
Feature Models for Big Data Applications
Modeling Big Data Applications by applying Feature Models

Ioannis Zozas
Department of Informatics and Telecommunications

University of Western Macedonia
Kozani, Greece

izozas@uowm.gr

Stamatia Bibi
Department of Informatics and Telecommunications

University of Western Macedonia
Kozani, Greece
sbibi@uowm.gr

Dimitrios Katsaros
Department of Electrical & Computer Engineering

University of Thessaly
Volos, Greece

dkatsar@e-ce.uth.gr

Panagiotis Bozanis
Department of Electrical & Computer Engineering

University of Thessaly
Volos, Greece

pbozanis@e-ce.uth.gr

Ioannis Stamelos
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece
stamelos@csd.auth.gr

Abstract—Modeling Big Data Applications is a key research
topic for designing, analyzing, programming and deploying data-
intensive applications, with high value and long-term trade-offs.
The need for unified perspectives, architectures and
requirements techniques is requisite. The current approach
proposes the use of Feature Models to fill this gap by extending
present model-driven engineering practices with utter purpose to
define a reusable, extensible and highly configurable design
approach for Big Data Applications.

Keywords—big data; feature models; software engineering;
model driven engineering;

I. INTRODUCTION

Big data has been a hot topic for both researchers and
practitioners in the last decade. A chaotic-distributed explosion
of data continues to flour every day our data-driven world,
making more necessary than ever the need for advanced and
efficient software and systems applications, that will collect,
store, manage and analyze massive amounts of data.

Reports [5], [7] estimate that the Big Data Application
(BDA) business will continue to grow over 50% in the
following five-year forecast period. In addition, almost half of
each enterprise’s net will attract big data intelligence and
analytics. On the other hand, an ineffective coordination of
BDA strategies is pinpointed for ensuring successful
application deployment. More than 55% of BDA
implementation approaches do not adapt a clear road map,
while over 74% fizzle to build their big data capabilities or

operating models, take iterative approaches towards
implementation, or even develop BDA competencies.

The above statistics prove that, in relation to the importance
of big data, BDA analysis and design is far too important to be
ignored. The unique nature of this type of applications differs
from traditional applications due to the data-intensive nature
they inherit. Until today, BDA-in-a-box is for now, far from a
reality. The majority of practitioners and companies face a
short-term syndrome by not having the discipline or even the
patience to deal with a broader view of modeling [9]. The
latter involves time consuming practices that lead to high costs
on deployment. Moreover, current efforts proposed tend not to
complement each other, while traditional analysis and design
techniques fail in most cases to be applied efficiently [18].

The necessity to analyze and design BDA is based on the
core key features of these type f applications: Data-intensive
scalability, data distribution, functionality parallelism. In
contrast to traditional application design, development and
deployment, the present lack of one-time design to any-time
deployment models, mature and consistent architectures, agile
planning differentiations and deep focus on requirement
analysis, strengthens BDA model engineering as a necessity to
fully harvest the potential benefits of this reality. Like James
Governor, founder of Redmonk cites on Twitter, “data matures
like wine but applications like fish” [11].

In the current proposal, to fill the gap over BDA modeling,
we propose a different approach based on the above mentioned

BDA key features and requirements, by applying Feature
Models (FM). Feature Models consist of a hierarchical
spanning tree of features [25]. Each feature is represented by a
rectangle. Relations between features are shown as lines to
form feature trees [13]. In this context, we focus on:

 A proposed generic approach for modeling BDA
under the scope of Feature Models as a high-
abstraction basis.

 A methodology for converting Feature Models into
software design artifacts such as class diagrams.

Feature Models can support both changeability variability
of BDA, which other proposed approaches do not cover fully
due to the data variability factor [27]. The main advantages of
this proposal is based on:

 Unification of diversity over current proposed models.

 Reduction of total cost over current deployments by
requirements abstraction over agility differentiation.

 Avoidance of future inconsistencies that will prevent
future expandability, based on the changeability that
characterizes data-intensive applications.

The rest of the paper is organized as follows: In Section II
we present the background of the problem (focusing on
existing architectures and proposed techniques) and in Section
III we describe in detail the proposed approach of applying
Feature Models on BDA, In Section IV, we discuss related
work so far in contrast to our proposal mentioning threats to
validity, and conclude the paper in Section V.

II. BACKGROUND OF THE PROBLEM

In this section we present basic attributes of BDA, describe
architectures, requirement techniques and approaches proposed
so far and present an overview of feature models.

A. The Big Data V’s

In 2001, Doug Laney [16], was the first to define three
basic attributes as the 3 V’s of Big Data : Volume, Velocity and
Variety[16]. Fifteen years later, new attributes were introduced
leading to the multiplication of the V’s defining big data. A
short summary of this expansion is presented in Table I:

TABLE I. THE BIG DATA V’S

V type
V type definition and reference

Definition Introduced by Date

Volume Size of the data set Laney [16] 2001

Variety
Structured, semi-structured or
unstructured data set types

Laney [16] 2001

Velocity New data generated speed Laney [16] 2001

Veracity Data understandability quality Hopkins [12] 2011

Variability Statistical deviation of data Hopkins [12] 2011

Value Business value to be derived Gartner [8] 2012

Viability Implementation sustainability Biehn [4] 2013

Volatility Available data change pace Kahn [14] 2014

V type
V type definition and reference

Definition Introduced by Date

Vitality
Importance of certain data sets
in the data pool

Accenture [1] 2014

Visual Representation of data Rijmenam [19] 2015

Visibility Actionable data type Rijmenam [19] 2015

Vinculatiry Connectivity of data sources Rijmenam [19] 2015

While the above list continues to expand, the original target
when dealing with Big Data still remains the same: To extract
value and knowledge from diverse data sets, without shaking
the original foundation of the early four V’s [10].

B. Architectures and requirement techniques for BDA

In 2008, Gorton [10] addressed the challenges when
developing data intensive applications and supporting
infrastructures. Based on real world examples, such as
astronomy and social computing, proposed the application of
dynamic design principles and adaptive architectures as a
solution to configurable architectural properties.

In 2012, Begoli [3] reviewed the appliance of currently
available architectures over BDA modeling and also provided a
summary of all relevant requirement techniques. In addition, he
outlined the most common platforms for knowledge discovery
from data, and recorded their architectural properties. Begoli
[3] finally derived empirical architectural principles based on
his experience over governmental data analysis.

In 2015, Anderson [2] proposed an agile life-cycle
architecture to match existing frameworks with iteratively
defined requirements, and provided a case study on BDA for
social media. He identifies and discusses challenges and the
corresponding solutions associated with the design and
development of data-intensive software systems On the basis of
Twitter data analysis, he proposes persistent software
architecture. Gomez [9] applied UML for modeling BDA and
proposed the use of stochastic petri nets for requirements
specification. Based on three different application domain case
studies (fraud detection, social sensor news acquisition, vessel
traffic management), the proposed models were verified.

Also in 2016, Xing [23] proposed the use of iterative
modeling techniques on architecture design and requirements
specifications. Also provided a case study over BDA machine
learning operations. He focuses on exploring new design
strategies by revisiting traditional architecture principles.

While most appliances of the above proposed methods
proved to be quite effective, they fail to describe mostly the
appliance variability of BDA [19] :

TABLE II. PROPOSED BDA DESIGN AND ANALYSIS APPROACHES

Architectures Requirements focus Appliance Reference
Adaptive
behavior

Predictable
requirements

Astronomy,
Social computing

2008 [10]

Match-
making

A priori requirement
specification

US state, federal
data analysis

2012 [3]

Agile life-
cycles

Matching
frameworks with

requirements
Social Media 2015 [2]

Architectures Requirements focus Appliance Reference

UML models Stochastic Petri nets

Fraud detection,
Social sensor
news, Vessel

traffic

2016 [9]

Iterative
modeling

Iterative
requirements

specification review
Social Media 2016 [23]

C. Feature Models

Feature Models as a modeling technique, is considered to
be one of the very first concepts of Software Engineering and
Domain Analysis areas, introduced in 1990 [13]. By consisting
of simple hierarchical models, they enable capturing the
commonality, variability and features of software product lines,
and thus, are considered to be a prevalent approach to model
products. Software Product Lines (SPL) are defined as a set of
software-intensive systems that share a common managed set
of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way [25].

Feature Models are considered as a strategic concept for
Software Product Lines in order to reduce the overall cost of
software manufacture, by enabling software reusability and
defining optimized software components [13][30]. This
concept has been widely applied in software industry especially
in application domains that present highly diversified
requirements. Quinton [28] proposes feature modeling for
mobile application development, Sinz [29] for artificial
intelligence configurations in automobile industry, while
Danfoss Drives produces industrial frequency converters by
using feature modeling [30].

The feature tree is the core of Feature Models, depicting in
a visually manner all features of an application by using groups
of increasingly levels of detail and functionality, in a form of a
hierarchical diagram. A tree-like structure links all features by
using variability relationships, and optionally, cross-tree
constraints connect features [21]. Generic feature models
propose four variability and two constraint relationships [22] :

 OPTIONAL - A feature can be included or excluded
(noted as a white circle on top of a feature)

 MANDATORY - A feature must be included (noted as
a black circle on top of a feature)

 OR - One or more features from a group of child-
features can be included

 ALTERNATIVE - Exactly one feature from a group of
child-features must be included

 REQUIRE constraint - A feature is included while
another feature must be also included.

 EXCLUDE constraint - A feature is included while
another feature must be excluded.

A simple example is depicted in Figure 1 for data
Storing and Processing. Two mandatory feature groups
(Storing and Processing collecting) as well as three mandatory
features and one OR sub-features are included. The BDA

critical Analytics processes [15] (e.g. Processing and Analytics
models [13]), based on various Analytics techniques (e.g.
Machine learning [13]), require data to be processed, mainly
stored in non relational NoSQL databases [3] with optional
relational databases use [14].

Fig. 1. A BDA services model

TABLE III. BDA ANALYTICS CONFIGURATION MATRIX

Relational
database

Non relational
database

Analytics
Analytics

techniques
X X X X

X X X

Table III depicts the configuration matrix for the above
Feature Model. Two configurations derive on the basis of the
defined constraints. Each feature of the proposed Feature
Model tree can further expand to include new feature and
constraints. This leads to new expanded configuration matrices,
while the complexity of the solution space increases.

The significance variability of Big Data V’s characteristics
for each BDA application, differs over the expected results of
each deployment [14]. Each deployment presents lead
eventually to a collection of similar applications that include
similar sets of software assets. The result is the formation of a
virtual software product line satisfying the need for BDA
deployment.

 To properly model the Table I V’s, Feature Models can
describe this variability that is not of the compositional type
but rather of potential properties. Out of the above Table II
method, Feature Models excel due to coarse grain variability
nature of BDA features [21], and a comparison to other
proposed techniques on low V’s characteristics satisfaction is
depicted on the following table :

TABLE IV. BIG DATA V’S MODELING TECHNIQUES SATISFACTION

Technique /
V types

V
olum

e

V
ariety

V
elocity

V
eracity

V
ariability

V
alue

V
iability

V
olatility

V
itality

V
isual

V
isibility

V
inculatiry

Adaptive behavior
[1][10][19]

X X X X X X X X X X

Match-making
[1][3][4][14]

X X X X X X X X X

Agile life-cycles
[1][2][12]

X X X X X X X X X X

UML models
[1][3][4][9][14]

X X X X X X X X X

Iterative modeling
[4][16][23]

X X X X X X X X X X

Feature models
[1][15]

X X X X X X X X X X X

III. BUILDING THE BDA FEATURE MODEL

A. Defining the features

Features are abstract concepts for describing commonalities
and variabilities [13],[17]. These represent characteristics of a
system relevant for some Stakeholder, where depending on the
interest of the latter, can be requirements, technical functions,
function groups or quality characteristics. BDA applications
serve data-intensive scalability, data distribution, functionality
parallelism. On the basis of Kune’s older anatomy of a BDA
[15] and Pääkkönen’s architectural reference over modern big
data services [26], all necessary features are divided into
physical (Infrastructure) and logical (Services) groups.

The first key concept represent the ability to physically
collect (e.g. via sensors), transfer (e.g. via network) and store
data (e.g. in hard disk clusters). The second key concept
represents the ability to logically collect (e.g. via crawlers),
process (e.g. via data normalization) and analyze data (e.g. via
analytics or machine learning algorithms). These represent
basic features BDA include, with possible further expansion.

The feature definition based on the above feature groups is
summarized on the following table, based on our literature
research and mostly over Kune’s [15] wide accepted proposal :

TABLE V. Feature definition

Feature Group
/ Feature

Description

Infrastructure /
Network

Hardware interconnection of the system with a)
internal components, b) external world [15][14][17]

Infrastructure /
Storage

Hardware physical or virtual storage of data, used to
store either temporary or permanently data [15][10]

Infrastructure /
Data sources

Data sources that feed the system with data, mostly
external of the system [15]

Services /
Collecting

Collecting process from carious data sources and
transferring them to feed the system [15][23]

Services /
Storing

Storing process of the collected data and distribution
between available storing spaces [15][14]

Services /
Preprocessing

Prepare data for analysis by transferring from and to
storage, compressing and cleaning [15][23]

Services /
Processing

Data analysis to deliver knowledge from big data [15]
[23]

Services /
Interface

Visualization of the data analysis results, and
interaction between end users with the system [15][18]

B. Building the Feature Model

The final proposed General Feature Model is shown in
Figure 2. The features depicted represent potential system
variants of a BDA. Since this generic model represents coarse
grained functionality, no constraint relationships are described
as all abstract features can be further expanded.

On the infrastructure part feature groups :

 The data network group must rely over cable
network, and optionally wireless network (to support
distant environmental sensors data collections).

 The data storage group must be relied over network
storages (expanded to cloud storage or network
clusters) and optionally to direct attached storages for
temporary data collection purposes.

 The data sources group alternative supports hardware
(sensors, embedded devices, actuators) or software
(application logs, web crawlers, scrappers, monitor
agents or bulk collectors), according to the defined
data sources of the final deployment.

Fig. 2. A BDA general Feature Model

On the Services part, feature groups are modeled as part of
a BDA value-chain operational diagram :

 The collecting group includes techniques and methods
that operate on the infrastructure to collect data,
whether by streaming (either real time or batch
operations) or statics collection processes.

 The services storing group includes logical features
that rely over the hardware – database structures and
storing techniques. Non relational databases are
always used to store huge amounts of data, while
optionally relational databases used for result storing.

 The preprocessing group includes data extraction,
transfer, distribution, compression, preparation,
validation, and transformation operations. The group
contains the most time-consuming and critical
features for the validity of the input data to be
analyzed. Data transfer deliver data from sources to
the system, Data compression compasses the data
before deliverance and Data preparation alters data
structure via cleaning techniques before processed.

 The processing group is the core of data analytics.
Knowledge derives from raw data through processing,
analytics models, analytics services and techniques.

 The interface group includes visualization (how
derived knowledge through data analytics is
represented to the end user, and how an interaction
link will be established) and platform features (how
the end-product will be operated by the end-users.

The above feature groups are abstract in the tree structure,
and expand further to non-abstract features in larger depths of
complexity [15], [20]. Cardinality relationship can also be
applied over the expanded model. As a result based on the
above conversion cases, a UML integration to transmute
Feature Models to UML models is feasible. By this
transmutation, automatic generation of readable and
maintainable code can be achieved. The above proposal
combines Feature Models variability, Use Case Diagrams
interactions, and Class Diagram conceptual extensibility.

C. Deriving the Use Case Diagram

Use Case Diagrams are defined as behavior diagrams that
are used to describe a set of use cases, that a system can
perform with external actors of the system [22]. The described
constraint reproductivity is possible to be converted to Use
Case Diagrams, by representing use sequence of actions, to
provide a measurable value, and system usage requirements.

Fig. 3. A BDA processing and storing use case diagram

For demonstration purposes, consider the Feature Model
Analytics sub tree based on Figure 1. This model extends the
Storing and Processing features as described on Figure 2. A
generic example of this conversion of analytics example is
depicted in Figure 3.

The use case lists totally six event steps, two primary
stakeholders (End user and Infrastructure data sources). The
postcondition success guarantee is to deliver data analysis
results to the End user (either by visualisation or other data
presentation steps, irrelevant to the current scope). Similar, the
Precondition to storing step inputs data from Infrastructure
data sources stakeholder. The use case Trigger invokes data
storing process.

As for the Basic Flow, the Storing step includes storing and
access to Non-relational databases as a primary data storage,
but also extends to Relational databases as an option, in
correspondence to figure 1 feature tree. BDA concern huge
amounts of data nearly all stored in huge non-relational, and a
small percentage or none, to relational databases [10] The
Processing stem includes Analytics and Analytic techniques
steps to perform data processing. The most noticeable
interaction is the inclusion of Storing by the Processing step. In
order to process data, access to storage is mandatory.

Taking advantage of a BDA near linear use case operation
(collecting, storing, processing, analysing and visualizing data
[15]), fully derivation to a use case diagram can be achieved by
deriving inclusion steps from mandatory features, and
extension steps from optional features. Concerning the figure 1
feature tree, for the case of the Services feature group, the
expected derivation can be achieved based on this linearity, as
use case Extensions. Concerning the Infrastructure feature
group, inclusion or extension relations to Services feature
groups can be defined as needed.

Use Case Diagram can be further expanded to include
optional or mandatory use case nodes, by converting features to
use cases. Also, the circumvention of the whole diagram is
excluded as it requires more expansion deriving from the
expanded feature tree.

D. Deriving the class Diagram

As a result from Feature Model technique and the Use Case
Diagram, a UML Class Diagram conversion is feasible. Class
Diagrams are the main blocks of object-oriented modelling, to
represent both main elements, interactions and classes to be
programmed [23]. Most common practices involve [27] :

 Encoding of Feature Models to class models by
converting child-less features (features that cannot be
extended) to attributes and parental features to classes.

 Encoding sub-feature relationships either as property
nesting or as UML composition.

 Encoding ALTERNATIVE relationship to UML
generalizability.

 Correspond feature multiplicities to property
multiplicities, and XOR constraints to enumerations.

A generic example of this conversion of analytics example
is depicted in Figure 4 :

Fig. 4. A BDA Storing and Process class diagram

Data is represented as Blobs due to the variability nature of
input data structured to a BDA [27]. Based on the above use
case diagram, six classes are introduced. Databases as parental
class aggregates one-or-more relational and non-relational
databases classes as foretold to satisfy data storage
requirements [10]. Both these types of databases serve data
storing and retrieving, operational functionality differs on a
SQL and NoSQL basis. A set of databases classes composited
an introduced Storing master class to unify operations (one-to-
many) over different sets of databases.

Processing as parental class aggregates Analytics subclass
for build the data analytics model. Also aggregates one-or-more
Analytics Techniques subclass for deploying one or more
techniques, based on the family of techniques required for data
analysis [15]. Last but not least, Processing class associates
with Storing class to derive the mentioned inclusion use case
action.

By converting each feature to Use Case Diagrams and
extending each to Class Diagrams, the full conversion of a
Feature Model is feasible. An empirical application should
define the efficiency, complexity and computation effort of this
conversion. All Class Diagram features can can be derived
through this process to be fully described.

IV. CONCLUSIONS

In this paper, we have proposed a Feature Model-based
approach for modeling BDA. We have demonstrated how
Feature Models could be used in order to guide the system
variability depending on the unique nature of this type of
applications, and a way of converting Feature Models to UML
models. Modeling BDA is appraised as a high value but also as
a long trade-off topic. Our approach fills the gap in modeling
BDA by proposing feature-oriented design to superimpose
requirements to BDA components, by taking special
consideration over variability and expandability to this specific
family of applications. Also highlight the value of applying
Feature Modeling compared to other modeling techniques as
more effective and suitable over BDA. Appliance,
customization and deployment variability, dwell deep in the
heart of big data nature, which is data variability. The
suggested approach focuses on overall modeling BDA as a
different approach from previous research efforts that mostly
focus on single case appliances [19][27].

The usefulness and practicability of the suggested models
can only be proven by conducting empirical case studies and
statistically significant tests using real-life data from existing
libraries for reusable components. The empirical evaluation of
the proposed model is planned to be presented as future work.

REFERENCES

[1] Accenture, “Companies Are Satisfied with Business Outcomes from Big
Data and Recognize Big Data as Very Important to Their Digital
Transformation”, Accenture Study Shows Newsroom,
https://accntu.re/2rnebEW. [Accessed: 22-Apr-2017]

[2] Anderson, K. M., “Embrace the Challenges: Software Engineering in a
Big Data World”, in: 2015 IEEE/ACM 1st International Workshop on
Big Data Software Engineering (BIGDSE)', pp. 19–25, 2015.

[3] Begoli, E. (2012), A Short Survey on the State of the Art in Architectures
and Platforms for Large Scale Data Analysis and Knowledge Discovery
from Data, in 'Proceedings of the WICSA/ECSA 2012 Companion
Volume', ACM, New York, NY, USA, pp. 177--183.

[4] Biehn, N., “The Missing Vs in Big Data: Viability and Value -
Innovation Insights”, http://bit.ly/2qAwtl9 [Accessed: 22-Apr-2017]

[5] Capgemini, “Cracking the data conundrum: How successful companies
make big data operational,” Capgemini Consulting Worldwide,
http://bit.ly/1E27l94 , [Accessed: 22-Apr-2017]

[6] DeLine, R. (2015), Research Opportunities for the Big Data Era of
Software Engineering, in 'Proceedings of the First International
Workshop on BIG Data Software Engineering', IEEE Press, Piscataway,
NJ, USA, pp. 26—29.

[7] Forbes, “Forbes Insights: The Big Potential of Big Data.”,
http://bit.ly/2qCZKvM. [Accessed: 22-Apr-2017]

[8] Gartner, http://gtnr.it/1RuD6gU. [Accessed: 22-Apr-2017]

[9] Gómez, A., et al. (2016), Towards a UML Profile for Data Intensive
Applications, in 'Proceedings of the 2Nd International Workshop on
Quality-Aware DevOps', ACM, New York, NY, USA, pp. 18—23.

[10] Gorton, I. (2008), Software Architecture Challenges for Data Intensive
Computing, in 'Seventh Working IEEE/IFIP Conference on Software
Architecture, 2008. WICSA 2008', pp. 4—6.

[11] Governor, J., “Why Applications Are Like Fish and Data is Like Wine,”
James Governor’s Monkchips. http://bit.ly/1THbjJS. [22-Apr-2017]

[12] Hopkins, B. and Boris, E. (2011). Expand your digital horizon with big
data, Forrester Research Inc, http://bit.ly/2r1D89i. [22-Apr-2017]

[13] Kang, K., et al., (1990), Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh.

[14] Khan, M.A., Fahim Uddin M.,Gupta N. (2014), “Seven V’s of Big
Data”, Proceedings of 2014 Zone 1 Conference of the American
Society for Engineering Education (ASEE Zone 1), Bridgeport,
Connecticut, USA, pp.3-5.

[15] Kune, R.; Konugurthi, P. K.; Agarwal, A.; Chillarige, R. R. & Buyya, R.
(2016), 'The anatomy of big data computing', Software: Practice and
Experience 46(1), 79–105.

[16] Laney, D. "3D Data Management: Controlling Data Volume, Velocity
and Variety", Gartner, http://gtnr.it/1bKflKH. [Accessed: 22-Apr-2017]

[17] Ludewig, J., (2003) “Models in software engineering – an introduction,”
SoSyM, vol. 2, no. 1, pp. 5–14.

[18] Madhavji, N. H.; Miranskyy, A. & Kontogiannis, K. (2015), Big Picture
of Big Data Software Engineering: With Example Research Challenges,
in '2015 IEEE/ACM 1st International Workshop on Big Data Software
Engineering (BIGDSE)', pp. 11—14.

[19] Rijmenam, van M., “Why The 3V’s Are Not Sufficient To Describe Big
Data”, Datafloq, http://bit.ly/1FnnliR. [Accessed: 22-Apr-2017]

[20] Runeson, P., Höst, M., “Guidelines for conducting and reporting case
study research in software engineering,” Empir Software Eng, vol. 14,
no. 2, p. 131, Apr. 2009.

[21] Usman M., Iqbal M. Z., Khan M. U., (2017), ‘A product-line model-
driven engineering approach for generating feature-based mobile
applications’, Journal of Systems and Software, issue 123, 1–32

[22] Vachharajani, V., Pareek, J., “A Proposed Architecture for Automated
Assessment of Use Case Diagrams,” International Journal of Computer
Applications, vol. 108, no. 4, pp. 35–40, Dec. 2014.

[23] Vargas, R. T., Nugroho, A., Chaudron, M., Visser, J. “The Use of UML
Class Diagrams and Its Effect on Code Change-proneness,” in
Proceedings of the Second Edition of the International Workshop on
Experiences and Empirical Studies in Software Modelling, New York,
NY, USA, 2012, p. 2:1–2:6.

[24] Xing, E. P., et. al., “Strategies and Principles of Distributed Machine
Learning on Big Data”, Engineering 2(2), 179–195, 2016

[25] P. A. da Mota Silveira Neto, et. al., “A systematic mapping study of
software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[26] P. Pääkkönen and D. Pakkala, “Reference Architecture and
Classification of Technologies, Products and Services for Big Data
Systems,” Big Data Research, vol. 2, no. 4, pp. 166–186, 2015.

[27] K. Bąk, et al., “Clafer: unifying class and feature modeling,” Softw Syst
Model, vol. 15, no. 3, pp. 811–845, Jul. 2016.

[28] C. Quinton, S. Mosser, C. Parra, L. Duchien, “Using Multiple Feature
Models to Design Applications for Mobile Phones,” MAPLE / SCALE
workshop, colocated with SPLC’11, Munich, Germany, 2011, pp. 1–8.

[29] Sinz C., Kaiser A., Kuchlin W., “Formal methods for the validation of
automotive product configuration data”, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 2012, 17 (2): 75 – 97.

[30] H. P. Jepsen, D. Beuche, “Running a Software Product Line: Standing
Still is Going Backwards,” in Proceedings of the 13th International
Software Product Line Conference, Pittsburgh, PA, USA, 2009, pp. 101–
110.

