
A Smart City Application Modeling Framework:
 A case study on re-engineering a Smart Retail

Platform
Paraskevi Smiari

Department of Informatics and Telecommunications
Engineering

University of Western Macedonia,

ImpediMed Hellas,
Greece

psmiari@uowm.gr

Stamatia Bibi
Department of Informatics and Telecommunications

Engineering
University of Western Macedonia

Greece
sbibi@uowm.gr

Smart City Application Engineering is a challenging task due to
the constantly evolving environment in which these applications
operate and the variability of the different types of technologies
that synthesize them. Therefore, flexibility and extendibility are
two important quality attributes that should be taken into
consideration when designing Smart City Applications. In this
paper, we propose the Smart City Application Modeling
Framework (SCAMF) for analyzing and designing Smart City
applications that is based on the concept of Clean Architecture
and adopts the representation formalism of feature models.
SCAMF methodology is evaluated through a case study on a
Smart Retail Platform. Quality indices like flexibility,
extendibility along with metrics as complexity, cohesion and
design size are compared to the initial version of the application
that was completely re-engineered due to maintenance
problems. The results of the study suggest that the proposed
methodology improves quality indices like flexibility and
extendibility up to 120%.

Keywords—Smart City; Feature models; class diagrams;
requirements modeling;

I. INTRODUCTION
In the context of sustainable urban development, Smart

Cities are highly competitive ecosystems that provide
advanced services to citizens covering every aspect of
public and private sector spectrum. The development of
Smart City applications is a challenging task mainly due to
the combination of different technologies that synthesize
them and the constantly evolving environment in which
they operate [8]. During the analysis and design of Smart
City applications an engineer has to take into consideration
the two following facts:

 a) The context of Smart Environments is rapidly
changing causing functional system changes, to the
associated applications. This fact appoints the need of
developing applications that are open to changes, and
easily adoptable to the external environment. Thus, Smart
City application design should be flexible in order to
respond to requirements changes.

 b) Smart City applications have to be consistent with a
plethora of different types of stakeholders needs,
leveraging ubiquitous connectivity of heterogeneous
devices, interaction with a variety of external sources and
processing and collection of massive amount of data from
different sources [14]. Thus, variability is an important
characteristic that we need to capture and handle when

designing extendible Smart City applications that will be
able to support future growth of the system.

Among the methods that have been explored in the
context of Smart City application engineering is Feature
Models (FM) [19] that proved to be a very efficient
method for handling the dimension of variability,
incorporating usually two phases the domain engineering
and the application engineering phase [15]. This two-phase
model requires a “big upfront design” of the whole system
before individual functionalities can be engineered [7] a
fact that undermines the flexibility aspect. In order to deal
with this limitation we suggest SCAMF (Smart City
Application Modeling Framework) as a methodology for
analyzing and designing Smart City applications based on
the concepts of Clean Architecture and enabled by the
adoption of feature models in order to improve the
extendibility and the flexibility aspects that are recognized
as important quality drivers[6], [7]. SCAMF is a
methodology that consists of four steps a) the definition of
the domain rules b) the definition of the application rules
c) the interface, controllers and adapters definition, and d)
the framework, external sources and data requirements
definition. This methodology offers guidance to engineers
to design applications that are open to change by isolating
the business and application logic from the User
Interfaces and the external sources, while it offers
effective variation mechanisms to handle the
heterogeneity of the different technologies. The outcome
of SCAMF is a feature-based design of the Smart City
application. As a next step we propose a set of rules for
transforming the feature model into a class diagram.

In order to evaluate the applicability of SCAMF, we
present a case study performed on re-engineering a Smart
Retail Platform. SCAMF validation was made by
comparing the initial version of the Smart Retail Platform
to the re-engineered one based on two quality indices a)
the level to which the application design can easily support
the addition of new functionalities, namely the
extendibility b) the level to which the application design
can confront to changes of the external environment in
which it operates, namely the flexibility.

The rest of the paper is organized as follows: Section II
provides an overview of the related work, Section III
presents the SCAMF methodology, Section IV exemplifies
SCAMF methodology on the Smart Retail Platform,

Section V presents the case study performed while sections
VI and VII discuss the results and conclude the paper.

II. RELATED WORK
In this section we provide an overview of studies that

are found in literature so far that focus on requirement
analysis and design methods for handling variability and
flexibility issues relevant to Smart City applications.
Intense research activity has been observed in the field of
variability modeling [4], [11] regarding Smart Cities.

Special attention has been paid in dynamic software
product lines and their ability to change at runtime with
configurations [4] through the usage of feature models. In
this study reconfiguration of feature models was done
through modeling management operations that used the
OSGi framework. Another variability modeling method
involving a context-based approach was introduced and
applied in a windfarm use case scenario [11]. This
approach took advantage of base models and fragments by
using an executable processing language such as the
Object Management Group standard (OMG). Studies [12]
and [13] also chose a fragment-based approach that reuses
variants that models variability separately from a base
model. Activity Designer was used for base model and
fragments specifications and Clafer [12], [13], a class
modeling language, was used for modeling variability of
things.

Features are explored as a solution to tracing
variability in both external and internal architecture and
although feature modeling [6], [7], [4], [11], [21], [5]
approaches are helpful when it comes to determining the
qualitative relationships among the non-functional
attributes there have been some observations of a gap that
exists between feature modeling and physical modeling
[21]. In [5] the authors proposed an extended version of
Feature Models, called business process Feature Model
(bpFM) so as to confront this gap by using a set of
mapping rules from bpFM to business and application
processes. A framework that also focuses on flexibility is
LateVa [13] that has as a goal to enable process variability
at runtime. Other approaches employing feature models is
the UMRELA which is an abstract model [16] that uses a
Domain Specific Model Language for managing the
lifecycle of heterogeneous applications. Other
requirement elicitation methods that are found in literature
within the context of Smart City applications engineering
are the goal-oriented [3] approach, the scenario-based
[18], and the artifact-based [9] approach. The goal-
oriented [3] approach was adopted for modeling complex
systems by eliciting the requirements from textual
documentation. The scenario-based approach [18]
provides support for systematic analysis of threats,
vulnerabilities, and security requirements while the
artifact-based approach [9] unveiled a gap between the
high-level requirements engineering artifacts and the low-
level artifacts.

III. SCAMF: SMART CITY APPLICATION MODELING
FRAMEWORK

In this section we present SCAMF methodology for
identifying Smart City application requirements that will

serve as an input to the feature model. The application
modeling framework for identifying the requirements of
Smart City applications is based on the concept of Clean
Architecture [10] where software applications are
considered to consist of 4 layers a) the Enterprise
Business rules b) the Application Business rules c) the
Interface Adapters and d) the Frameworks and Drivers.
The Dependency Rule is the key idea behind Clean
Architecture, where dependencies are encapsulated in
each layer of the architecture model, considering that each
layer is aware only of the inward one (for example the
Interface Adapter layer is only aware of the Application
Business Rules Layer). The proposed Smart City
application modeling framework is presented in Fig. 1 and
consists of the following four main activities:

A. Enterprise business rules definition
The first activity performed is the definition of the

enterprise business rules. This activity elicits the
requirements relevant to the Enterprise Business Rules
layer where our target is to encapsulate the most general
and high-level rules [10], that are the least likely to be
affected by an operational change, also known as the
domain logic. The stakeholder of this activity is the
Domain Expert and his responsibility is to produce the
Domain model of the initiative. In order to achieve that,
the Domain expert has to identify all the objectives and
capture the vision of the application by determining
general entities referring to a) the Domain rules b) the
Policy and the Regulatory restrictions. Entities in that
activity encapsulate wide business rules that can be
transformed into software artifacts of various levels of
granularity from classes to a set of data structures and
functions.

B. Application business rules definition
This activity concerns the specification of the

application business rules. During this phase the software
engineer is expected to conceptualize the target system and
define the basic functional and non- functional application
requirements. The requirements of Smart City applications
are suggested to be analytically recorded into the Use Case
diagram and the Use Case Description. These use cases
orchestrate the flow of data within the entities defined in
this activity and the enterprise entities defined in the
previous activity that altogether achieve the goals of the
application. Any operational change performed in the
application is depicted by changes in the requirements
recorded in this step and affect the application entities.

C. Frameworks & Drivers definition
During frameworks and drivers definition we capture

the requirements relevant to the frameworks, tools and the
persistence layer that remain out of the scope of the
application logic and are treated as external resources.
During this step we define in parallel the requirements
relevant to a) Data management b) Hardware management
c) External Systems. The requirements relevant to data
management include the definition of data structures and
storage types. During hardware definition the Hardware
Engineer records all the devices that will be needed for the
implementation of the Smart City application such as
networking, sensors, actuators and other application-

specific technologies [20]. The final parallel activity
involves the definition of the requirements relevant to the
External Systems that interact with the application, such
systems may provide information to the application or use
information from the application.

Fig. 1 Smart City application modeling framework

D. Interface adapters definition
In this activity we define the requirements of the

intermediary layer of the Smart City application that
controls the flow of information between the application
logic defined in step B and the frameworks, drivers,
middleware with which the application interacts defined
previously in step C. Responsible for defining the interface
adapters is the Application Developer who will define
entities relevant a) to the presentation of data (formatting

them) , as well as b) to the view of data (routing
presentation demands and displaying data to the external
sources), and also c) to controlling data, (defining
controller entities necessary to convert data from some
external form, such as an external service, to the internal
form used by the application entities).

IV. THE SMART RETAIL PLATFORM
In this section we exemplify the SCAMF approach

defined in the previous section on the Smart Retail
Platform. The Smart Retail Platform was developed for a
local small-medium Greek supermarket chain consisting of
11 branches all established in one regional unit. The
platform was initially designed and implemented two years
ago to support the retail business and due to design
limitations and the interdependencies between the
application logic and the data logic it turned out to be very
difficult to apply changes and maintain the application
without a major re-engineering. Fig. 2 presents the class
diagram of the initial application developed for the Smart
Retail Platform. Therefore, the need for re-engineering the
application emerged having as a major objective to
decouple functionality relevant to the external sources
from functionality related to the application logic. In this
attempt we adopted the philosophy of Clean Architecture.
Another re-engineering objective was to create a main
version of the application with all core functionality
features where, in the future, optional or alternative
features would be easily embedded as variations, without
causing structural changes to the main version. For this
reason, we selected the feature model approach for
recording the requirements. In this section we initially
exemplify the SCAMF methodology on the Smart Retail
Platform in order to record the requirements of the
application in the form of a feature model and then we
provide a set of rules for transforming the feature model
into a class diagram. In Fig. 3 you can see the use case
diagram that describes the re-engineered versions of the
platform.

Fig. 2 Initial class diagram

A. Analyzing the requirements of the Smart Retail
Platform
The SCAMF methodology was applied to record the

requirements of the Smart Retail Platform. Starting with
the specification of the Enterprise business rules, the
Domain Experts that participated in the requirements
definition identified as core business entities of the app

four entities: the product, the customer, the advertisement
and the retail. As regulatory entities the team recorded
taxation withholding regulations and laws relevant to data
protection and information privacy. The outcome of this
phase was the Domain model along with a set of business
rules related to the Smart Retail app.
 The next phase incorporates the definition of the
Application Business Rules. In the case of the Smart
Retail App the software engineers leveraged the power of
IoT to gain insights on customer behavior, preferences,
determine the efficacy of store displays, optimize floor
navigation paths, and perform targeted advertisements
zones with personalized coupons and support the ‘instant’
shopping functionality where the customer can purchase
immediately products by scanning them with his mobile
phone. The outcome of this phase is the Use Case
Diagrams and a set of non- functional requirements.

Fig. 3 Use case diagram

The next phase involves the Specification of
frameworks, drivers and external sources that the app
interacts with. Regarding the Data Management
requirements, the data engineer along with the owners
ended up to an optimized solution of balancing data
storage and processing between on premises infrastructure,
where sensitive client data are stored, and cloud hosting
providers. In parallel, the Hardware Engineer records the
relevant infrastructure and devices necessary for the
operation of the Smart Retail app. Network infrastructure
such as routers, hot spots are required for allowing the
communication with the smart devices. Devices like LCD

screens, company retail devices, temperature and motion
sensors and cameras are the smart devices utilized by the
app. Additionally, in this phase the Systems engineer
identified all the external systems that interconnected with
the Smart Retail App like social platforms APIs that can
provide enlightening information regarding the consumer’s
preferences.

The last phase is the definition of the Interface
Adapters. During this phase two types of interface related
features were considered. The presenter features that
focused on the different UIs designed for the different
devices where the application was destined to operate.
Additionally, the controller features were defined, that
involved the features that would act as intermediates
between the application layer and the framework layer,
achieving the interconnection among the APIs offered
from the external sources and the APIs of the Smart Retail
Application layer.

Fig. 4 Feature model

The feature model created for the Smart Retail

Platform is presented in Fig. 4.
Features like sensor devices or the retrieval of data are

considered mandatory features and must be chosen in all
configurations. Data retention or using the API of social
platforms are optional features and it’s not mandatory to be
chosen in all configurations. The children of the Social
platforms feature are bind with the OR connection and this

means that at least one child must be chosen. The next step
is to define the class diagram. Fig. 6 presents the class
diagram related to the “Personalized Advertisement”
feature. Each class originates from the four different layers
of the application: Enterprise Business Rules, the
Application Business Rules, the Interface Adapters or
Frameworks& Drivers.

B. Converting the Feature model to Class Diagram
In order to model the relationships of the feature model

into a class diagram we applied the following [1] rules:
1) The root and the first level of the diagram are

ignored when mapping features to classes as they
represent the classification schema of features and
not core features

2) The remaining features should correspond to a
class with a name exactly like the feature’s. For
the features that concern hardware or anything
other than software when transforming them into
classes we consider their relevant API

3) Feature dependencies are transformed into class
association with the following stereotypes:

a) <<mandatory>>
b) <<optional>>
c) <<more-of>> (OR)
d) <<one-of>> (ALTERNATIVE)

4) <<Mandatory>> dependencies are mapped as
aggregation (if there are no children with OR,
ALTERNATIVE association)

5) <<Optional>> dependencies correspond to an
association with a cardinality of 0 or 1

6) The <<one-of>> and <<more-of >> stereotypes
for child features result in abstract classes for the
parent features, with specific subclasses for each
of the alternatives

a) The one-of dependency for parent
features results in a one-to-one
association with the root/parent

b) The more-of dependency between the
parent feature and the root/parent result
in a one-to-many association with
multiplicity equal to the cardinality of
the number of or-features

7) Child features (that have OR, ALTERNATIVE
dependency) have an inheritance relationship with
the parent features

8) Every feature that belongs to Frameworks &
Drivers when mapped to a class should always
have an adapter class leading it. This adapter will
act as a bridge between the Application Business
Rules layer and Frameworks & Drivers layer. The
adapter classes belong to the Frameworks &
Drivers layer and are connected with the
corresponding class with direct association with a
cardinality of 1. The same connection applies
between the specific Frameworks & Drivers
adapter and the general Adapter class that belongs
to Interface Adapters

9) The highest parent classes of Interface Adapters
have a direct association with the highest parent
classes of Software with a cardinality of 1

For demonstration purposes we have isolated some
parts of the feature model in order to apply the rules
mentioned and convert it into a class diagram.

Fig. 5 Feature model shopping cart

According to rule number 1 features Smart Retail
Platform, Software, Hardware, and Interface Adapters
should not correspond to a class. By applying rule
number 2 Shopping Cart, eCart, Virtual Cart, Lists, Scan,
DeviceAPI, SensorAPI, MotionAPI, CameraAPI,
MobileAPI, PhoneAPI, TabletAPI, DisplayAPI,
Presenters, Presentation Adapters, Controllers, and
Adapters make up the classes for the diagram. Following,
features Motion and Cameras have an OR connection with
the feature Sensors and according to rule number 7
Motion and Cameras classes have an inherent relationship
with the class Sensors. This also applies to the features
Phone and Tablet which have an ALTERNATIVE
connection with the feature Mobile, resulting in an
inherent relationship with that class. Features Ecart and
Virtual Cart have an inherent relationship with Shopping
Cart. To determine the dependencies and cardinalities
between the classes we apply rule number 6b for the
feature Sensors. The feature Sensors has a more-of
dependency with the root feature Devices so this results in
a one-to-many association with multiplicity of 2. As for
the feature Mobile we apply rule number 6a due to their
one-of dependency with the root feature Devices so this
results in a one-to-one association. The feature Display
corresponds to rule number 5 so this results to an
association with the class Devices with cardinality 0 or 1.
Feature Lists has a mandatory dependency with Ecart so
by applying rule number 4 is connected with aggregation
dependency with the class Ecart. The same applies
between the feature Scan and Virtual Cart as well as
Presentation Adapter and Presenter, and Controller and
Adapters. According to rule number 8 we present the
feature Adapters in more detail when it comes to mapping
it to a class, so we end up with the classes Sensor Adapter,
Mobile Adapter, and Display Adapter which have a direct
association with the corresponding classes and a
cardinality of 1. This also applies to classes
ControllerAdapter and Presentation Adapter that have a
direct association with the corresponding classes and a
cardinality of 1 and an aggregation relationship the
Controller and Presenter correspondingly. Finally, by
applying rule number 9 the classes Controller, and
Presenter are directly associated with the class Shopping
cart with a cardinality of 1.

Fig. 6 Re-engineered class diagram

V. CASE STUDY DESIGN AND EVALUATION
In this section we present the design and the results of

the case study performed on re-engineering the Smart
Retail Platform based on SCAMF approach, following the
guidelines of Runeson et al.[17].

A. Research Objectives and Questions
Our re-engineering target in the Smart Retail Platform

was to enable the isolation of business and application
logic from frameworks and drivers interacting with the
application. The objectives of the re-engineering actions
were to: (a) increase the extendibility of the application,
referring to its ability to easily implement new
functionalities by allowing future growth [2] (b) increase
the flexibility of the application, referring its ability to
adapt when external changes occur [1]. Based on the
aforementioned objectives, the research questions of this
case study are formulated as follows:

RQ1: Can SCAMF approach, improve the extendibility
of Smart City applications?
 At this research question we aim to validate the
proposed design and analysis approach for Smart City
Applications with respect to the quality attribute of
extendibility. We employed the extendibility quality index
suggested by the QMOOD model [2]. We calculated the
relevant object-oriented design metrics, presented in
TABLE I, and synthesized them to calculate the value of
extendibility. This procedure was performed for the two
versions of the Smart Retail application, the initial one that
was designed adopting ad-hoc procedures and the re-
engineered one that employed the suggested methodology.
RQ2: Can SCAMF approach, improve the flexibility of
Smart City applications?
 In correspondence to the previous research question,
here we validate the proposed methodology for analyzing
and designing Smart City Applications with respect to the
quality attribute of flexibility as defined in the QMOOD
model (see TABLE I). The initial and the re-engineered
version of the Smart Retail app are compared.

B. Data Collection and Analysis
The data collection process included the calculation of

the design metrics presented in TABLE I. These metrics
were calculated for the two versions of the Smart Retail
application, the initial and the re-engineered one. The

design metrics were calculated using the metrics plugin
tool for Eclipse (https://github.com/qxo/eclipse-metrics-
plugin), for each class of the examined applications. At
the end to be able to compare holistically the two
applications the mean values of each metric for all the
classes participating in the application are taken into
account and used to for comparison purposes. TABLE I
present the metrics considered within the scope of this
study and their description.

TABLE I. DESIGN METRICS
Design Property Description
Encapsulation: Data
Access Metric (DAM)

This metric ranges from 0 to 1 and is calculated
as the ratio of the number of private or protected
attributes divided by the total declaration of
attributes in a class.

Coupling: Direct
Class Coupling
(DCC)

This metric is calculated as the count of the
distinct number of classes that a class is directly
related to. Directly means associated by attribute
declarations and parameters passing in methods.

Composition:
Measure of
Aggregation (MOA)

It is calculated as the total number of attribute
declarations whose types are user defined
classes.

Polymorphism: No.
of Polymorphic
Methods (NOP)

This metric is calculated as the total count of the
methods that can express polymorphic behavior.

Abstraction: Average
Number of Ancestors
(ANA)

This metric is calculated as the average number
of classes from which a class inherits
information, it is represented as the number of
classes across all paths from the “root” class(es)
to all classes in an inheritance structure.

Inheritance: Measure
of Functional
Abstraction (MFA)

This metric ranges from 0 to 1 and is calculated
as the scale of the total methods inherited by a
class to the total number of methods accessible
by member methods of the class.

The next step is to aggregate the values of the metrics

of TABLE I in order to calculate the extendibility index
and the flexibility index according to the formula
proposed in [2]:

࢚࢟࢈࢞ࢋࡲ = 	. ∗ ࢚ࢇ࢛࢙ࢇࢉࡱ − . ∗ ࢍ࢛ +
. ∗ ࢚࢙ + . ∗ (1) ࢙ࢎ࢘࢟ࡼ

࢚࢟࢈ࢊࢋ࢚࢞ࡱ = . ∗ ࢚ࢉࢇ࢚࢙࢘࢈ − . ∗ ࢍ࢛ + . ∗
ࢋࢉࢇ࢚࢘ࢋࢎࡵ + . ∗ (2) ࢙ࢎ࢘࢟ࡼ

VI. RESULTS
In this section, we present the results of the empirical

validation of SCAMF. The section is divided into two
parts: In Section V.I A, the results of RQ1 regarding the
extendibility quality attribute are presented while in
Section V.I B the results of RQ2 regarding the flexibility
quality attribute are presented. We note that Section VI
only presents the raw results of our analysis and answers
the research questions. Any interpretation of results and
implications to researchers and practitioners are
collectively discussed in Section VII.

A. RQ1 - Can SCAMF approach, improve the
extendibility of Smart City applications?

TABLE II presents the values of the design metrics that
are used to measure the quality properties of extendibility
and flexibility. The “SRAv1” column represents the
metrics values of the initial version of the Smart Retail
application. The value of each metric (apart from DSC) is

calculated as the average number of the value of the metric
for all classes participating in the Smart Retail Platform
design. The “SRAv2” column presents the metric values
addressing the re-engineered design of the Smart Retail
application following the SCAMF approach. The metrics
that affect the value of extendibility index are: ANA as a
measure of abstraction, DCC as a measure of coupling,
MFA as a measure of inheritance and NOP as a measure of
polymorphism. The results show that properties like
abstraction, inheritance and polymorphism present
improvement over 50% with the property of MFA
presenting an improvement of 126.5%.

TABLE II. DESIGN METRICS RESULTS
 SRAv1 SRAv2 Improvement
DAM 1,00 1,00 0,0%
DCC 1,67 0,82 50,8%
MOA 0,67 0,79 19,2%
NOP 0,50 0,87 74,4%
ANA 0,11 0,17 57,1%
MFA 0,09 0,19 126,5%
Flexibility 0,42 0,88 110,8%
Extendibility -0,49 0,21 142,9%

Coupling metric, on the other hand, whose value
should be controlled and remain relatively low presents a
reduction of 50.8% which is actually a very important
finding. It seems that SCAMF approach manages to
achieve the decoupling of the classes by decomposing
functionality to interface and framework classes. Overall
the extendibility index presents an improvement of
142,9% a fact that indicates the benefits of adopting the
SCAMF methodology in the design quality. In the re-
engineered version of the Smart Retail Platform
inheritance and polymorphism were used as a vehicle to
separate high –level modules (Smart Advertisement) to
low-level modules (sensors).

B. RQ2 - Can SCAMF approach, improve the flexibility
of Smart City applications?

The value of flexibility index is affected by DAM as a
measure of encapsulation, DCC as a measure of coupling,
MOA as a measure of composition and NOP as a measure
of polymorphism. As DCC and NOP metrics also
participated in the extendibility index we will now focus
on DAM and MOA metrics. DAM presents actually no
improvement since in the designers’ philosophy, that
remained the same during the initial and the re-engineered
version of the SRA, was that all attributes within a class
should be private or protected. This is the reason that both
the initial version and the re-engineered SRA design
present 1 as the value of this metric, which is actually the
desired value. Regarding MOA we see that there is a
small improvement on the level of composition employed
in the design that reaches 19%. In the initial version of the
SRA the business and application entities of the system
and their relationships were identified approaching very
closely the real-world scenario were application classes
are built from the composition of business classes.
Therefore, this part of the design remained the same in the
re-engineered solution. The main problem of the initial
SRA version was that the business and application logic

was mixed-up with the framework constraints. Therefore,
in order to separate the different concerns composition
was adapted in few cases where the part-whole
relationship could be identified (see the relationship of
ControllerAdapter and Controller of Fig. 6), though in
most cases inheritance was preferred to model entities in
the lower level of frameworks and external sources.
Overall the flexibility index presents an improvement of
110,8% which is a very promising result.

VII. DISCUSSION
In this section we interpret the results obtained by our

case study and provide some interesting implications for
researchers and practitioners.

A. Interpretation of results
The validation of the SCAMF methodology for

analyzing and designing Smart City applications showed
that it has the potential to improve the extendibility and
the flexibility of the application, two factors that are
recognized as important variability drivers [6], [7]. The
main advantage of SCAMF methodology is that it is
tailored to the specific requirements and standards that
smart city applications have to meet. In particular:
 SCAMF is independent of the User Interfaces. A

Smart City Application is addressed to a variety of
possible users via different technology platforms.
Therefore, since it is not possible to have a single
running version in all devices and platforms, SCAMF
supports the development of applications based on the
fact that the application logic remains the same, while
the User interfaces through the Presenter entities are
the ones that change to address the different platform
requirements.

 SCAMF is independent of the frameworks and the
external sources that interact with the application.
Since Smart City applications have to interface with
many sources of data (sensors, monitors, RFIDs, social
media) and store and process data via several means
(DBs, files, cloud servers) it is important to ensure that
the application is not bound to limitations relevant to
the data flow from and to external sources or
frameworks. SCAMF supports data – agnostic design
of the application isolating the frameworks and the
external sources limitations to the Controller entities.

 SCAMF offers effective variation mechanisms to
handle the constantly evolving environment in which
Smart City applications operate. SCAMF supports
four levels of variations corresponding to the different
layers of the Smart City application (the business
layer, the application layer, the interface layer and the
frameworks layer). Additionally, in each level the
variability depicted as alternative, optional or
mandatory functionality is expressed with the notation
of feature models that is the major modeling technique
for capturing operational variations, forcing the
isolation of changes in a small fragment of design and
code.

B. Implications to reseachers and practitioners.
We encourage researchers to further work on models

for designing and analyzing Smart City applications
keeping in mind the separation of concerns that in our case
study improved several quality characteristics. In that
sense analysis and design models should carefully separate
the business and application logic that governs the system
behavior from the different technologies and frameworks
that the application has to comply with. SCAMF
methodology can also be further explored and tailored to
the needs of particular application domains within the
context of a Smart City. Such a customization would offer
a better documented, analytical process model for
developing applications of a specific type.

Additionally, we encourage researchers to introduce
formal metrics and procedures for quantifying SCAMF
methodology outputs. In that direction it would be
interesting to derive metrics from the derived feature
model that will help in providing size and effort
estimations regarding the development costs and the
design quality.

On the other hand, SCAMF can be a methodological
framework in the hands of practitioners so as to guide the
process of analyzing and designing Smart City
applications, handling their inherent complexity. SCAMF
is a very abstract methodology that can be applied in a
variety of domains within the context of a Smart City,
guiding the analysis and design process of complex
applications that need to be extendible, flexible, modular,
easy to test and understand.

VIII. CONCLUSIONS
Current practice has shown that the complexity of

Smart City applications is increased due to the
combination of different types of technology and the need
to adapt to the constantly evolving environment.
Therefore, engineers should carefully design such
applications keeping in my mind that the application will
for sure in the future need to interact with systems and
technologies not originally designed for, implementing
new functionality.

In this study we proposed SCAMF methodology for
analyzing and designing Smart City applications that is
based on the main concepts of Clean Architecture and
employees feature models for documenting the system
requirements. The proposed methodology offers a reliable,
abstract and easy to understand process for analyzing and
designing Smart City applications, that: a) achieves
separation of concerns b) handles variations in terms of
features. The validation of SCAMF in the re-engineering
of a Smart Retail Application showed that the proposed
methodology can significantly improve design quality
aspects like extendibility and flexibility. Based on these
results, we have been able to provide useful implications
for researchers and practitioners. As a future work we
intend to further document SCAMF methodology and
validate it in a variety of application domains.

REFERENCES
[1] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A.

Wasowski, “Clafer: unifying class and feature modeling,” Software
& Systems Modeling, vol. 15, no. 3, pp. 811–845, Jul. 2016.

[2] J. Bansiya and C. G. Davis, "A hierarchical model for object-
oriented design quality assessment," in IEEE Transactions on
Software Engineering, vol. 28, no. 1, pp. 4-17, Jan 2002.

[3] E. Casagrande, S. Woldeamlak, W. L. Woon, H. H. Zeineldin and
D. Svetinovic, "NLP-KAOS for Systems Goal Elicitation: Smart
Metering System Case Study," in IEEE Transactions on Software
Engineering, vol. 40, no. 10, pp. 941-956, Oct. 1 2014.

[4] C. Cetina, P. Giner, J. Fons and V. Pelechano, "Autonomic
Computing through Reuse of Variability Models at Runtime: The
Case of Smart Homes," in Computer, vol. 42, no. 10, pp. 37-43,
Oct. 2009.

[5] R. Cognini, F. Corradini, A. Polini, and B. Re, "Modelling process
intensive scenarios for the smart city." International Conference on
Electronic Government. Springer, Berlin, Heidelberg, pp.147-158,
2014.

[6] J. Díaz, J. Pérez, J. Garbajosa, “A Model for Tracing Variability
from Features to Product-Line Architectures: A Case Study in
Smart Grids” , Requirements Engineering Journal, Springer, vol.
20, pp. 323-343, Sep. 2015.

[7] J. Díaz, J. Pérez, J. Garbajosa, "Agile product-line architecting in
practice: A case study in smart grids." Information and Software
Technology, vol. 56, no. 7, pp. 727-748, 2014.

[8] I. A. T Hashem, et al., “The role of big data in smart city,” Int J Inf
Manage, vol. 36, no. 5, pp. 748–758, 2016.

[9] C. Lampasona, P. Diebold, J. Eckhardt, R. Schneider, "Evaluation
in practice: artifact-based requirements engineering and scenarios
in smart mobility domains." Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement. ACM, 2014.

[10] R. C. Martin, “Clean architecture: a craftsman's guide to software
structure and design.”, Prentice Hall Press, 2017.

[11] A. Murguzur, R. Capilla, S. Trujillo, Ó. Ortiz, and R. E.
LopezHerrejon, “Context Variability Modeling for Runtime
Configuration of Service-based Dynamic Software Product Lines,”
in Proceedings of the 18th International Software Product Line
Conference co-located workshops, vol. 2, pp. 2–9, Sep. 2014.

[12] A. Murguzur, X. de Carlos, S. Trujillo and G. Sagardui, "On the
support of multi-perspective process models variability for smart
environments," 2014 2nd International Conference on Model-
Driven Engineering and Software Development, Portugal, pp. 549-
554, 2014.

[13] A. Murguzur, et al., "Runtime Variability for Context-aware Smart
Workflows," in IEEE Software, 2015.

[14] A. Ojo, E. Curry and F. A. Zeleti, "A tale of open data innovations
in five smart cities." System Sciences (HICSS), 2015 48th Hawaii
International Conference on. IEEE, pp. 2326-2335, 2015.

[15] K. Pohl, G. Böckle, and F. J. Linden,, “Software Product Line
Engineering: Foundations, Principles and Techniques.”,
SpringerVerlag New York, Inc, 2005.

[16] S. Pradha, A. Dubey, W. R. Otte, G. Karsai, A. Gokhale, “Towards
a Product Line of Heterogeneous Distributed Applications.”, ISIS-
15-117, Vanderbilt University, 2015.

[17] P. Runeson and M. Host, “Guidelines for conducting and reporting
case study research in software engineering”, Empirical Software
Engineering, 2009.

[18] H. Suleiman and D. Svetinovic, “Evaluating the effectiveness of
the security quality requirements engineering (square) method: a
case study using smart grid advanced metering infrastructure,”
Requirements Engineering, vol. 18, no. 3, pp. 251–279, 2013.

[19] A. Tahri, L. Duchien, J. Pulou, "Using Feature Models for
Distributed Deployment in Extended Smart Home
Architecture." European Conference on Software Architecture.
Springer, pp. 285-293, 2015.

[20] S. Trilles et al., "Deployment of an open sensorized platform in a
smart city context", Future Generation ComputerSystems, vol. 76,
pp. 221-233 Nov. 2016.

[21] A. Venckauskas, V. Stuikys, R. Damasevicius, and N. Jusas,
"Modelling of Internet of Things Units for Estimating Security-
Energy-Performance Relationships for Quality of Service and
Environment Awareness." in Security and Communication
Networks 9.16, pp. 3324-3339, 2016.

