
REACT - A Process for Improving Open-Source
Software Reuse

Alexander Lampropoulos1, Apostolos Ampatzoglou2, Stamatia Bibi3, Alexander Chatzigeorgiou4, Ioannis Stamelos2
1 Arx.NET Mobile Innovations, Thessaloniki, Greece

2 Department of Informatics, Aristotle University of Thessaloniki, Greece
3 Department of Informatics & Telecommunications, University of Western Macedonia, Greece

4 Department of Applied Informatics, University of Macedonia, Greece
a.lampropoulos@ihu.edu.gr, apamp@csd.auth.gr, sbibi@uowm.gr, achat@uom.gr, stamelos@csd.auth.gr

Abstract— Software reuse is a popular practice, which is con-
stantly gaining ground among practitioners. The main reason for
this is the potential that it provides for reducing development
effort and increasing the end-product quality. At the same time,
Open-Source Software (OSS) repositories are nowadays flourish-
ing and can facilitate the reuse process, through the provision of
a variety of software artifacts. However, up-to-date OSS reuse
processes have mostly been opportunistic, leading to not fully
capitalizing existing reuse potentials. In this study we propose a
process (namely REACT) for improving planned OSS reuse
practices, i.e., we define the activities that a software engineer can
perform to reuse OSS artifacts. To illustrate the applicability of
REACT, we provide an example, in which a mobile application is
developed based upon the reuse of OSS artifacts. To validate the
proposed process we compared the effort required to develop the
application with and without adapting REACT process. Our
preliminary results suggest that REACT may reduce up to 50%
the effort required to build an application from scratch.

Keywords— Software Reuse, Process Improvement, Pilot Study.

I. INTRODUCTION

The fact that open-source software (OSS) code reuse is being
increasingly adopted by software companies and individual
developers, becomes apparent if we take into consideration the
continuous growth of the open-source software community.
Reuse of OSS components in other OSS projects is intense:
the reuse of code from OSS projects represents undoubtedly
thousands of staff years and enormous amounts in develop-
ment costs. In the literature software reuse appears in two ma-
jor forms, planned and opportunistic reuse [6]. However, the
results on the most fitting practice are controversial. Large
organizations report on employing more formalized methods
and software product lines; whereas small and medium size
companies perform more opportunistic reuse [6]. In fact, when
reusing open-source code many developers reuse code oppor-
tunistically by copying and pasting classes or packages to their
own projects. Although the Bazaar approach in open-source
development and reuse seems to be working pretty well, the
more OSS components become widely available, the larger the
need to analyze and systematically handle the reuse process.
Ajila et al. conducted an empirical study which suggested that
an organization can have important productivity and quality
gains, if it implements OSS reuse in a planned way [1]. There-
fore the need of a lightweight process for opportunistic reuse
is considered beneficial for facilitating OSS reuse.

In this paper, we propose the Reusable Artifact and Com-
ponents Adoption (ReACt) process, i.e., a lightweight process

for applying reuse practices exploiting the impressive amount
of source code that is available as open source. The process is
decomposed into three main phases, each one split to a well-
defined number of steps, and producing specific artifacts. To
ease the understanding of the process we present an illustrative
example. The usefulness of applying REACT is assessed
through a pilot study. The rest of the paper is organized as
follows: Section II presents related work, and Section III out-
lines the proposed process. In Section IV, we illustrate
REACT by building a mobile application, based on OSS re-
use. In Section V, we describe the pilot study design that has
been performed for preliminarily assessing the usefulness of
REACT. Finally, Section VI concludes the paper by summa-
rizing our findings and referring to possible future work.

II. RELATED WORK

Software reuse has been on the radar of many researchers and
practitioners due its potential to deliver quantum leaps in pro-
duction efficiencies, while minimizing quality degradation
during the maintenance phase [1]. Early studies focused on
defining processes and tools that would allow the exploitation
of the full potentials of software reuse [3]. Most of these stud-
ies focus on in-house reuse by establishing processes that a
company should follow to develop reusable artifacts for being
reused by the same company. However, in the last years,
through the spread of open source software, third-party soft-
ware reuse is very popular [7] Nowadays in most organiza-
tions software reuse is employed as opportunistic reuse, inte-
grating third-party software that was not initially developed to
be integrated or reused [6].

Open-source Software Reuse is a dominant form of third-
party reuse mainly due to the availability of a variety of open-
source libraries that cover a great range of horizontal and ver-
tical application domains, in many cases being more intense
compared to in-company closed source reuse [7]. Schwittek
and Eicker [10] isolated 36 Java proprietary applications and
explored the level of OSS reuse concluding that on average,
seventy, third-party components are being reused. Research on
OSS reuse the last years concentrates on the types of OSS
reuse and the domains where OSS reuse is more intense.
Among the most popular types of OSS reuse is black-box re-
use [5] that usually requires changes to the existing architec-
ture that will allow the integration of the reusable assets.
White-box reuse on the other hand is limited to components
relatively small in size and in some cases without performing
any changes to the reused artifacts [7], [8]. This paper goes
beyond current research by providing:

 A process to retrieve, evaluate and select the relevant third-
party OSS components for reuse according to the applica-
tion domain of a project.

 A mechanism for assessing the integration cost of the 3rd
party OSS component by evaluating its quality.

 An exemplar application of REACT in a real project for
the implementation of a Mobile Movie Management app.

III. REACT – AN OSS REUSE PROCESS

In this section, we discuss the OSS Reusable Artifact and
Components Adoption (ReACt) process that can be used for
facilitating the reuse opportunities offered by the plethora of
available open-source projects. The proposed process is divid-
ed into three main phases: (a) Reuse Conception, (b) Reusable
Assets Identification, and (c) Reusable Assets Adaptation. The
steps of each phase and the developed artifacts (documenta-
tion artifacts) are depicted in Figure 1. An illustrative example
that will assist the reader understanding the process is present-
ed in Section 4.

Fig. 1. The REACT process for OSS reuse.

Phase 1: Reuse Conception Phase. During this phase the
software engineer is expected to conceptualize the target sys-
tem and defines the basic functional requirements of the appli-
cation. The proposed representation method for functional
requirements is the development of a use case model, i.e., use
case diagram and use case specification (step 1.1), Next, in
order for the software engineer to visualize the target applica-
tion and identify additional requirements that stem from user
interface (UI) design, in step 1.2, the reuser is expected to
build mock-up of UIs (i.e., development of UI prototypes). As
a final step of this phase (step 1.3) the software engineer is
expected to catalogue the requirements that he/she aims to
reuse from existing system. The outcomes of this phase are:
the requirements specifications (ar.1.a), the UI mock-ups
(ar.1.b), and a list of requirements to reuse (ar.1.c).

Phase 2: Reusable Asset Identification. This phase aims at
the detection, evaluation, and prioritization of reusable assets
that fit the concept of the target application. The efficient exe-
cution of this phase requires the existence of a component
repository, in which the reuser can store candidate reusable
artifacts. For the case of our study, we have selected to use the
Percerons repository (www.percerons.com), which is an
online platform that supports empirical software engineering.
Percerons Client automatically identifies reusable assets, pro-
vides and initial structural evaluation, and then stores them in
a repository which enables simple and advanced searches [2].
For searching purposes, the reuser has two options: (a) to use
the global repository, which is populated with more than 1
million reuse candidates, or (b) use a local version of the re-
pository, which will populate him/her-self.
This phase consists of 4 steps. In step 2.1, the search process
needs to be defined, and the following sub-steps need to be
made: (2.1.a) the reuser needs to identify OSS projects that
will analyze and store in the repository. The projects should be
context- and/or domain-specific. On the one hand, as context-
related we consider those applications that aim the same de-
ployment target (e.g., mobile, web, desktop, etc.), the same
development paradigm (e.g., object-oriented), the same organ-
ization structure (e.g., Model-View-Controller, Model-View-
Presenter, etc.), etc. On the other hand, as domain-related, we
consider those applications that can be categorized in the same
application domain (e.g., movies, games, audio, video, etc.).
Upon the popularization of the repository, the reuser needs to
define search terms (step 2.1.b) for each target requirement
(ar.1.c), and execute the search (step 2.1.c). The next step (2.2)
is the compilation of a list of candidate reusable artifacts for
each requirement (artifact: ar.2.a). Next, during step (2.3) the
reuser needs to define a set of criteria for evaluating his/her
alternatives and develop a decision document (artifact: ar.2.b).
Phase 3: Reusable Asset Adaptation. The goal of this phase is
the iterative parsing of the prioritized candidate reusable assets
list, for all requirements. In this phase, first the software engi-
neer picks the top reuse alternative from the stack (step 3.1),
attempts to adopt it into the current version of the target sys-
tem (step 3.2), if this is feasible, he/she integrates it into the
target system (step 3.2.a) or goes back to step 3.1. When the
reuse alternatives list has been exhaustively parsed, the soft-
ware engineer implements this requirement from scratch (step
3.2.b). Steps 3.1 and 3.2 are performed iteratively for all tar-
geted requirements (artifact: ar.1.c).

IV. ILLUSTRATIVE EXAMPLE

This section presents an overview of the Movie Management
“demo” application destined for mobile devices that exempli-
fies REACT. We selected the particular domain due to the
existence: (a) of many relevant open-source projects and (b) of
available APIs that allows obtaining movie data.

Hence, we start from the Conception phase where we col-
lect the Functional Requirements of the application and form
the Use Case Diagram and the Use case Description along
with the corresponding Activity Diagrams. In brief the end-
user can search movies, see their details along with the trail-
ers, he can navigate through the available genres and he can
handle his watchlist. We acknowledge that the demo offers the
minimum functionality to the end-user but still it is a fully

operating Movie management app that serves the purposes of
the illustrative example. In the next step we continue Proto-
typing the app by designing the Mock-Ups for the movie ap-
plication that will enable us to visualize the use cases of the
demo app in the display of a smart phone. During this step we
had the opportunity to clarify the components that constitute
the movie application and decide upon functionalities that are:
(a) offered by Android and Google native components, and (b)
custom functionalities that should be searched to external li-
braries. The mock-ups, help us in the next step to identify all
the necessary requirements native and custom for building the
app, and create a list of the Reuse Requirements. In this step
we create a list of the required types of assets along with their
description and we record the functionality expected from
them so as to facilitate the search procedure of the components
for reuse. The Reuse Requirements, grouped based on desired
functionality (see Table I), serve as an input to Phase 2.

TABLE I. REUSE REQUIREMENTS AND RETRIEVED ASSETS

Func-
tionality

Keywords/
Attributes

Max. extern.
depend.

Min.
Func.

Min.
Reus.

No. of
results

Database

SQLite 0 0 0 27
Remove SQLite 0 0 0 6
Database 5 5 2 21
CRUD DB 5 5 2 29

Request

Request 5 5 2 60
API 5 5 2 130
Retrofit 5 5 2 10
Glide 5 5 2 6
Dagger 5 5 2 1
Toast message 0 0 0 1
Recycler view 5 5 2 8
Adapter 5 5 2 84
Dialog 5 5 2 47
Search 5 5 2 108
Bottom layout 0 0 0 0
Floating button 0 0 0 0
YouTube 5 5 2 16
Tab Layout 0 0 0 0
Pager 5 5 2 25

Models
Movie 5 5 2 200
Genre 5 5 2 42

The second phase incorporates the Reused Artifacts Identifi-
cation. In the first step for each requirement recorded in the
list of Reuse Requirements we searched OSS projects that
could offer the relevant functionality. During the Search pro-
cess we performed google searches and targeted searches to
specific libraries and repositories as “AndroidArsenal”,
“GitHub” and “Sourceforge”. The purpose of the searches was
twofold: a) find projects within the same Application Domain
(movie management) b) find projects designed within the
same Context. In the last case we would like to reuse assets
designed with the same approach as ours, employing clean
architecture. The search terms employed in this demo applica-
tion are presented in Table 1 and were derived as part of the
requirements list identified in the previous phase. The next
step after retrieving the relevant OSS projects was to isolate
candidate reusable assets from these projects. We employed
the Percerons repository for this purpose and created a local
repository containing the candidate reusable assets from the
relevant OSS projects. The Prioritization of the Candidate
assets is performed at the end of this phase by defining a set of

three criteria for evaluating the alternative candidate assets for
reuse that include: (a) the functionality offered, (b) the as-
sessment of the changes to the reusable asset (as an indicator
the reusability index is taken into consideration), and (c) de-
sign- adaptation changes (as an indicator the number of exter-
nal dependencies is used). Therefore for each candidate asset
three metrics are calculated, with the help of Percerons [2]:
Functionality is measured as the ratio of the number of classes
outside the candidate component that use at least one class
inside the component, to the total number of classes outside
the component. External dependencies are calculated as the
number of classes outside the component that are essential for
the component to compile. Reusability is a compiled index
that uses size, coupling, cohesion and messaging metrics.
As an output of this phase we have a decision document that
justifies the selection of the candidate assets, provides the rea-
soning for their prioritization and summarizes the risks of each
candidate selection. An example of the information provided
in the decision document is presented in Table II. For each
candidate asset a table is created, presenting among others the
order of the asset in terms of reusability potentials when com-
pared to the other candidates assets (see second line, second
column of Table II).

In the third and final phase we performed the Adaptation
of the Reusable Assets. In the majority of cases we selected
the first candidate for being adopted in the target system. This
is probably due to the fact that the intended architecture (i.e.,
use of a clean architecture through the Model-View-Presenter
pattern) was an important criterion for prioritization, and it
strictly defines the interaction among components. The final
product was a mosaic of artifacts retrieved from various prod-
ucts, and thus made full benefit of the reuse opportunities of-
fered by them (see Table III—Section V).

TABLE II. DECISION TABLE FOR REUSE ALTERNATIVE #1

Attribute
Documented

Value

Functionality add & SQLite (result: 1 of 27)
Name MovieList
Classes 1
Ext. Depend. 0.000
Functionality 1.000
Reusability 1.688
Description Contains Create and Upgrade database, along with some

useful tables (Overview, Rating, Release Date, Title Films)
Design rules Some modifications might need, in order to use it with Room

Add data method, should be created
Constraints No design constrains seems to be occurred
Risks One class only, so the risk for a fall-back is very low.
Consequences General consequences, like usage of SQLite as a DB
Pros Very low cost, some modifications needed
Cons No Room integration, No add data method, Tables not useful

V. EMPIRICAL EVALUATION

In this section we present the design and the results of a pilot
study for initially validating ReACT, with respect to: (a) the
gained effort from its application, and (b) the dissimilarity
level of the end product, compared to existing OSS solutions:
RQ1: What is the time benefit of applying ReACT to develop

a product by reusing OSS artifacts, compared to devel-
opment from scratch?

We aim to validate that ReACT leads to decreased develop-
ment effort, and the parameters that can affect its productivity.

RQ2: To what extend is the end-product developed by apply-
ing ReACT different from existing OSS solutions that
have been fed to the ReACT process?

We aim to reveal the extent to which the end-product is differ-
ent compared to existing solutions that have been for identify-
ing reusable assets. This is an important parameter, since reuse
would be considered unsuccessful if in the end a product of
very high similarity with an existing one would be built.

To collect the required data for answering the aforemen-
tioned research questions, the following variables have been
recorded: [V1] effort estimation for developing (from scratch)
each functional requirement at the analysis and design phase.
The estimation has been performed by the experienced An-
droid developer that implemented the demo application. [V2]
actual effort for developing (by applying ReACT or from
scratch—if no artifact could be used) each functional require-
ment, and [V3] source OSS system from which reusable asset
has been retrieved, for each functional requirement.

To answer RQ1, we compared the values of [V1] and [V2]
in pairs. The analysis was three-fold: (a) we compared the
total time required to develop the complete mobile application
in both scenarios; (b) we compared the number of require-
ments for which ReACT provided a development effort bene-
fit, and cases for which it lead to worse productivity; and (c)
we performed hypothesis testing to check if the observed dif-
ference in productivity is statistically significant. To answer
RQ2, provide descriptive statistics on the number of reusable
artifacts that have been obtained from every source (for reuse)
OSS system. An interesting observation from Table 3, is that
in most of the cases, the effort estimation of the developer at
the analysis/design phases ([V1]) was very close to the actual
effort required to develop from scratch ([V2]-scratch): this is
an indication that other estimations are also accurate and thus
the comparisons of estimations and actual values is quite safe.

TABLE III. STUDY DEMOGRAPHICS

Based on the results presented in Table III, the estimated
total time to build this application from scratch was 59 hours,
whereas the effort required to build the complete application,
using ReACT, was 40 hours; leading to a time gain of approx-
imately 30%. Regarding specific functional requirements, the
reuse-based approach was faster than the estimation in 66% of
the cases (8 requirements), whereas in the rest 33% it was
more time consuming (occurred in cases when the selected
reusable artifact had assigned a low priority). The average
time to develop one requirement from scratch was 296
minutes (±301.8), compared to 186 (±176.6) when developing

with ReACT. The difference between the two efforts is statis-
tically significant, based on the Wilkoxon Signed Rank test (Z
= -2.091 and p = 0.037). Regarding RQ2, the results suggest
that reusable artifacts from 6 different OSS projects have been
used. The maximum functionality has been reused from Re-
trieveMovieList and MoviesTraktTV projects (each one con-
tributing to 22.2% of the functionalities). Thus, we suggest
that the similarity of the end outcome and the OSS projects
that have been used to populate the repository is rather limited.

VI. CONCLUSIONS

In this paper we presented a process for facilitating OSS reuse.
The main implications of this study can be summarized as
follows: To reduce the adaptation and modification time of
reusable components, we need to find components from pro-
jects with common specifications like clean architecture and
MVP pattern etc. Based on our experience, we suggest that,
the adaptation time is lower for in-house reuse, since common
specifications (structure, architecture, domain, design guide-
lines, patterns etc.) could be expected. An interesting future
work would be to expand our study in the industrial sector, in
cases where companies develop systems with common do-
mains and guidelines, studying the effectiveness of the pro-
posed approach, as a type of planned reuse strategy.

ACKNOWLEDGEMENT

This work was supported by the action "Strengthening Human
Resources Research Potential via Doctorate Research" of the
Operational Program "Human Resources Development Pro-
gram, Education and Lifelong Learning, 2014-2020", imple-
mented from State Scholarship Foundation (IKY) and co-
financed by the EU Social Fund and the Greek public (National
Strategic Reference Framework (NSRF) 2014 – 2020).

REFERENCES
[1] S. A. Ajila and D. Wu, “Empirical study of the effects of open-source

adoption on software development economics”, Journal of Systems and
Software, Elsevier, 80 (9), pp. 1517-1529, September 2007.

[2] A. Ampatzoglou, I. Stamelos, A. Gkortzis, and I. Deligiannis,
“Methodology on Extracting Reusable Software Candidate Components
from Open-source Games”, 16th MindTrek Conference, ACM, 2012.

[3] I. Crnkovic, B. Hnich, T. Johnson and Z. Kiziltan, “Specification,
implementation, and deployment of components”, Communications,
Association of Computing Machinery, 45 (10), pp. 35-40, October 2002.

[4] W. B. Frakes and C. J. Fox, “Quality Improvement Using A Software
Reuse Failure Modes Model”, Transactions on Software Engineering,
IEEE Computer Society, 22 (4), pp. 274–279, April 1996.

[5] S. Haefliger, G. von Krogh, and S. Spaeth, “Code Reuse in Open-source
Software”, Management Science, PubsOnline, 54 (1), Nov. 2007.

[6] S. Jansen, S. Brinkkemper, I. Hunink, and C. Demir,“ Pragmatic and
opportunistic reuse in innovative start-up companies”, IEEE software,
25(6), pp. 42-49, 2008.

[7] A. Mockus, “Large-Scale Code Reuse in Open-source Software”, 1st Int.
Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’ 07), IEEE, 2007.

[8] M. E. Paschali, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou and I.
Stamelos , “ Reusability of open-source software across domains: A case
study”. Journal of Systems and Software, Vol. 134, pp. 211-227, 2017.

[9] S. Raemaekers, A. van Deursen, and J. Visser, “An Analysis of
Dependence on Third-party Libraries in Open-source and Proprietary
Systems”, 6th Int. Work. on Software Quality and Maintainability, 2012.

[10] W. Schwittek, and S. Eicker, “A Study on Third Party Component Reuse
in Java Enterprise Open-source Software”, 16th Symp. on Component-
based Software Engineering (CBSE’ 13), ACM, 75–80, 2013.

[11] M. Sojer and J. Henkel, “Code Reuse in Open-source Software
Development: Quantitative Evidence, Drivers, and Impediments”,
Journal of the Association for Information Systems, 11 (12), 2010.

