
Examining the Reusability of Smart Home
Applications: A Case Study on Eclipse

Smart Home

Paraskevi Smiari1(&), Stamatia Bibi1, and Daniel Feitosa2

1 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece

{psmiari,sbibi}@uowm.gr
2 Data Research Centre, University of Groningen, Groningen, The Netherlands

d.feitosa@rug.nl

Abstract. Smart Homes consist of a plethora of IoT devices most of which
developed by different manufacturers. To handle the diversity of IoT devices
within the context of Smart Home automation, literature has suggested the use of
frameworks. In this paper we argue that developers can benefit from such
frameworks as a solution to build flexible and easily extendable systems by
reusing their components. For this purpose, we explore the reuse opportunities
that can be offered by Eclipse Smart Home (ESH) framework. In particular, we
performed a case study and analyzed 107 packages from the ESH framework
that offered 240 reusable components to the OpenHab application. We inves-
tigated (a) which types of functionality are mostly facilitated for reuse (b) which
types of reuse are mostly adopted and what is the integration effort required
(c) what is the quality of the reused components and compared them to the
components built from scratch. The results of the case study suggest that: the
main functionality reused is the one related to Interface Adapters and the main
type of reuse is Variable Type. Regarding the effort for integrating the reused
components it can range from 38 lines of code to 1421 lines of code. Moreover,
the quality of the reused components is slightly improved compared to the rest
of the components built from scratch.

Keywords: Smart Home � IoT applications � Reusability � Effort estimation �
Flexibility � Extendibility

1 Introduction

Since the last decade, the emerging paradigm of the Internet of Things (IoT) dominates
the Smart City [15] landscape, offering a range of citizen services [34] that include
among others, healthcare, education, energy consumption, and home automation.
According to ABI1, the research of the realization of the Smart City concept should
start from the Smart Home. At the moment the Smart Home revenue amounts at 69,551

1 https://www.smartcitiesworld.net/special-reports/special-reports/why-the-smart-city-could-
increasingly-start-at-home.

© Springer Nature Switzerland AG 2019
X. Peng et al. (Eds.): ICSR 2019, LNCS 11602, pp. 232–247, 2019.
https://doi.org/10.1007/978-3-030-22888-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_16&domain=pdf
https://www.smartcitiesworld.net/special-reports/special-reports/why-the-smart-city-could-increasingly-start-at-home
https://www.smartcitiesworld.net/special-reports/special-reports/why-the-smart-city-could-increasingly-start-at-home
https://doi.org/10.1007/978-3-030-22888-0_16

million dollars and is expected to present an annual growth of 20.3%, while the
penetration of Smart Home technologies in households is still in its infancy. By 2019,
9.5% of households have already adopted Smart Home technologies, a percentage that
is expected to hit 22.1% by 20232. IoT devices are the key concept in Smart Homes to
manage energy, security, lighting and appliances [1]. Smart Homes consist of a ple-
thora of IoT devices (i.e., sensors and meters) that need to cooperate and are mostly
developed by different manufacturers, as well as designed and implemented with
heterogeneous technologies. Therefore, Smart Home applications need to be flexible so
as to manipulate the individuality of each device [12], and also extendable so as to
integrate new devices [28].

To handle this inherit diversity of IoT devices within the context of Smart Home
automation, literature has suggested the use of frameworks that are based on highly
modularized software building blocks [11, 12, 25]. In these frameworks, despite the
fact that they are very large and complex, one can identify a core set of concepts (i.e.
Devices and Controllers) which can enable reuse. Therefore, developers can benefit
from such frameworks as a solution to build flexible and easily extendable systems by
reusing their components. Currently there are several available Open Source Software
frameworks3 with big support from the community that can facilitate reuse. The main
challenges that an engineer confronts while reusing components from one of these
frameworks are summarized as follows:

(a) Select the type of functionality to reuse. The functionalities offered by Smart
Home frameworks can be classified based on the requirement that they imple-
ment. For example, a component can be related to a core Smart Home purpose
(i.e., a Device) and therefore increase its potential reuse or can implement specific
details (i.e., Visualization Graphs) and decrease its potential reuse.

(b) Plan the type of reuse and the effort required for integrating the reused compo-
nents. The type of reuse can vary from simply using components as they are, to
implementing new functionalities on the reused components for integrating them.
In the last case it is important to have an approximation of the effort required to
integrate the reused component, which can be measured as the time required to
apply the changes or the amount of new lines of code added.

(c) Ensure that the quality of the reusable components does not compromise the
overall quality of the application. For this purpose, it is important to examine the
quality aspects that are important for Smart Home applications and make sure that
they do not present quality differences with the rest of the application developed
from scratch.

In this study we explore how the aforementioned challenges are confronted when
reusing components from the popular Eclipse Smart Home (ESH) framework that is
used as the ‘source’ application. ESH was selected because it is frequently used in
research [19, 21, 33], has a strong support from industrial players like Bosch and
QIVICON, and is often reused for building commercial products (e.g., Mixtile Hub,

2 https://www.statista.com/outlook/279/100/smart-home/worldwide.
3 https://www.eclipse.org/smarthome/, https://www.openhab.org/, https://www.home-assistant.io/.

Examining the Reusability of Smart Home Applications 233

https://www.statista.com/outlook/279/100/smart-home/worldwide
https://www.eclipse.org/smarthome/
https://www.openhab.org/
https://www.home-assistant.io/

Coqon). As a ‘target’ application, we employ the OpenHab project, which is based on
ESH. OpenHab takes advantage of the abstraction level that ESH provides and offers a
holistic platform that supports different devices under one design. As part of this study
we analyzed 107 packages from the ESH framework, which offers 240 reusable
components to OpenHab. Our results showed that the main functionality reused is the
one related to Interface Adapters, the main type of reuse is Variable Type and the effort
for integrating the reused components can range from 38 lines of code to 1421 lines of
code. Moreover, the quality of the reused components is slightly improved in com-
parison to the rest of the components built from scratch; however, without presenting a
statistically significant difference.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the case study design whereas Sect. 4 presents the results obtained
from the case study. Finally, Sect. 5 discusses the results and addresses the threats to
validity of this study and Sect. 6 concludes the paper and presents ideas for future
work.

2 Related Work

Software reuse is a widely known and used technique for the creation of a new software
product that is based on the adoption of existing software components [30]. Among the
major benefits offered by software reuse is the minimization of the cost and the effort
required to develop an application [13]. Several studies [26, 31] mention that increased
productivity along with cost reduction is among the main objectives of software reuse.
This is achieved through placing emphasis on identifying and integrating reusable
components instead of designing and implementing new functionalities from scratch [6,
16]. Another benefit of software reuse is the improvement of software system flexibility
[10, 31]. According to Jatain et al., [10] development based on components increases
significantly the system flexibility. This is achieved through the separation of the stable
parts of systems from the specification of their composition [10]. Software reuse is also
related to the increased quality of the final product [26] in the sense that the reuse of
software components that are already tested and validated, increases the probability of
developing applications of increased quality [26].

Discovering the reusable software is a challenge itself as it is important to effi-
ciently prioritize candidate assets for reuse and select the most appropriate ones [2].
Research has focused on data mining techniques [22, 32] for identifying reusable assets
by taking into consideration several software quality metrics. Evaluating reusable
components through a set of metrics and predicting whether or not are qualified as
reusable [17] is very important when it comes to discovering reusable software.
Moreover, clustering techniques for identifying components of similar functionality
and reusability have been thoroughly discussed by Jatain et al. in [10].

Another major challenge that arises when it comes to the reusability of the software
is adapting the components that are being reused into the new environment that is being
developed [27]. It is often required to parameterize the reusable components in order to
integrate them in the existing environment [9, 18]. Refactoring in a component that is
being reused, or in the project that reuses it, can have the opposite effect and can be

234 P. Smiari et al.

time consuming, especially if the new environment is demanding [5]. Therefore, it is
important to place special emphasis on carefully planning the integration of the reu-
sable artifact into the new application [7].

To the best of our knowledge, the practice of software reuse in the IoT development
process has not been explored so far, despite the numerous benefits that it offers. In this
study we go beyond current literature by examining the software reuse potentials for
building home automation IoT applications. In particular, we investigate to which level
the aforementioned reuse goals are achieved and explore the challenges of reuse that
are related to the quality of the reused components and the effort required to integrate
the components to the new environment.

3 Case Study Design and Evaluation

In this section, we present the design of the case study performed to assess the
reusability potentials of IoT frameworks. We report the details of this case study based
on the guidelines of Runeson et al. [24]. In Sect. 3.1, we present the research objectives
of the study. In Sects. 3.2 and 3.3, we describe the two applications that participate in
this study and the data collection processes. Finally, we provide an overview of the data
analysis process in Sect. 3.4.

3.1 Research Objectives and Questions

The overall goal of this case study is to examine the reuse potentials for IoT home
automation application frameworks in terms of (a) the type of functionality of the
component that is being reused (b) the level of customization required for integrating
the reused component and (c) the quality of the final product. To ease the design and
reporting of the case study, we split the aforementioned goal into five research ques-
tions, based on the analysis perspectives that we introduced in Sect. 1, as follows:

RQ1: Which types of functionality offer the most components in the context of IoT
home automation application reuse?

This research question aims at identifying the types of functionalities that offer the
larger pool of components. The classification scheme adopted to assess the types of the
functionalities offered by the reused components was inspired from the concept of
“clean architecture” [14]. The discipline of Clean Architecture defines four core types
of functionalities namely, the Enterprise Business Rules, the Application Business
Rules, the Interface Adapters, and the Frameworks & Drivers [14]. The analysis in this
question will provide an overall view of the number of the reused components offered
by each type of functionality.

RQ2: Which types of reuse offer the most components in the context of IoT home
automation application reuse?

This research question aims at identifying the types of reuse that are mostly adopted in
the context of IoT applications. We consider three types of reuse, Variable type reuse,
Static method or Constant value reuse, and Implementation of interface or parent class

Examining the Reusability of Smart Home Applications 235

(see Sect. 3.3). The analysis in this question will provide an overall view of which
types of reuse is expected to be adopted.

RQ3: What is the level of customization required to integrate the reused components?

This research question explores the effort required to integrate a reused component in
the new project. The integration effort, in our case, is measured as the lines of code for
implementing new functionalities related to the reused artifacts (see analytically in
Sect. 4). The output of this research question will provide insights on the level of
changes required for each type of functionality reused.

RQ4: What is the quality of the reused components with respect to the functionalities
offered?

This research question investigates the quality of the reused components by assessing
four indices of the QMOOD model [3], Reusability, Flexibility, Extendibility and
Functionality. We selected these quality aspects as two of them (Reusability and
Functionality) are highly related to the reusability of the new application [4, 20], while
the other two (Flexibility and Extendibility) are appointed as important quality aspects
of IoT applications [28]. The result of this research question will be an analysis of the
quality of the reused components per type of functionality offered.

RQ5: Is there a difference between the quality of the components developed with reuse
and the quality of the components developed from scratch and how is this reflected to
the different types of the functionalities offered?

This research question compares the quality of the components developed with reuse
and the quality of the components developed from scratch, by assessing the four indices
of the QMOOD model [3]: Reusability, Flexibility, Extendibility and Functionality. The
result of this research question will provide insights on whether reuse of components in
IoT application development is expected to bring quality benefits. As a second step, we
will diversify between the quality of components built with and without reuse with
respect to the offered functionalities.

3.2 Case Selection

This section presents the details of the two projects that were selected for examining the
reuse potentials in IoT applications. The first part of this section presents the context of
the Eclipse Smart Home application, which is considered as the ‘source’ of the reusable
components. The second part of this section presents the context of OpenHab 2, which
is considered as the ‘target’ of the reusable components.

Eclipse Smart Home
The Eclipse Smart Home (ESH) project is an open source framework for developing
home automation IoT applications4 that have a strong focus on heterogeneous envi-
ronments. It is comprised of a set of OSGi bundles that support the integration of
different protocols and standards. ESH was launched in 2014 and it is part of the

4 https://www.eclipse.org/smarthome/, https://iot.eclipse.org/.

236 P. Smiari et al.

https://www.eclipse.org/smarthome/
https://iot.eclipse.org/

Eclipse IoT, which comprises four projects providing open source implementations of
IoT protocols, services and frameworks. The community of ESH is composed of over
179 active contributors, while more than six companies have adopted this framework
for developing on top IoT applications. Currently, the project has been forked over 829
times and has a history of four releases.

In this study, we explored ESH, version ref-0.10.0 as the ‘source’ that provides the
reusable components for building IoT applications on top. Currently, ESH provides all
the benefits of an open source project, such as a big support from the community and
cost efficiency which renders it a primary choice when it comes to reusing components
for building IoT solutions. Additionally, ESH is consistently used for empirical
research the last years in the context of building automations [19], monitoring envi-
ronments for smart and secure homes [21, 33], and from the perspective of user
interface [29]. Table 1 presents the summary statistics of the two projects adopted in
this study.

OpenHab2
The Open Home Automation Bus (OpenHab) is an open source, technology agnostic
home automation platform launched on February 2010. The platform has been actively
maintained in the last 9 years and it is a solution built upon the ESH framework. The
founders of OpenHab, afterwards, donated the core framework of the application to the
Eclipse Foundation so as to benefit from the rigid intellectual property management and
clear contribution processes that Eclipse provides. For the purposes of this study, we
use the latest version of OpenHab 25 (v2.4). The functionalities offered by OpenHab 2
are split into two projects: OpenHab Core and OpenHab AddOns. The OpenHab Core
is the repository in which all the core framework bundles are implemented, whereas
OpenHab AddOns is a repository that contains all the bindings and services. Bindings
are responsible for integrating physical hardware, external systems, and web services in
OpenHab.

Table 1. Eclipse Smart Home and OpenHab projects.

Project Packages Nof. classes LoC Releases

Eclipse S. Home 107 2197 363.735 4
Eclipse S. Home (r)* 47 240 139.174 4
OpenHab 147 3384 394.788 5
OpenHab (wr)** 140 704 259.661 5

* Statistics of the Eclipse S. Home packages, classes, etc. being
reused
** Statistics of the OpenHab packages, classes, built with reuse

5 https://www.openhab.org/.

Examining the Reusability of Smart Home Applications 237

https://www.openhab.org/

In this case study, OpenHab is the ‘target’ of the reused components and will serve
as a sample to explore the benefits acquired from reuse with respect to the different
types of functionalities reused. We selected to explore the level of reuse performed in
the context of the development of OpenHab because: (a) it is a fully functional and
‘open’ platform that can be considered as an end-product instead of a framework (that
is the case of Eclipse Smart Home); (b) it is open source, which allows as to fully
explore all the types of reuse potentials; (c) it is very popular, counting almost 30,000
members, supporting the interface of over 1,500 IoT devices and gadgets; and (d) it can
be considered as a representative of closed-source commercial projects (e.g., Mixtile,
Qivicon) that are based on Eclipse Smart Home Framework to implement end-product
solutions.

3.3 Data Collection

In order to answer the research questions of this study we followed the process sum-
marized in the next steps:

Step1: We calculated the Actual Reuse of each component of ESH, using the
information reported in the Maven6 repository. We isolated the packages that are
being reused, mapped these packages to the related OpenHab packages and counted
the Number of Components that each ESH package offers and the Lines of Code
offered to OpenHab.
Step2: The second step was to classify the Type of Functionality offered from ESH
reused packages into the four categories of Clean Architecture, Enterprise Business
Rules, Application Business Rules, Interface Adapters, and Frameworks & Drivers.
For this purpose, we extracted the semantics behind every ESH class. For example,
the class Thing represents everything that can be physically added to the system. It
is one of the core classes in ESH and part of the core architecture which makes it an
Entity and, therefore, part of the Enterprise Business Rules. In Table 2 we provide
the keywords used to classify each class into one of the four categories of
functionalities.
Step3: As a next step we classified the Type of Reuse in one of the following
classes: Variable type reuse, Static method or Constant value reuse, and Imple-
mentation of interface or parent class. By Variable type reuse we mean an instan-
tiation of a new object from the reused class that has not been subject to changes.
Static method or constant value reuse refers to the utilization of a parameter or
function of a reused class that has not been subject to changes. Implementation of
interface, or parent class refers to the extension of the reused class by adding new
functionalities or implementing existing definitions.
Step 4: Next, we recorded the New Lines of Code developed for integrating the
reused components. For this purpose, we counted the lines of code developed in the
case of Implementation of interface, or parent class type of reuse, considering that
in the other two types of reuse no changes have been performed, since in the cases

6 https://mvnrepository.com/.

238 P. Smiari et al.

https://mvnrepository.com/

were OpenHab adds new functionalities in an ESH class always occurs from the
inheritance of a class.
Step 5: As a final step we recorded the Quality of the Components participating in
the reuse process by calculating the metrics defined by Bansiya et al. for assessing
the Functionality, the Extendibility, the Reusability, and the Flexibility [3]. We
calculated these four quality metrics for the Reused (R) components coming from
ESH and for the components developed With Reuse in the OpenHab project. To
have a holistic view of the quality obtained with and without reuse, we also cal-
culated the Quality of the Components developed Without Reuse (WR). Table 2
presents the metrics considered within the scope of this study and their description.

3.4 Data Analysis

The data analysis of this case study includes the calculation of the frequency and
descriptive statistics, and the application of Analysis of Variance (ANOVA).

For RQ1, we provide the frequency statistics of the total number of components
and packages offered by ESH with respect to their Type of Functionality. Additionally,
ANOVA is performed to identify whether the Number of Components offered by the
different Types of Functionality varies significantly.

Table 2. Design metrics

Type Metric Description

Reuse
metrics

Development with
reuse

Shows if a component has been built with reuse (Yes/No)

Type of
functionality

Enterprise Business Rules (keyword = Thing)
Application Business Rules (keyword = Configuration)
Interface Adapters (keyword = Handler)
Frameworks & Drivers (keyword = SiteMap)

Type of reuse Variable Type
Static method call or Constant value
Implementation of Interface or Parent class

Number of
components (NoC)

Number of components reused (each component corresponds to one class)

Total reuse of
components (TRC)

Total number of times a component is reused in OpenHab

Effort
metrics

New lines of code Lines of code added by OpenHab
Lines of code
reused

Lines of code provided by reusable components of ESH

Quality
metrics

Functionality 0.12 * CAM + 0.22 * NOP + 0.22 * CIS + 0.22 * DSC + 0.22 * NOH

Extendibility 0.5 * ANA-0.5 * DCC + 0.5 * MFA + 0.5 * NOP
Reusability −0.25 * DCC + 0.25*CAM +0.5 * CIS + 0.5 * DSC
Flexibility 0.25 * DAM-0.25 * DCC + 0.5 * MOA + 0.5 * NOP

CAM = Cohesion Among Methods of Class, NOP = Number of Polymorphic Methods, CIS = Class
Interface Size, DSC = Design Size in Classes, NOH = Number of Hierarchies, ANA = Average Number of
Ancestors, DCC = Direct Class Coupling, MFA = Measure of Functional Abstraction, DAM = Data Access
Metric, MOA = Measure of Aggregation [3]

Examining the Reusability of Smart Home Applications 239

Concerning RQ2, we discuss the frequency with which the different Types of Reuse
are implemented by providing the relevant pie chart.

For addressing RQ3 the descriptive statistics (min, max, mean, st.dev) are presented
for the offered Type of Functionality and the Lines of Code required for integrating the
reused components. In this case, ANOVA is performed to identify whether different
types of functionality offer components that present significant differences in the effort
required for their integration.

In RQ4, we perform ANOVA to identify whether there are significant differences in
the quality (Extendibility, Flexibility, Reusability, Functionality) of the provided
components for the different Types of Functionality. The descriptive statistics are also
presented.

Similarly, in RQ5, we perform ANOVA to identify whether there are significant
differences in the quality (Extendibility, Flexibility, Reusability, Functionality) of the
packages developed with reuse and the packages developed without reuse. In this case,
the grouping variable is the Development with Reuse.

4 Results

In this section, we present and interpret the results of this case study, organized by
research question, and based on the data analysis presented in Sect. 3.4.

RQ1 – Which types of functionality offer the most components in the context of IoT
home automation application reuse?

Table 3 presents the summary statistics for the four types of functionality offered by
ESH, ranked by the frequency of the reused components (see RF - column 5). It can be
observed that the highest number of components (see CR – column 4) offer func-
tionality related to Frameworks & Drivers and Interface Adapters. In terms of the
highest reuse frequency per functionality type components (see RF – column 5), we
observed that the maximum percentage is recorded for two functionality types:
Application Business Rules and Frameworks & Drivers. On the other hand, the least
reused components offer functionality related to Enterprise Business Rules.

Table 3. Reuse per type of functionality

Type of functionality TP TC PR CR RF

Application Business Rules 22 214 16 53 0.25
Frameworks & Drivers 42 567 26 97 0.17
Interface Adapters 38 1224 25 81 0.07
Enterprise Business Rules 5 192 1 9 0.05

TP: Total number of packages in ESH per functionality
type.
TC: Total number of components per functionality type.
PR: Number of packages of ESH reused by OpenHab per
functionality type.
CR: Number of components of ESH reused by OpenHab
per functionality type.
RF: Reuse Frequency = CR/TC

240 P. Smiari et al.

To investigate if the aforementioned differences are statistically significant, we
performed an Analysis of Variance (ANOVA), which suggested that there are not
significant differences in the reusable components of the different types of functionality
(F: 2.276, sig: 0.087).

RQ2 – Which types of reuse offer the most components in the context of IoT home
automation application reuse?

Concerning RQ2, we discuss the frequency of the different Types of Reuse (see
Fig. 1). The results of the pie chart suggested that most of the reused components are
used directly as Variable types or Calls to static methods/constant values. However, the
implementation of new functionality was required in 24.2% of the reused components.
It seems that in the majority of the cases reuse is performed without any changes of
integration effort. This can be interpreted intuitively since, as mentioned in RQ1, the
majority of the reused components offer core functionality (i.e., Application Business
rules and Enterprise Business Rules), which are the least likely to require changes.

RQ3 – What is the level of customization required to integrate the reused
components?

To investigate the effort required for the integration of the components with respect to
the different types of reused functionality, we calculated the descriptive statistics and
performed ANOVA for the variable New Lines of Code, but only for the cases where
the reuse type is Implementation of interface/parent class. In Table 4 we present the
summary statistics of the effort required to integrate the components of different
functionality types. The first column shows the value of TRC variable that indicates
accumulatively the total number of the times that the components of different func-
tionality types have been reused. It can be observed in Table 4 that the type of func-
tionality that requires the greatest effort on average is Interface Adapters. This result
can be interpreted intuitively since Interface and Adapters components are responsible
for integrating and supporting a wide range of smart devices, a fact that requires certain
code for the customization of the generic components being reused.

24. 28%

24. 28%

38. 44%

Implementa on of
interface or Parent class
Sta c method call or
Constant value
Variable type

Fig. 1. Pie Chart (Frequency of usage types)

Examining the Reusability of Smart Home Applications 241

To investigate if the aforementioned differences are statistically significant, we
performed an ANOVA (F: 10.140, Sig: < 0.001), which showed a significant differ-
ence between groups in OpenHab with respect to the effort required when it comes to
their integration.

RQ4 – What is the quality of the reused components with respect to the function-
alities offered?

In Table 5 we present the results of the quality of the reused components provided by
ESH.

For this research question, we examined Reusability, Flexibility, Functionality, and
Extendibility with respect to the offered functionalities. In terms of Reusability, the
differences are small, with the exception of Enterprise Business Rules, which is
observed to have a higher mean value in comparison to the other functionality types.
Additionally, the results of ANOVA calculated between groups (F: 0.196, Sig: 0.899)

Table 4. Effort required to integrate the reused components per type of functionality.

Type of functionality TRC Mean Std. Dev Min Max

Enterprise Business Rules 1 72.00 – 72 72
Application Business Rules 9 208.44 95.06 94 387
Interface Adapters 357 237.37 221.29 42 1421
Frameworks & Drivers 144 155.23 85.02 38 662

Table 5. Quality of the ESH and OpenHab components per type of functionality offered.

Type of functionality Quality ESH OpenHab

Enterprise Business Rules Reusability 15.71 6.22
Flexibility 0.07 0.25
Functionality 5.67 3.02
Extendibility 0.60 0.1

Application Business Rules Reusability 10.19 90.73
Flexibility 0.15 1.00
Functionality 3.28 42.06
Extendibility 0.32 1.51

Interface Adapters Reusability 12.16 12.28
Flexibility 0.37 0.26
Functionality 3.43 6.19
Extendibility 0.30 0.50

Frameworks & Drivers Reusability 9.65 11.67
Flexibility 0.13 0.28
Functionality 2.93 5.57
Extendibility 0.09 0.34

242 P. Smiari et al.

confirmed that there is no significant difference between groups. In terms of Flexibility,
the differences are also small, with the exception of Interface Adapters having higher
mean value in Flexibility than the other types of functionality. After the calculation of
ANOVA, the results (F: 0.532, Sig: 0.663) do not suggest the existence of significant
differences. In terms of Functionality, we observed one noticeable distinction about
Enterprise Business Rules, having a somewhat higher mean value, although only one
package can be described with that functionality. The results of ANOVA (F: 0.345,
Sig: 0.793) did not suggest the existence of significant differences. Concluding with
Extendibility, the differences are negligible, and Enterprise Business Rules display the
highest mean value, while the results of ANOVA calculated between groups (F: 1.953,
Sig: 0.135) did not suggest the existence of significant differences.

In Table 5 we also present the results of the quality of the components developed
with reuse in OpenHab. In terms of Reusability we observed difference in the mean
values with higher being the Application Business Rules. Additionally, the results of
ANOVA calculated between groups (F: 2.620, Sig: 0.05) suggested the existence of
significant differences. In terms of Flexibility the difference between the mean values
across packages offering different functionality types is very small, a fact that is also
confirmed by the calculation of ANOVA (F: 0.155, Sig: 0.927). Furthermore, in terms
of Functionality the results show that there is no significant difference, ANOVA (F:
2.285, Sig: 0.082), between functionality types with Application Business Rules having
the highest mean value. Concluding with Extendibility we can observe that Application
Business Rules and Interface Adapters have the highest mean values though there isn’t
a statistically significant difference between functionality types ANOVA (F: 1.428, Sig:
0.237).

RQ5 – Is there a difference between the quality of the components developed with
reuse and the quality of the components developed from scratch and how is this
reflected to the different types of the functionalities offered?

In Table 6 we compared the quality of the OpenHab packages that were developed
with reuse (140 packages) to those developed without reuse (7 packages). In terms of
Reusability there is a difference between components developed with reuse and com-
ponents developed from scratch. We observed that components developed with reuse
have a significantly higher value, as confirmed by the calculation of ANOVA (F: 6.096,
Sig: 0.015). In terms of Flexibility the packages developed with reuse showed higher
values. From the calculation of ANOVA (F: 5.224, Sig: 0.024), we noticed a significant
difference between groups. In terms of Functionality, we observed a substantial dif-
ference, in which the components developed with reuse show a greater average value
with the ANOVA (F: 6.194, Sig: 0.014) confirming the significant difference. The final
quality metric we explored is Extendibility, which did not show differences between
the two groups, although components developed from scratch showed a higher value.
After the calculation of ANOVA (F: 0.419, Sig: 0.519).

Examining the Reusability of Smart Home Applications 243

5 Discussion

The results of this paper revealed that the top two types of component functionality that
are more likely to be reused in the context of Smart Home application development are:
Application Business Rules and Interface Adapters. Application Business Rules and
Enterprise Business Rules types of functionality are the least likely to require inte-
gration effort as they are usually implemented as Variable type or Static method
call/constant value. On the other hand, components implementing Interface Adapters
are the ones that require significantly more effort to be integrated in the new application
(on average, 234 Lines of Code). Regarding the quality of the reused components, it is
observed that there are no significant differences between the components offering
different types of functionality. Finally, regarding the difference between the quality of
the packages build with reuse and the packages built without reuse we observe that
there are significant differences in terms of Functionality, Reusability and Flexibility,
showing that software reuse can lead to increased quality of the application.

The results of this study provide useful information and guidance to practitioners
on planning the reuse of components in the context of Smart Home application
development. In particular, some general conclusions that we reached from this case
study are:

• Engineers of IoT, Smart Home applications can greatly benefit from reusing a core
set of general purpose components, which in our case are the Enterprise Business
Rules and the Applications Business Rules. These components, in their majority, can
be reused as is without requiring any integration effort.

• The reuse of components offering functionality related to Interface Adapters can
also be beneficial, since this type of functionality offered the most reused compo-
nents. However, reusing components related to Interface and Adapters required
certain integration efforts for implementing or extending the classes reused.

• In terms of the four examined quality characteristics, components of type Interface
Adapters seem to present the highest potentials of being reused. This can be
interpreted intuitively, as these types of components should be hardware-agnostic
and abstract the details of the Application Business Rules.

Based on the results of this case study, we encourage researchers to:

• Further explore the reuse of components in the context of IoT application devel-
opment for Smart Home automation by examining other Open Source projects (e.g.,
Home Assistant). Researchers can investigate whether the same type of compo-
nents, as appointed by this study, have been systematically reused. The results of

Table 6. OpenHab per quality type

Developed with reuse Reusability Flexibility Functionality Extendibility

No 2.00 0.14 0.89 0.57
Yes 15.74 0.26 7.69 0.48

244 P. Smiari et al.

this study can also guide researchers in assessing the appropriateness of the reused
components.

• Introduce a process for systematic, planned reuse of IoT components. Such a
process would define clear procedures for: (a) identifying and sorting the reusable
components, (b) integrating the reused components into the new applications, and
(c) maintaining these components.

To conclude this section, we refer to the threats to validity of this case study [24].
A possible threat to construct validity is related to the metrics that are used to answer
our research questions. Regarding the effort metrics, we believe that the new lines of
code are indicators of the effort required to integrate the reused components. This
metric has been also adopted in [8] and [23] for assessing the reuse effort. Nevertheless,
we acknowledge that there are other metrics that can also be used. For the quality
assessment of the reused components, we have used QMOOD, which is an established
quality model that has been rigorously validated [3]. However, we acknowledge that
other quality models could lead to variations in the observed results. With regard to
reliability, we acknowledge potential researchers’ bias during the data collection due to
the manual classification of components into types of functionality performed by the
first author. To mitigate reliability threats the second and third author validated the
results. Finally, we acknowledge that the external validity, is threatened by the fact that
the entire data set is taken from one single reuse case between Eclipse Smart Home and
OpenHab. However, we believe that the results can be generalize in the context of
reuse of Smart Home automation frameworks since the majority of applications are
built from modular blocks that can be easily classified in the functionality types
employed in this study [14]. Threats to internal validity are not discussed in this paper,
as we did not seek to identify causal relations in this study.

6 Conclusions

In this paper, we explored the reuse opportunities stemming from the popular Eclipse
Smart Home framework for building home automation IoT applications. We performed
a case study and investigated the types of functionality that can be reused, the effort
required for integrating the reused components and whether or not such reuse leads to
quality benefits. We analyzed 107 packages from the ESH framework and 240 reused
components from the OpenHab application. The results of this case study suggest that:
the main reused functionality is related to Interface Adapters; the main type of reuse is
Variable Type; and the effort for integrating the reused components can range from 38
lines of code to 1421 lines of code. The quality of the reused components is slightly
higher compared to components built from scratch. As future work we intend to further
explore reuse opportunities within home automation IoT frameworks by examining
other open source frameworks (e.g., Home Assistant), retrieving candidate compo-
nents, and comparing them.

Examining the Reusability of Smart Home Applications 245

Acknowledgement. This research was co-funded by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation,
grant number T1EDK-04873.

References

1. Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homes—past, present, and
future. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1190–1203 (2012)

2. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J.: Selection of third party software in Off-
The-Shelf-based software development—an interview study with industrial practitioners.
J. Syst. Softw. 84(4), 620–637 (2011)

3. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

4. Benni, B., Mosser, S., Moha, N., Riveill, M.: A delta-oriented approach to support the safe
reuse of black-box code rewriters. In: Capilla, R., Gallina, B., Cetina, C. (eds.) ICSR 2018.
LNCS, vol. 10826, pp. 164–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90421-4_11

5. Brereton, P., Budgen, D.: Component-based systems: a classification of issues. Computer 33
(11), 54–62 (2000)

6. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components.
Computer 24(2), 61–70 (1991)

7. Crnkovic, I., Larsson, M.: Challenges of component-based development. J. Syst. Softw. 61
(3), 201–212 (2002)

8. Gui, G., Scott, P.D.: Coupling and cohesion measures for evaluation of component
reusability. In: Proceedings of the 2006 International Workshop on Mining Software
Repositories, pp. 18–21. ACM (2006)

9. Gupta, A., Cruzes, D., Shull, F., Conradi, R., Rønneberg, H., Landre, E.: An examination of
change profiles in reusable and non-reusable software systems. J. Softw. Maint. Evol. Res.
Pract. 22(5), 359–380 (2010)

10. Jatain, A., Nagpal, A., Gaur, D.: Agglomerative hierarchical approach for clustering
components of similar reusability. Int. J. Comput. Appl. 68(2), 33–37 (2013)

11. Kamilaris, A., Trifa, V., Pitsillides, A.: HomeWeb: an application framework for Web-based
smart homes. In: 2011 18th International Conference on IEEE Telecommunications (ICT),
pp. 134–139 (2011)

12. Kim, J.E., Boulos, G., Yackovich, J., Barth, T., Beckel, C., Mosse, D.: Seamless integration
of heterogeneous devices and access control in smart homes. In: 2012 8th International
Conference on IEEE Intelligent Environments (IE), pp. 206–213 (2012)

13. Ma, S., Yang, H., Shi, M.: Developing a creative travel management system based on
software reuse and abstraction techniques. In: 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 2, pp. 419–424. IEEE (2017)

14. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and Design.
Prentice Hall Press, Upper Saddle River (2017)

15. Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., Guizani, S.: Internet-of-
things-based smart cities: recent advances and challenges. IEEE Commun. Mag. 55(9), 16–
24 (2017)

16. Ostertag, E., Hendler, J., Prieto-Díaz, R., Braun, C.: Computing similarity in a reuse library
system: an AI-based approach. ACM Trans. Softw. Eng. Methodol. 1(3), 205–228 (1992)

246 P. Smiari et al.

http://dx.doi.org/10.1007/978-3-319-90421-4_11
http://dx.doi.org/10.1007/978-3-319-90421-4_11

17. Padhy, N., Singh, R.P., Satapathy, S.C.: Software reusability metrics estimation: algorithms,
models and optimization techniques. Comput. Electr. Eng. 69, 653–668 (2018)

18. Pacheco, C.L., Garcia, I.A., Calvo-Manzano, J.A., Arcilla, M.: A proposed model for reuse
of software requirements in requirements catalog. J. Softw. Evol. Process 27(1), 1–21 (2015)

19. Panwar, A., Singh, A., Kumawat, R., Jaidka, S., Garg, K. Eyrie smart home automation
using Internet of Things. In: 2017 Computing Conference, pp. 1368–1370. IEEE (2017)

20. Paschali, M.-E., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Stamelos, I.: A case study
on the availability of open-source components for game development. In: Kapitsaki, G.M.,
Santana de Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp. 149–164. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-35122-3_11

21. Perera, C., McCormick, C., Bandara, A.K., Price, B.A., Nuseibeh, B.: Privacy-by-design
framework for assessing internet of things applications and platforms. In: Proceedings of the
6th International Conference on the Internet of Things, pp. 83–92. ACM (2016)

22. Prakash, B.A., Ashoka, D.V., Aradhya, V.M.: Application of data mining techniques for
software reuse process. Procedia Technol. 4, 384–389 (2012)

23. Prieto-Diaz, R., Freeman, P.: Classifying software for reusability. IEEE Softw. 4(1), 6 (1987)
24. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Softw. Eng. 14(2), 131 (2009)
25. Serna, M.A., Sreenan, C.J., Fedor, S.: A visual programming framework for wireless sensor

networks in smart home applications. In: 2015 IEEE Tenth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–6 (2015)

26. Sharma, A., Grover, P.S., Kumar, R.: Reusability assessment for software components.
ACM SIGSOFT Softw. Eng. Notes 34(2), 1–6 (2009)

27. Singh, S., Singh, S., Singh, G.: Reusability of the software. Int. J. Comput. Appl. 7(14), 38–
41 (2010)

28. Smiari, P., Bibi, S.: A smart city application modeling framework: a case study on re-
engineering a smart retail platform. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 111–118. IEEE (2018)

29. Smirek, L., Zimmermann, G., Beigl, M.: Just a smart home or your smart home–a
framework for personalized user interfaces based on eclipse smart home and universal
remote console. Procedia Comput. Sci. 98, 107–116 (2016)

30. Vale, T., Crnkovic, I., De Almeida, E.S., Neto, P.A.D.M.S., Cavalcanti, Y.C., de Lemos
Meira, S.R.: Twenty-eight years of component-based software engineering. J. Syst. Softw.
111, 128–148 (2016)

31. Varadan, R., Channabasavaiah, K., Simpson, S., Holley, K., Allam, A.: Increasing business
flexibility and SOA adoption through effective SOA governance. IBM Syst. J. 47(3), 473–
488 (2008)

32. Wangoo, D.P., Singh, A.: A classification based predictive cost model for measuring
reusability level of open source software (2018)

33. Wen, X., Wang, Y.: Design of smart home environment monitoring system based on
raspberry Pi. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 4259–4263.
IEEE (2018)

34. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart
cities. IEEE Internet Things J. 1(1), 22–32 (2014)

Examining the Reusability of Smart Home Applications 247

http://dx.doi.org/10.1007/978-3-319-35122-3_11

	Examining the Reusability of Smart Home Applications: A Case Study on Eclipse Smart Home
	Abstract
	1 Introduction
	2 Related Work
	3 Case Study Design and Evaluation
	3.1 Research Objectives and Questions
	3.2 Case Selection
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgement
	References

