B y (u) ∩ Used B y (υ) | (3)

i n ten si t y (x , y, I) = popu l ar i t y (x , y)
m a x
i, j ∈ I
i ≠ j

(popu l ar i t y (i , j))
(4)

388

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:09:07 UTC from IEEE Xplore. Restrictions apply.

RQ2: What is the reusability of open-source JavaScript
components with respect to their version?

Fig. 1 presents the distribution of different versions of the
components that are commonly used in JavaScript apps. The
colours represent the versions of each component. The darker
the shade the newer the version and vice-versa. There seems to
be no pattern on why creators choose to update to a newer
version or use an older one. Overall in JavaScript projects it is
important to keep up with the latest version of Node.Js (if the
project uses npm) or to at least update to a version that is still
under maintenance. Therefore programmers need to update to
newer versions of components that support the changes on
Node.js. Although this technique is recommended the main
disadvantage is the lack of compatibility between multiple
components used on the same project, after the migration to
the latest version. After research, we concluded that in projects
with multiple third party components of different
functionalities the creators tend to use stable older versions
while in projects that use one or two components or only
components with the same functionality, programmers are
migrating constantly to the latest version.

RQ3: What is the intensity of popular open-source
JavaScript reusable pairs of components? To calculate the
intensity of the popular pairs we first run Spearman analysis.
Using the results of the analysis, we calculated the intensity
metric for all the pairs and construct the heat-map of Fig.2 to
visualize the results. The colours represent the intensity of the
relationship. We used red colour to represent high intensity
and green colour for low intensity. The results of the analysis
point that the pairs of components with high coefficient level,
significant relationship and high-intensity values are those
consisted of:

• Compiler and Testing Framework
• Compiler and Interoperability Unit
• Interoperability Unit and Testing Framework.
• Framework and Interoperability Unit

That kind of result was expected since JavaScript is a
language used on developing web and IoT applications and
runs on multiple platforms by combining frameworks, plugins,
and third-party code. To overcome problems of compatibility
and solve issues between parties, programmers need to use
compilers, middleware, and Testing Frameworks.

I. POPULARITY AND FUNCTIONALITY OF THE MOST REUSED
COMPONENTS

II. BASIC DESCRIPTIVE STATISTICS OF COMPONENTS BASED ON
USEDBY METRIC AND PER FUNCTIONALITY TYPE

II. DISCUSSION

A. Implications to researchers and practitioners
The results of this study provide useful information and

guidance for practitioners on planning the reuse of
components in the context of JavaScript application
development. In particular, some take away messages are:

• When examining opportunities for reuse,
practitioners can consider reusing functionality related
to Interoperability Units, Compilers, and Testing
Frameworks that are mostly implemented by most of
the available components.
• Regardless of the availability of components the
most reused functionality on average we observe that
Compilers, Testing Frameworks, and User Interface
components are the ones more frequently reused. This
fact shows that there is an interest in reusing libraries
that can overcome the problem of compatibility with
different browsers, instead of dealing with these
problems at first hand.

Functionality Type N
Minimum
UsedBy
value

Maximum
UsedBy
value

Mean
UsedBy
value

Interoperability Unit 48 17 101 30.04
Compiler 31 19 1157 130.77
Testing Framework 24 17 978 111.04
Framework 15 16 87 44.73
User Interface 15 16 171 46.47

Component Popularity Percent Functionality

Rimraf 101 1.1 Interoperability Unit

Lodash 99 1.0 Compiler

Express 87 0.9 Framework

Semver 84 0.9 Compiler

Glob 81 0.8 Interoperability Unit

Nyc 77 0.8 Interoperability Unit

Chalk 73 0.8 Interoperability Unit

Browserify 72 0.8 Interoperability Unit

Cross-env 70 0.7 Framework

Jest 69 0.7 Testing Framework

Fs-extra 68 0.7 Interoperability Unit

Vue 66 0.7 Framework

Jquery 63 0.7 User Interface

Uglify-js 62 0.6 Interoperability Unit

Lint-staged 61 0.6 Testing Framework

Postcss 60 0.6 User Interface

Coveralls 59 0.6 Testing Framework

Core-js 57 0.6 Framework

Css-loader 57 0.6 User Interface

Jasmine 57 0.6 Testing Framework

Sass 57 0.6 User Interface

Component Popularity Percent Functionality

Babel 1157 12.1 Compiler

Eslint 978 10.2 Testing Framework

Karma 599 6.3 Testing Framework

Grunt 551 5.8 Interoperability Unit

Rollup 419 4.4 Interoperability Unit

Webpack 339 3.6 Interoperability Unit

Gulp 324 3.4 Compiler

Mocha 194 2.0 Testing Framework

Typescript 176 1.8 Interoperability Unit

React 171 1.8 User Interface

Sinon 129 1.4 Testing Framework

Chai 117 1.2 Framework

Prettier 105 1.1 Compiler

389

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:09:07 UTC from IEEE Xplore. Restrictions apply.

• Regarding the need to update the reused
component, we diversify between projects that present
significant reuse more than 2 components and projects
that present limited reuse and advise practitioners to
adopt a) in the first case, the most recent stable version
(not the latest one) to be able to handle dependencies
among the reused components more efficiently and b)
in the second case, migrate to the new versions and
keep up with the changes in the related dependency
manager (i.e npm), since in that case the risk is limited
due to the small number of reused components.
• Regarding the potential to reuse pairs of
components, we advise practitioners to combine
Compiler with Testing Frameworks or Interoperability
and Frameworks, since all work under the same scope,
targeting to solve issues with third-party components.

Based on the results of this case study, we encourage
researchers to:

• Perform empirical studies on the reused JavaScript
components. Currently, there is a large repository of
reusable components that can offer great opportunities
for reuse. Therefore, it is important to guide the
software industry on how to design JavaScript
applications to maximize the benefits of reuse.
• Examine the quality of the reusable components to
be able to check prior to adoption whether the
components will introduce vulnerabilities and
jeopardize the maintenance process of the client
application.

B. Threats to validity
In this section, we discuss the threats to validity which we

have identified for this study, based on the categorizations
presented in [13]. Regarding Construct Validity, we should
mention that we adopted a set of reuse metrics that are targeted
to measure reuse within a software ecosystem (i.e. Github) [7].
Our rationale behind selecting these metrics was based on
content and scope similarities with [7]. Though we plan to
examine the evaluation of non-selected alternative metrics as
future work. Regarding Internal Validity, in this study we do
not attempt to identify causality relationships, therefore the
threat is not applied. Concerning reliability, we believe that the
replication of our research is safe since the process that has
been followed in this study has been thoroughly documented
in Section II. The only part where subjective opinion is
inserted is in the classification of the reusable component into
a type of functionality. Most of the time this was performed by

isolating keywords from the description of the component in
the hosting repository. This process was performed by the first
author and the results were verified by the second author.
Concerning the external validity and in particular the
generalizability supposition, changes in the findings might
occur if we altered samples of the projects studied. Future
replication of this study in other sets of JavaScript projects
would be valuable to verify these findings.

V. CONCLUSIONS
In this paper, we have performed a case study on 9389

components reused by 430 JavaScript applications hosted in
the GitHub repository. Our goal was to identify popular reused
components and explore the type of functionality that is
mostly being reused. We examined the reused components
with respect to the version that is being reused. As a final step,
we studied the reuse intensity of coexistence pairs. The results
show that Compiler and Testing Frameworks are the most
common types of functionality coexisting, while the majority
of client applications tend to adopt the recent versions of the
reused components.

 ACKNOWLEDGMENTS
This paper has received funding from the European Unions

Horizon 2020 research and innovation programme under grant
agreement No. 957406 (TERMINET)

REFERENCES
1. Axel Rauschmayer and Amazon.com (Firm (2012). The past,present, and

future of JavaScript : where we’ve been, where we are, and what lies
ahead. Sebastopol, Ca: O’reilly Media.

2. Carraz, M., Korakitis, K., Crocker, P., Muir, R. and Voskoglou, C.:
Developers Economics: State of the Developer Nation. 18th ed.
SlashData Ltd. (2020)

3. Chatzimparmpas, A., Bibi, S., Zozas, I. and Kerren, A. (2019).
Analyzing the Evolution of JavaScript Applications. Proceedings of the
14th International Conference on Evaluation of Novel Approaches to
Software Engineering.

4. Delcev, S. and Draskovic, D. (2018). Modern JavaScriptframeworks: A
Survey Study. Zooming Innovation in Consumer Technologies
Conference (ZINC). pp.106-109.

5. Gude, s., Hafiz, M., Wirfs-Brock, A. 2014. JavaScript: The Used Parts,
2014 IEEE 38th Annual Computer Software and Applications
Conference, Vasteras, Sweden, 2014, pp. 466-475.

6. Kikas, R., Gousios, G., Dumas, M. and Pfahl, D. (n.d.). Structure and
Evolution of Package Dependency Networks.

7. Kula, R.G., De Roover, C., German, D.M., Ishio, T. and Inoue, K.(2018).
A generalized model for visualizing library popularity, adoption,and

Fig 1. Distribution of different versions Used by components

Fig 2. Heat-map of Coexistence component pairs

390

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:09:07 UTC from IEEE Xplore. Restrictions apply.

diffusion within a software ecosystem. 2018 IEEE25thInternational
Conference on Software Analysis, Evolution and Reengineering
(SANER).

8. Leach, R.J. (n.d.). Methods of Measuring Software Reuse for the
Prediction of Maintenance Effort. Software Maintainance – Research
and Practice, Volume 8(Issue 5), pp.309-320.

9. Li, X., Wang, Z., Wang, Q., Yan, S., Xie, T. and Mei, H. (2016).
Relationship-aware code search for JavaScript frameworks. Proceeding
of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

10. McIlroy and M.D(1968). Mass Produced Software Components.
Software Engineering, NATO Science Committee.

11. Paschali, M.-E., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A. and
Stamelos, I. (2016). A Case Study on the Availability of Open-Source
Components for Game Development. Lecture Notes in Computer
Science, pp.149–164.

12. Reid, B., Barbosa, K., d’Amorim, M., Wagner, M. and Treude, C(2021).
NCQ: code reuse support for Node.js developers. CoRR. 4 Jan

13. Runeson, P. and Höst, M. (2008). Guidelines for conducting and
reporting case study research in software engineering. Empirical
Software Engineering, 14(2), p.131.

5
391

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:09:07 UTC from IEEE Xplore. Restrictions apply.

