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 Abstract – Successful software project survival and progress 
over time is highly dependent on effectively managing the 
maintenance process. Estimating accurately maintenance process 
factors like the maintenance effort and the level of changes 
required for a new release is considered a crucial task for 
allocating resources. In this work we examine the maintenance 
process factors of JavaScript applications, which at the moment 
are understudied despite the need of language specific 
maintenance models.  Furthermore we propose two maintenance 
indices for estimating the changes and the effort required for 
maintaining JavaScript applications by considering a variety of 
maintenance drivers. We evaluated the proposed indices through 
a case study on 5,788 releases coming from 60 popular JavaScript 
applications. The results show that project activity factors (i.e., 
number of open bugs and number of corrective maintenance 
activities) are important maintenance drivers.  The proposed 
indices are evaluated in terms of predictive and discriminative 
power and both achieve high accuracy. 
 
 Index Terms - software maintenance effort; JavaScript; 
maintenance index; software development; open source software;  
 

I.  INTRODUCTION 

Nowadays, mature software organizations collect a wealth 
of data regarding software development and maintenance, 
expecting to acquire knowledge for effectively monitoring the 
maintenance process. According to the IEEE 1219 (IEEE Std 
1219, 1998) [13] software standards document, software 
maintenance is defined as the “Modification of a software 
product after delivery to correct faults, to improve 
performance or other attributes, or to adapt the product to a 
modified environment”, while maintenance effort is 
subsequently defined as the “effort required to reduce or 
eliminate maintenance problems”. According to Lehner [17], 
the programming language adopted differentiates in a great 
degree the effort required for its maintenance and therefore it 
is important to generate language-specific software 
maintenance models. 

In this work we focus solely on investigating the 
maintenance process drivers of JavaScript (JS) applications. 
Maintenance effort of JS applications is largely understudied 
[26] despite the fact that according to GitHub1 JavaScript is 
among the most popular programming languages. The 
motivation behind the need to analyze JS applications resides 
upon the fact that a) JS is considered as a weakly typed 
programming language [26] that can generate unpredictable 
results that may cause problems to the maintenance of projects, 
b) many programmers rely upon popular JS frameworks for 
building their web applications so it is interesting to further 
explore the potentials of JS frameworks in terms of 
maintenance and adjustment to user demands. 
 In order to explore the maintainability factors that drive 
the maintenance process of JavaScript applications, we 
performed a case study on 5,788 releases coming from 60 
popular open source JavaScript applications. We considered in 
our analysis a variety of metrics related to the internal source-
code quality, size and complexity of software, metrics related 
to the end-user community and metrics relevant to the type of 
the maintenance activities performed.  
In particular we investigated: 

a) The maintenance activities (corrective, adaptive& 
perfective and preventive) that are more frequent in JS 
applications with respect to the size of the application. 

b) The factors that are considered significant in estimating 
maintenance effort and changes of JS applications. Based 
on these factors we built two indices for estimating the 
maintenance changes and the maintenance effort of JS 
applications. 

c) The validity of the two indices based on correlation, 
consistency, predictability, discriminative power, and 
reliability evaluation criteria. 

 In Section 2 we present related work and in Section 3 we 
describe the proposed indices. In Section 4, we present the 
study design that was used for evaluation purposes. The 
                                                           
1 https://github.com/search, https://octoverse.github.com/ 
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evaluation results are presented and discussed in Sections 5 
and 6. We present threats to validity in Section 7, and 
conclude the paper in Section 8. 

II. RELATED WORK 
Several models have been proposed so far that can help 

practitioners towards assessing the effort required to maintain 
a software project by quantifying a set of high level quality 
metrics [18], [10], [8]. Oman [24] and later Coleman [9] 
introduced a Maintainability Index (MI) based more on 
complexity and size, by utilizing the Halstead Volume, 
McCabe’s Cyclomatic Complexity, Lines of code and 
Comments rate. In expansion, Thamburaj [31] proposed a 
maintenance effort prediction model based on the object-
oriented cognitive complexity metrics through statistical 
techniques. As for complexity, Chandra [7] assessed 
maintainability by outlining the importance of size and the 
complexity described by the source code depth of inheritance 
tree. He used Support Vector Machine for the regression for 
forecasting of software maintenance effort with the Univariate 
and Multivariate approach. Alomari [2] used program slicing 
to estimate maintenance effort, by using three different 
granularities of slice (i.e., line, function, and file) analysed and 
compared the changes and complexity. 
 Milicic [20] apart from project size introduced the factor 
of the project life cycle by focusing on detecting useful 
patterns and interesting causalities in a simplistic approach. 
Ahn [1] introduced the factor of maintenance activities and the 
nature of the development team. He suggested an exponential 
function model which can show the relationships among the 
maintenance efforts and maintenance environment factors. 
Furthermore, Niessink [23] the type of each maintenance task, 
and furthermore Jorgensen [14] focused on the type of 
maintenance activities (i.e., whether corrective, adaptive, 
perfective or preventive). Later Chua [8] and Hayes [12] 
utilized determination of maintenance changes types and 
duration, by identifying factors (i.e., maintenance type 
activities, code size, changes and age of changes) that aligned 
in response to changes made by each maintenance task. Chua 
categorized maintenance effort data using regression analysis 
to evaluate adaptive and functional changes for efficacy 
determination. Hayes focused more on adaptive changes by 
performing regression models. 
 In an alternative direction, Yang [32] introduced 
modularity factors like data structures and field attributes, as 
well as defect as an internal quality factor. As for modularity, 
Sjoberg [30] focused on both the physical aspect of source 
code introducing factors like physical files and directories, as 
well as code smells for internal quality. Anda [4] introduced 
factors like code smells and source code vulnerabilities, while 
Mondal [22] performed an empirical study to compare the 
maintenance efforts required for cloned and non-cloned code. 
 The key focus of our research is to go beyond current 
literature by:  
• Examining maintenance process factors related to JavaScript 

applications. The maintenance effort of JS applications is 

still understudied, despite the importance of language –
specific models [17]. 

• Factors like complexity, size and modularity are extensively 
incorporated into research efforts, while others like internal 
quality and activity are less studied. We will examine all the 
aforementioned factors in the context of JS applications. 

III. PROPOSED MAINTENANCE INDICES 
 In this section initially we describe the maintenance factors 
and the associated metrics that participate in the study and then 
we present the calculation of the indices for estimating a) the 
changes and b) the effort required to maintain JavaScript 
applications.  

A. Maintenance factors and metrics 

 In order to assess the effort and the changes required to 
maintain JavaScript applications we considered a set of four 
high-level factors that are considered as important 
maintenance process drivers. Each set of factors can be 
assessed by the metrics presented in Table 1. We notice that 
all the metrics presented in Table 1 are calculated for each 
subsequent release separately.  
Size and modularity metrics: These metrics are relevant to the 
source code size of an application and the modularity, i.e., 
logical partitioning of the application. Examples of these 
metrics are the Lines of Code and the Number of Functions 
correspondingly [5][15]. 
Complexity factors: These metrics refer to source code 
complexity and are calculated based on internal software entity 
interactions [16]. Such metrics are Cyclomatic Complexity and 
Cognitive Complexity among others. 
Internal quality factors: As internal quality factors we 
considered cumulative metrics such as Code smells and 
Internal bugs [11] and also code duplications [4]. These 
metrics can be considered high-level indicators of the 
weaknesses in design and the reliability of the application. 
Activity factors: Regarding the activity metrics we considered 
metrics that a) take into account the open source software 
nature of the applications under study and b) that can be 
accurately derived from GitHub repository from which the 
applications were retrieved. Therefore, we selected to include 
in the analysis the metrics like number of forks, developers, 
commits etc., that were directly available from GitHub.  
Process Metrics: As process metrics we considered the Days 
Between Releases, the Incremental Changes (IC) metric that is 
calculated as the number of functions added or removed or 
modified in a particular release and the Maintenance Effort 
(ME) metric that is calculated as the ratio between the 
Incremental Changes (IC) metric to the Days between 
Releases (DBR). Also we considered the number of commits 
per different type of maintenance activity (Adaptive & 
Perfective, Corrective, and Preventive) as a proxy of the 
intensity of the different types of Maintenance activities 
performed per release [21].  
 
 

213

Authorized licensed use limited to: University of Western Macedonia. Downloaded on March 27,2022 at 09:02:34 UTC from IEEE Xplore.  Restrictions apply. 



Factor Metric Name Description and Values 
Si

ze
 a

nd
 m

od
ul

ar
ity

 LOC Lines Of Code (SonarQube) 
FILES Total files analysed (SonarQube) 
DIRS Total directories (SonarQube) 
NOF Number of Functions (JSClassFinder) 
NOA Number of Attributes (JSClassFinder 
NOC Number of Classes (JSClassFinder) 
NOM Number of Methods (JSClassFinder) 
COMMENTS Lines of comments (JSClassFinder) 

C
om

pl
ex

ity
 DIT Depth of inheritance tree (JSClassFinder) 

CMPLX Complexity (SonarQube) 

CCN McCabe’s Cyclomatic complexity 
(SonarQube) 

CGCMPLX Cognitive complexity (SonarQube) 

In
te

rn
al

 
qu

al
ity

 

D_LINES Duplicate lines of code (SonarQube) 
D_BLOCKS Duplicate blocks of code (SonarQube) 
CODE_SMELLS Code smells (SonarQube) 
VULNERABIL Code vulnerabilities (SonarQube) 
BUGS Number of bugs (SonarQube) 

Ac
tiv

ity
 ACT 

Number of commits regardless of the type 
of task performed (GitHub). Represents 
the cumulative activity in a release. 

OP_BUGS The number of bugs from Github’s issues 
list (issue tracking). 

CONTRIBUTORS Number of contributors (GitHub) 
POPULARITY Number of forks and stars (GitHub) 

M
ai

nt
en

an
ce

 p
ro

ce
ss

 m
et

ri
cs

 

ADP_ACT 

Adaptive & perfective activities: 
Measured as the number of commits 
related to Adaptive/Perfective task 
commits (manual ranking based on 
vocabulary keywords e.g. add, improve, 
update etc.) [21] 

COR_ACT 

Corrective activities: Measured as the 
number of commits related to Corrective 
task (manual ranking based on vocabulary 
keywords e.g. bug, fix, correct etc.) [21] 

PRV_ACT 

Preventive activities: Measured as the 
number of commits related to Preventive 
tasks (manual parsing and ranking based 
on vocabulary keywords e.g. refactor, 
remove, replace etc.) [21] 

DBR Days between releases (GitHub) 

IC 
Incremental changes calculated as Number 
of functions added or removed or 
modified per release (SonarQube) 

MAINT_EFFORT Incremental Changes / Days between each 
release 

TABLE 1 - Proposed metrics 

B. Calculation of indices 

 In order to quantify the changes and the effort required to 
maintain JS applications we calculated two indices, namely the 
Maintenance Changes index (MCi) and the Maintenance 
Effort index (MEi). We performed stepwise regression with 
backward elimination [3] so as to produce two aggregated 
measures for the two indices. As dependent variables, we used 
a) Incremental Changes (IC) metric that is calculated as the 
number of functions added or removed or modified in a 
particular release (index MCi) [29] and b) the Maintenance 
Effort (ME) metric that is calculated as the ratio between the 
Incremental Changes (IC) metric to the Days between 
Releases (DBR) (index MEi).   The two indices are calculated 

based on the values of the size, complexity, quality and 
activity metrics, which are the independent variables. 
  The rationale behind selecting stepwise regression with 
backward elimination was to include in the model the most 
relevant predictors (p<0.05) regarding the maintenance 
process metrics by isolating in each step the metrics that 
explain more effectively the proportion of variance of the two 
dependent variables. The outcome of the regression is an 
equation in the following form: 

 
 Where Index refers to the maintenance process index, and 
B(i) is the unstandardized Beta of each metric that shows the 
size and the sign of the corresponding coefficient. The index 
derived for the calculation of MCi and MEi along with the 
associated metrics and the B(i) coefficients are presented in 
Table 2. The standardized Beta coefficient is calculated by 
subtracting the mean from the variable and dividing by its 
standard deviation. This can be used to compare the strength 
of the effect of each individual metric to the dependent 
variable derived from the stepwise regression with backward 
elimination. The higher the absolute value of the beta 
coefficient, the stronger the effect. The sign of Beta shows 
whether this metric affects positively or negatively the index.  

 
Maintenance Changes Index (MCi) Maintenance Effort Index  (MEi) 
 B(i) Beta  B(i) Beta 
(Constant) 92.92   (Constant) -23.4  
OP_BUGS 1.42 0.19 OP_BUGS 3.32 0.4 
D_LINES -0.008 -0.18 FILES 0.08 0.07 
LOC 0.007 0.29 CMPX 263.2 0.43 
NOA 0.03 0.07 D_LINES -0.004 -0.15 
COR_ACT -8.17 -0.4 LOC 0.05 0.45 
CMPX 991.7 0.17 COR_ACT -2.99 -0.3 
ACT -0.034 -0.3 ACT -0.05 -0.4 

TABLE 2 – Indices calculation 
 We observe that the number of changes required for 
maintaining JS applications (MCi) depend on 7 factors.  The 
three most contributing to MCi are the Number of Corrective 
tasks (COR_ACT), the Cumulative Activity (ACT) and the 
Lines of Code (LOC). The Maintenance Effort Index also 
depends on 7 factors, with LOC, number of Open Bugs 
(OP_BUGS) and ACT being the most important ones. Also we 
observe that D_LINES, COR_ACT, ACT present negative 
signs in their coefficients which in our case means that they 
affect positively the indices. For example when there is intense 
activity in a project we expect that the number of changes in a 
final release will be minimized. This can be explained by the 
fact that intense activity usually includes a set of small, 
frequent  changes of limited scope contrary to more rare 
activity that usually include extensive changes of wider scope. 

IV. CASE STUDY DESIGN 
 In order to empirically investigate the validity of the 
proposed indices, we performed a case study on 5.788 releases 
from 60 open source JS applications following the guidelines 
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of Runeson [27]. To investigate and compare the validity of 
the proposed indices we employ the properties of Correlation, 
Consistency, Predictability, Reliability described by 
1061:1998 IEEE [13]. The sixth property of tracking was 
omitted from this study, since it requires heavy- weight process 
analysis, for each release separately that can form a standalone 
research effort, complementary to the current one.  

A. Objectives and Research Questions 
 The overall goal of this case study is twofold a) to explore 
the types of maintenance actions that occur concerning JS 
applications and b) to evaluate the two maintenance indices 
MCi and MEi proposed for estimating the amount of changes 
and the effort required to maintain JS applications. According 
to this goal, three research questions are formulated: 

[RQ1] What types of maintenance actions occur concerning 
JS OSS applications? 
  In the first research question we want to explore the type 
of maintenance activities that are more frequent in the context 
of JavaScript applications maintenance. These activities can be 
adaptive/perfective, corrective or preventive maintenance 
activities [14][6]. 

[RQ2] What are the correlation, consistency and 
predictability of the proposed maintenance indices? 
 In the second research question we investigate the validity 
of the proposed maintenance indices, with respect to the 
proposed [13] validity criteria (correlation, consistency, 
predictability and discriminative power).  

[RQ3] What is the reliability of the proposed maintenance 
indices? 

In the third research question we investigate the validity of 
the reliability criterion [13]. To achieve this we test each of the 
other validation criteria on different types of projects based on 
their size.  

B. Case Selection & Unit of analysis 
 The cases of the study are the 60 most popular JS 
applications (see Table 3) according to GitHub until October 
2017 and all their releases, in total 5.788 releases. In order to 
select these applications we applied the following criteria a) 
the application should present more than 90% of JavaScript 
source code b) the application should have at least a two year 
period lifespan and should present more than 10 releases. Out 
of the 5,788 releases recorded in total we randomly selected 
70% (4.040 releases) to serve as a training set so as to define 
the indices presented in Section 3. The rest 30% (1732 
releases) was used as a test set to validate the proposed indices 
(see Section 5). 

C. Data collection 
 For each JS project we have recorded the metrics 
presented in Section 3. The metrics have been collected in 
multiple ways for each project release: (a) the actual 
maintenance effort, project rating, open bugs, release 
information and commits has been recorded based on statistics 

provided by the GitHub platform; (b) commits and release 
notes provided by the platform were categorized for 
Adaptive/Perfective, Corrective and Preventive tasks [19][25] 
on word frequencies.  

 

# Projects 

Po
pu

la
rit

y 

R
el

ea
se

s 

# Projects 

Po
pu

la
rit

y 

R
el

ea
se

s 

1 React 88,009 67 31 datepicker 14,373 46 

2 vue 73,870 207 32 swagger-ui 13,821 98 

3 javascript 68,566 75 33 sequelize 13,274 227 

4 jQuery 59,387 146 34 grunt 13,101 11 

5 Three.js 47,600 79 35 vuex 12,658 34 

6 Chart.js 39,927 37 36 medium-edit 12,492 150 

7 Express 39,773 269 37 jsPDF 11,133 19 

8 Moment 37,944 62 38 raphael 10,777 38 

9 webpack 35,765 253 39 jquery-validat 10,442 17 

10 material-u 33,675 161 40 karma 10,409 178 

11 Ghost 29,278 116 41 eslint 10,310 171 

12 yarn 29,032 110 42 fabric.js 10,235 62 

13 axios 29,002 34 43 knockout 9,908 49 

14 lodash 28,898 380 44 Parsley.js 9,347 89 

15 fullPage.js 25,686 61 45 johnny-five 9,326 74 

16 async 24,338 71 46 jshint 9,015 66 

17 Modernizr 23,925 27 47 vue-router 8,867 51 

18 Pdf.js 23,800 44 48 fine-uploader 8,848 99 

19 video.js 22,406 327 49 marionette 8,521 143 

20 hexo 20,791 120 50 vue-resource 7,895 46 

21 clipboard 20,739 30 51 art-template 7,745 17 

22 hyper 20,508 42 52 ui-grid 7,388 78 

23 RxJS 19,349 104 53 cropper 7,307 52 

24 
pixi.js 18,378 79 54 angular-

fstack 7,178 84 

25 fetch 17,461 26 55 flot 6,875 17 

26 bower 17,233 102 56 plupload 5,783 33 

27 dropzone 15,909 97 57 form 5,683 16 

28 wbtorrent 15,853 257 58 openlayers 4,313 161 

29 q 14,809 65 59 jQuery-Mask- 3,954 136 

30 jasmine 14,796 58 60 jquery-form  4,788 16 

TABLE 3 - GitHub JavaScript project data set 
 
 Based on ranked vocabulary studies [21] each 
maintenance task was identified by parsing the comments 
accompanying each commit   (e.g. for Adaptive/Perfective 25 
keywords like “add”, “create”, etc., for Corrective 24 
keywords like “correct”, “fix”, etc., and for Preventive 18 
keywords like “refactor”, “redesign”, etc.),  (c) structural 
metrics (like LOC) have been calculated using the SonarQube 
platform for static analysis; (d) JS specific metrics (like NOC) 
have been calculated using the JSClassFinder tool [28]; (e) 
more complex metrics like Incremental Change were 
calculated by comparing the relativeness of subsequent 
releases based on the names of functions included in each 
release and their respecting size. 
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D. Data analysis 
 To answer RQ1 we calculate the standard descriptive 
statistics (Min, Max, Mean, Median and Standard error of 
Mean [13]) of the target variables (commits categorized by 
each type of different maintenance tasks performed, either 
adaptive/perfective, corrective or preventive) [14][6]. Also we 
present the intensity of each type of maintenance activity in 
subsequent releases of six applications participating in the 
study that are considered as representatives of small-, medium 
and large sized applications. 
 To answer RQ2, we use the maintenance indices presented 
in Section 3, as assessors of the number of maintenance 
changes and the maintenance effort. Then we compare the 
output of the two indices to the actual values of the two 
maintenance process metrics under study, Incremental 
Changes (IC) and Maintenance Effort (ME) correspondingly. 
Concerning Correlation and Consistency we will use the 
Pearson correlation and the Spearman correlation coefficients 
respectively and the levels of statistical significance. 
Regarding Predictability, we will investigate the independent 
variable level of statistical significance of the effect over 
depended, and the mean standard error as the accuracy of the 
model [13]. Regarding the Discriminative power of the indices 
we evaluate them based on three metrics the Precision 
(positive predictive power), the Recall (sensitivity of the 
model), and F-measure (models accuracy). 
 To answer the third RQ, we will perform all the 
aforementioned tests of RQ2 separately, on two groups of the 
data set. The separation of the data set will be based on the 
project size (i.e., large and small groups respectively, 
measured in KLOC). The group of large-sized projects 
presents a median of 13 KLOC and contains 21 projects. The 
group of small-sized projects presents an average of 5.89 
KLOC and contains 21 projects. 

V. RESULTS 
 In the current section we present the results of the case 
study performed to assess the level and the type of changes 
performed to maintain JS applications. In Section V.A we 
discuss RQ1 and present the frequency of the various types of 
maintenance tasks, as recorded in the successive versions of JS 
applications. In Section V.B we present the RQ2 results 
regarding the empirical validation of the proposed index in 
terms of correlation, consistency, predictive and discriminative 
power. In Section V.C we summarize the RQ3 results 

regarding the assessment of the reliability of the indices. 

 [RQ1] What types of maintenance actions occur concerning 
JS OSS applications? 
 To investigate the type of maintenance tasks that are more 
frequently applied in JS applications we have recorded the 
number of commits related to Adaptive & Perfective tasks, 
Corrective tasks and Preventive tasks. Table 4 presents the 
descriptive statistics for the commits implementing the three 
types of maintenance tasks. The last two columns of Table 4 
present in total the number of commits per task type for all 

5.788 versions analyzed and their associated percentage. We 
observe that the majority of maintenance tasks performed 
focus on corrective actions (bug fixing), followed by adaptive 
&perfective tasks that usually include the addition of new 
functionalities, or the extension of existing ones. Preventive 
tasks are less frequent, a fact that reveals that code refactoring 
in JS applications are relatively rare. 
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Adaptive & 
Perfective 

0 – 92 8.1 6 7.63 46,650 38.56 

Corrective 0 – 78 10.1 7 10.2 58,259 48.17 
Preventive 0 – 38 2.8 2 3.73 16,048 13.27 

Total 120,957 100.00 

TABLE 4 - Maintenance tasks descriptive statistics 

 In figure 1 we present the number of commits 
implementing the three types of maintenaance activities  
between successive releases for six JS applications. We 
selected to observe the evolution of maintenance activities 
through time in these six projects beacause we believe that 
they are representative of  small-sized (Webtorrent, Bower), 
medium-sized (Jquery, Pixi.js) and large-sized (Three.js, 
React) applications (small-sized projects with < 13 KLOC and 
large-sized projects with > 13 KLOC) and they are within the 
25% and 75% quartiles of their associated group of projects in 
terms of the Incremental Changes variable. By observing 
Figure 1 we conclude  that: 
• In large projects (Fig1.e, f) maintenace actions concern 

mostly adaptive/ perfective tasks, while the corrective tasks 
are also performed between releases without though 
presenting a particular trend. 

• In medium-sized projects (Fig1.c, d) maintenace actions 
concern mostly corrective tasks. In that case we observe 
that the intensity of the corrective actions is increased in 
the early releases compared to the subsequent releases that 
present lower intensity with respect to corrective actions. 
Also the intensity of adaptive & perferctive activities 
seems to remain stable throught the maintenance cycle. 

• In small-sized projects (Fig1.a, b), after inspecting also the 
rest of these type of projects we did not identify any pattern 
regarding the intensity of tasks. The applications are split 
into two groups the ones that mostly present adaptive& 
perfective maintenance activities  and the ones that present 
mostly corrective activities.  

• Finally regarding preventive actions all three types of 
application, small, medioum and large-sized present a 
common pattern. Preventive actions a) are limited 
compared to the other two types of activities, b) their 
intensity remains stable throught the maintenance lifecycle 
and c) in all cases they range from 0 to ~ 7 related 
commits. 
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 Adaptive & perfective activities  

 

 

 
Corrective activities 

 
 

 
Preventive activities 

   

(a) WebTorrent  (S) (c) Jquery (M) (e) Three.js ( L) 

 
(b) Bower (S) (d) Pixi.js (M) (f) React  (L) 

FIGURE 1. Changes performed during maintenance cycle for small (S) , medium (M)  and large (L) sized projects. 
 

[RQ2] What are the correlation, consistency and 
predictability of the proposed maintenance indices? 
 In order to answer the second research question, we 
compare a) the estimations performed by MCi to the actual 
number of maintenance changes and b) the estimations 
performed by MEi to the actual maintenance effort. The 
comparison is made in terms of correlation, consistency and 
predictability [13]. The results are presented in Table 5 
grouped by each validity criterion. For every criterion we 
present a set of success indicators. For correlation and 
consistency we present the the coefficient and significance 
indicators based on Pearson and Spearman correlations, while 
for Predictability the R2, the standard error and the 
significance indicators. For the discriminative power of the 
indices we employ precision, recall and F-measure accuracy 
metrics. Statistically significant results are denoted in italics.  
 Based on the results presented in Table 5, both indices 
present very satisfying results in terms of the correlation, the 
consistence the predictive and discriminative power. MCi 
presents slightly improved results in both 4 criteria. This can 
be explained by the fact that it is safer to predict the level of 
changes required in a subsequent version instead of the effort 
required for them. Though, the results regarding MEi index are 
also very close and comparable to those of MCi.  Concluding 
we should mention that both indices offer predictions 
significant at the 0.10 level, they are both strongly correlated 
to the actual values of maintenance changes, and effort 
(Pearson correlation coefficient > 0.5). Also the indices rank 
maintenance activities consistently with respect to the changes 

performed (Spearman correlation coefficient = 0.59) and the 
effort required (Spearman correlation coefficient = 0.53).  
 

Validity Criteria Success 
Indicator 

MCi MEi 

Correlation Coefficient 0.63 0.51 
Significance 0.04 0.08 

Consistency Coefficient 0.59 0.53 
Significance 0.05 0.07 

Predictability 
R-Square 45.7% 39.5% 
Std. Error 675.1 621.7 
Significance 0.08 0.09 

Discriminative  
power 

Precision 73% 61% 
Recall 76% 66% 
F-measure 74% 64% 

TABLE 5 – Success criteria for  MCi and MEi 
 
 For assessing the discriminative power of the model we 
classified the values of the dependent variables into 4 groups 
representing the small, average, high and very high number of 
changes and maintenance effort respectively. The cut-points of 
the four groups were defined by adopting equal-frequency 
binning. Then we classified the “point” estimates of the two 
indices into the aforementioned groups and derived an interval 
estimate. The accuracy of the interval estimate was then 
evaluated with precision, recall and f-measure metrics. The 
results show that the discriminative power of MCi is very 
strong (F-measure>70%) with MEi presenting very satisfying 
results (F-measure >60%). 
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[RQ3] What is the reliability of the proposed maintenance 
indices? 
In this section we evaluate the two indices in terms of 
reliability and we split our test set into two sets: small-sized 
projects (< 13 KLOC) and large-sized projects (> 13 KLOC). 
All the tests discussed in RQ2 are replicated for these two sets 
and the results are outlined in Table 6. With italics we denote 
statistically significant results. The results of Table 6 suggest 
that with respect to all criteria, the two indices are more 
accurate in the group of large-sized projects. Concerning 
reliability, MCi has been validated as a reliable metric 
regarding correlation, consistency, predictive and 
discriminative power. MEi, has been validated as a reliable 
metric regarding correlation, predictive and discriminative 
power but not regarding consistency. In particular, MEi was 
not able to accurately rank small-sized projects.   
 

 Validity Criteria Success 
Indicator 

MCi MEi 

Sm
al

l-s
iz

ed
 JS

 
ap

pl
ic

at
io

ns
 

Correlation Coefficient 0.55 0.46 
Significance 0.06 0.25 

Consistency Coefficient 0.65 0. 45 
Significance 0.10 0.23 

Predictability 
R-Square 32.7% 38.2% 
Std. Error 702.3 714.7 
Significance 0.08 0.09 

Discriminative  
power 

Precision 64% 58% 
Recall 56% 48% 
F-measure 61% 53% 

La
rg

e-
si

ze
d 

JS
 

ap
pl

ic
at

io
ns

 

Correlation Coefficient 0.73 0.61 
Significance 0.01 0.04 

Consistency Coefficient 0.68 0.62 
Significance 0.05 0.07 

Predictability 
R-Square 57.7% 52.5% 
Std. Error 598.7 582.3.7 
Significance 0.10 0.02 

Discriminative  
power 

Precision 83% 78% 
Recall 77% 72% 
F-measure 79% 75% 

TABLE 6 – MCi, MEi Reliability 

VI. DISCUSSION 

A. Interpretation of results 
 The results of the analysis of the maintenance process data 
of 60 JS applications show that JS maintenance process 
estimations need to take into consideration metrics related to 
the development team activity. Activity metrics like Open 
Bugs, Corrective Activities and total Activity participated in 
both indices.  The total of Open Bugs that are related to the 
problems reported by the end-user community seem to be an 
important maintenance driver that increases the need of 
maintenance changes along with the amount of effort allocated 
to maintenance activities. Contrary to that increased developer 
activity, and increased number of corrective activities seem to 
limit the total number of changes and the effort required to 
maintain JS applications. Additionally regarding the types of 
maintenance activities performed we observe that Adaptive & 
perfective tasks are the most frequent activities during the 

maintenance of JS applications. Corrective tasks are also very 
frequent while Preventive tasks seem to be limited and stable 
through the maintenance cycle. This finding is in contrast to 
traditional estimation regarding maintenance activities that 
suggest that preventive activities sum up to 50% , while 
Adaptive& perfective sum up to 25% [6][14]. 
Practitioners should keep in mind that Adaptive & perfective 
tasks are expected to occupy more than 40% of the 
maintenance activities. Therefore caution should be taken 
when designing JS applications so as to allow easy 
implementation of new functionalities. Additionally 
practitioners should take into consideration the activity metrics 
that seem to affect the changes and the effort required to 
maintain JS applications. It seems that is preferable to perform 
maintenance activities that include a set of small, frequent 
changes of limited scope contrary to more rare activities that 
usually include extensive changes of wider scope.  
In this context researchers are also advised to further explore 
the maintenance activities performed through time, especially 
in the case of small-sized JS applications, for which we were 
not able to reach a safe conclusion.  Additionally we 
encourage them to concentrate on maintenance activity metrics 
by introducing new metrics related to the activity of the 
development team and the end-user community.  

B. Threads to validity  
 We will discuss the threats to validity identified for the 
current study, according to the guidelines of Runeson [27]. 
 With respect to Construct validity we can identify one 
thread posed by the selection of factors and metrics 
participating in the calculation of the two maintenance indices. 
The estimation indices have been built from a variety of 
metrics, most of them appointed by relevant literature, 
describing both the activity of a project and its internal quality 
and structure. Though we should appoint that several object-
oriented metrics were not included in the model due to the fact 
that JS language primary to 2017, did not support the clear 
definition of classes. Therefore a replication of the study in 
more recent JS projects can shed light regarding the effect of 
object-oriented metrics to the effort required to maintain JS 
applications. We acknowledge though that the maintainability 
indicators should be customized when the proposed 
methodology is applied in the context of proprietary software. 
 Internal Validity is not applicable in the scope of this 
study, since it is not our target to identify causal relationships 
between the maintenance effort and the associated factors or 
metrics. With respect to Reliability we believe that the 
followed research process ensures the reliability and the safe 
replication of our study. The data collection process was fully 
automated with the help of the tools presented in the Case 
Study Design Section while the data analysis methods adopted 
are also well-known, popular statistical methods.  Therefore 
we believe that the re-production of the case study can be 
easily performed by any interested researcher. 
 Concerning the External validity and in particular the 
generalizability supposition, changes in the findings might 
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occur if the applications for which the sample releases are 
analyzed are altered. The results certainly can be applied to 
projects implemented with JS programming language but their 
transferability to other non scripting languages is limited. Also 
since our data set is based on open source projects we 
acknowledge the fact that our results might need customization 
when applied to closed source software. While the majority of 
closed source JS applications is based on open source JS 
libraries, we believe that our results show a tendency when it 
comes to estimating the maintenance effort of JS applications. 
A future replication of this study, on maintenance data from 
other projects, even closed source, would be valuable to verify 
these findings. 

VII. CONCLUSIONS 
 Estimating the maintenance effort of software applications 
is a challenging task as it depends on a variety of factors and 
aspects. Tin this study we performed a case study on 60 
JavaScript applications and analyzed 5.788 releases in order to 
highlight the factors of significant importance on estimating 
maintenance changes and effort. We developed and evaluated 
two maintenance indices, namely Maintenance Changes index 
and Maintenance Effort index. The evaluation process showed 
that both indices present very satisfying results with respect to 
the validation criteria of IEEE standard.  
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