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Abstract—Modeling Big Data Applications is a key research
topic for designing, analyzing, programming and deploying data-
intensive applications, with high value and long-term trade-offs.
The  need  for  unified  perspectives,  architectures  and
requirements  techniques  is  requisite.  The  current  approach
proposes the use of Feature Models to fill this gap by extending
present model-driven engineering practices with utter purpose to
define  a  reusable,  extensible  and  highly  configurable  design
approach for Big Data Applications.
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I.  INTRODUCTION

Big  data  has  been  a  hot  topic  for  both  researchers  and
practitioners in the last decade. A chaotic-distributed explosion
of data continues to  flour every  day  our  data-driven world,
making more necessary than ever the need for advanced and
efficient  software  and systems applications,  that  will  collect,
store, manage and analyze massive amounts of data.

Reports  [5],  [7]  estimate  that  the  Big  Data  Application
(BDA)  business  will  continue  to  grow  over  50%  in  the
following five-year forecast period. In addition, almost half of
each  enterprise’s  net  will  attract  big  data  intelligence  and
analytics.  On the  other  hand,  an  ineffective  coordination  of
BDA  strategies  is  pinpointed  for  ensuring  successful
application  deployment.  More  than  55%  of  BDA
implementation  approaches  do  not  adapt  a  clear  road  map,
while over 74% fizzle to build their  big data capabilities  or

operating  models,  take  iterative  approaches  towards
implementation, or even develop BDA competencies.

The above statistics prove that, in relation to the importance
of big data, BDA analysis and design is far too important to be
ignored. The unique nature of this type of applications differs
from traditional  applications due to the data-intensive nature
they inherit. Until today, BDA-in-a-box is for now, far from a
reality.  The  majority  of  practitioners  and  companies  face  a
short-term syndrome by not having the discipline or even the
patience to deal  with a broader view of modeling [9].   The
latter involves time consuming practices that lead to high costs
on deployment. Moreover, current efforts proposed tend not to
complement each other, while traditional analysis and design
techniques fail in most cases to be applied efficiently [18].

The necessity to analyze and design BDA is based on the
core key features of these type f applications: Data-intensive
scalability,  data  distribution,  functionality  parallelism.  In
contrast  to  traditional  application  design,  development  and
deployment, the present lack of one-time design to any-time
deployment models, mature and consistent architectures, agile
planning  differentiations  and  deep  focus  on  requirement
analysis, strengthens BDA model engineering as a necessity to
fully harvest the potential benefits of this reality. Like James
Governor, founder of Redmonk cites on Twitter, “data matures
like wine but applications like fish” [11]. 

In the current proposal, to fill the gap over BDA modeling,
we propose a different approach based on the above mentioned



BDA  key  features  and  requirements,  by  applying  Feature
Models  (FM).  Feature  Models  consist  of  a  hierarchical
spanning tree of features [25]. Each feature is represented by a
rectangle.  Relations  between  features  are  shown as  lines  to
form feature trees [13]. In this context, we focus on:

 A  proposed  generic  approach  for  modeling  BDA
under  the  scope  of  Feature  Models  as  a  high-
abstraction basis.

 A methodology for  converting  Feature  Models  into
software design artifacts such as class diagrams. 

Feature Models can support both changeability variability
of BDA, which other proposed approaches do not cover fully
due to the data variability factor [27]. The main advantages of
this proposal is based on:

 Unification of diversity over current proposed models.

 Reduction of total cost over current deployments by
requirements abstraction over agility differentiation.

 Avoidance of future inconsistencies that will prevent
future expandability, based on the changeability that
characterizes data-intensive applications.

The rest of the paper is organized as follows: In Section II
we  present  the  background  of  the  problem  (focusing  on
existing architectures and proposed techniques) and in Section
III  we describe  in detail  the proposed approach  of  applying
Feature  Models  on  BDA,  In  Section  IV, we discuss  related
work so far in contrast to our proposal mentioning threats to
validity, and conclude the paper in Section V.

II. BACKGROUND OF THE PROBLEM

In this section we present basic attributes of BDA, describe
architectures, requirement techniques and approaches proposed
so far and present an overview of feature models.

A. The Big Data V’s

In 2001,  Doug Laney [16],  was  the first  to  define  three
basic attributes as the 3 V’s of Big Data : Volume, Velocity and
Variety[16]. Fifteen years later, new attributes were introduced
leading to the multiplication of the V’s defining big data.  A
short summary of this expansion is presented in Table I:

TABLE I. THE BIG DATA V’S

V type
V type definition and reference

Definition Introduced by Date

Volume Size of the data set Laney [16] 2001

Variety
Structured,  semi-structured  or
unstructured data set types

Laney [16] 2001

Velocity New data generated speed Laney [16] 2001

Veracity Data understandability quality Hopkins [12] 2011

Variability Statistical deviation of data Hopkins [12] 2011

Value Business value to be derived Gartner [8] 2012

Viability Implementation sustainability Biehn [4] 2013

Volatility Available data change pace Kahn [14] 2014

V type
V type definition and reference

Definition Introduced by Date

Vitality
Importance of certain data sets
in the data pool

Accenture [1] 2014

Visual Representation of data Rijmenam [19] 2015

Visibility Actionable data type Rijmenam [19] 2015

Vinculatiry Connectivity of data sources Rijmenam [19] 2015

While the above list continues to expand, the original target
when dealing with Big Data still remains the same: To extract
value and knowledge from diverse data sets, without shaking
the original foundation of the early four V’s  [10].

B. Architectures and requirement techniques for BDA

In  2008,  Gorton  [10]  addressed  the  challenges  when
developing  data  intensive  applications  and  supporting
infrastructures.  Based  on  real  world  examples,  such  as
astronomy and social computing, proposed the application of
dynamic  design  principles  and  adaptive  architectures  as  a
solution to configurable architectural properties.

In  2012,  Begoli  [3]  reviewed  the  appliance  of  currently
available architectures over BDA modeling and also provided a
summary of all relevant requirement techniques. In addition, he
outlined the most common platforms for knowledge discovery
from data, and recorded  their architectural properties. Begoli
[3] finally derived empirical architectural principles based on
his experience over governmental data analysis.

In  2015,  Anderson  [2]  proposed  an  agile  life-cycle
architecture  to  match  existing  frameworks  with  iteratively
defined requirements, and provided a case study on BDA for
social  media.  He identifies and discusses  challenges and the
corresponding  solutions  associated  with  the  design  and
development of data-intensive software systems On the basis of
Twitter  data  analysis,  he  proposes  persistent  software
architecture. Gomez [9] applied UML for modeling BDA and
proposed  the  use  of  stochastic  petri  nets  for  requirements
specification. Based on three different application domain case
studies (fraud detection, social sensor news acquisition, vessel
traffic management), the proposed models were verified.

Also  in  2016,  Xing  [23]  proposed  the  use  of  iterative
modeling techniques on architecture design and requirements
specifications. Also provided a case study over BDA  machine
learning  operations.  He  focuses  on  exploring  new  design
strategies by revisiting traditional architecture principles.

While  most  appliances  of  the  above  proposed  methods
proved to be quite effective,  they fail to describe mostly the
appliance variability of BDA [19] :

TABLE II. PROPOSED BDA DESIGN AND ANALYSIS APPROACHES

Architectures Requirements focus Appliance Reference
Adaptive
behavior

Predictable
requirements

Astronomy,
Social computing

2008 [10]

Match-
making

A priori requirement
specification

US state, federal
data analysis

2012 [3]

Agile life-
cycles

Matching
frameworks with

requirements
Social Media 2015 [2]



Architectures Requirements focus Appliance Reference

UML models Stochastic Petri nets

Fraud detection,
Social sensor
news,  Vessel

traffic 

2016 [9]

Iterative
modeling

Iterative
requirements

specification review
Social Media 2016 [23]

C. Feature Models 

Feature Models as a modeling technique, is considered to
be one of the very first concepts of Software Engineering and
Domain Analysis areas, introduced in 1990 [13]. By consisting
of  simple  hierarchical  models,  they  enable  capturing  the
commonality, variability and features of software product lines,
and thus, are considered to be a prevalent approach to model
products. Software Product Lines (SPL) are defined as a set of
software-intensive systems that share a common managed set
of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way [25]. 

Feature Models are considered  as a  strategic concept  for
Software Product Lines in order to reduce the overall cost of
software  manufacture,  by  enabling  software  reusability  and
defining  optimized  software  components  [13][30].  This
concept has been widely applied in software industry especially
in  application  domains  that  present  highly  diversified
requirements.  Quinton  [28]  proposes  feature  modeling  for
mobile  application  development,  Sinz  [29]  for  artificial
intelligence  configurations  in  automobile  industry,  while
Danfoss  Drives  produces  industrial  frequency  converters  by
using feature modeling [30].

The feature tree is the core of Feature Models, depicting in
a visually manner all features of an application by using groups
of increasingly levels of detail and functionality, in a form of a
hierarchical diagram. A tree-like structure links all features by
using  variability  relationships,  and  optionally,  cross-tree
constraints  connect  features  [21].  Generic  feature  models
propose four variability and two constraint relationships [22] :

 OPTIONAL - A feature can be included or excluded
(noted as a white circle on top of a feature)

 MANDATORY - A feature must be included (noted as
a black circle on top of a feature)

 OR -  One or  more features  from a group of  child-
features can be included

 ALTERNATIVE - Exactly one feature from a group of
child-features must be included

 REQUIRE constraint  -  A feature  is  included  while
another feature must be also included.

 EXCLUDE constraint  -  A feature  is  included  while
another feature must be excluded.

A  simple  example  is  depicted  in  Figure  1  for  data
Storing  and  Processing.  Two  mandatory  feature  groups
(Storing and Processing collecting) as well as three mandatory
features  and  one  OR  sub-features  are  included.  The  BDA

critical Analytics processes [15] (e.g. Processing and Analytics
models  [13]),  based  on  various  Analytics  techniques  (e.g.
Machine learning [13]),  require data to be processed, mainly
stored  in  non relational  NoSQL databases  [3]  with  optional
relational databases use [14].

Fig. 1. A BDA services model

TABLE III. BDA ANALYTICS CONFIGURATION MATRIX

Relational
database

Non relational
database

Analytics
Analytics

techniques
X X X X

X X X

Table  III  depicts  the  configuration  matrix  for  the  above
Feature Model. Two configurations derive on the basis of the
defined  constraints.  Each  feature  of  the  proposed  Feature
Model  tree  can  further  expand  to  include  new  feature  and
constraints. This leads to new expanded configuration matrices,
while the complexity of the solution space increases.

The significance variability of Big Data V’s characteristics
for each BDA application, differs over the expected results of
each  deployment  [14].  Each  deployment  presents  lead
eventually to a collection of similar applications that include
similar sets of software assets. The result is the formation of a
virtual  software  product  line  satisfying  the  need  for  BDA
deployment. 

 To properly model the Table I V’s,  Feature Models can
describe this variability that is not of the compositional type
but rather  of  potential  properties.  Out of  the above Table  II
method, Feature Models excel due to coarse grain variability
nature  of  BDA  features  [21],  and  a  comparison  to  other
proposed techniques on low V’s characteristics satisfaction is
depicted on the following table :

TABLE IV. BIG DATA V’S MODELING TECHNIQUES SATISFACTION

Technique / 
V types

V
olum

e

V
ariety

V
elocity

V
eracity

V
ariability

V
alue

V
iability

V
olatility

V
itality

V
isual

V
isibility

V
inculatiry

Adaptive behavior
[1][10][19]

X X X X X X X X X X

Match-making
[1][3][4][14]

X X X X X X X X X

Agile life-cycles
[1][2][12]

X X X X X X X X X X

UML models
[1][3][4][9][14]

X X X X X X X X X

Iterative modeling
[4][16][23]

X X X X X X X X X X

Feature models
[1][15]

X X X X X X X X X X X



III. BUILDING THE BDA FEATURE MODEL

A. Defining the features

Features are abstract concepts for describing commonalities
and variabilities [13],[17]. These represent characteristics of a
system relevant for some Stakeholder, where depending on the
interest of the latter, can be requirements, technical functions,
function  groups  or  quality  characteristics.  BDA applications
serve data-intensive scalability, data distribution, functionality
parallelism. On the basis of Kune’s older anatomy of a BDA
[15] and Pääkkönen’s architectural reference over modern big
data  services  [26],  all  necessary  features  are  divided  into
physical (Infrastructure) and logical (Services) groups.

The  first  key  concept  represent  the  ability  to  physically
collect (e.g. via sensors), transfer (e.g. via network) and store
data  (e.g.  in  hard  disk  clusters).  The  second  key  concept
represents  the  ability  to  logically  collect  (e.g.  via  crawlers),
process (e.g. via data normalization) and analyze data (e.g. via
analytics  or  machine  learning  algorithms).  These  represent
basic features BDA include, with possible further expansion. 

The feature definition based on the above feature groups is
summarized  on  the  following  table,  based  on  our  literature
research and mostly over Kune’s [15] wide accepted proposal :

TABLE V. Feature definition 

Feature Group
/ Feature

Description

Infrastructure /
Network

Hardware  interconnection  of  the  system   with  a)
internal components, b) external world [15][14][17]

Infrastructure /
Storage

Hardware physical or virtual storage of data,  used to
store either temporary or permanently data [15][10]

Infrastructure /
Data sources

Data  sources  that  feed  the  system with  data,  mostly
external of the system [15]

Services /
Collecting

Collecting  process  from  carious  data  sources  and
transferring them to feed the system [15][23]

Services /
Storing

Storing process  of  the collected data and distribution
between available storing spaces [15][14]

Services /
Preprocessing

Prepare data for analysis  by transferring from and to
storage, compressing and cleaning [15][23]

Services /
Processing

Data analysis to deliver knowledge from big data [15]
[23]

Services /
Interface

Visualization  of  the  data  analysis  results,  and
interaction between end users with the system [15][18]

B. Building the Feature Model

The final proposed General Feature Model is shown in
Figure  2.  The  features  depicted  represent  potential  system
variants of a BDA. Since this generic model represents coarse
grained functionality, no constraint relationships are described
as all abstract features can be further expanded. 

On the infrastructure part feature groups :

 The  data  network  group  must  rely  over  cable
network, and optionally  wireless network (to support
distant environmental sensors data collections).

 The data storage group must be relied over network
storages (expanded  to  cloud  storage  or  network
clusters) and optionally to direct attached storages for
temporary data collection purposes.

 The data sources group alternative supports hardware
(sensors,  embedded  devices,  actuators)  or  software
(application  logs,  web  crawlers,  scrappers,  monitor
agents  or  bulk collectors),  according  to  the defined
data sources of the final deployment.

Fig. 2. A BDA general Feature Model

On the Services part, feature groups are modeled as part of
a BDA value-chain operational diagram :

 The collecting group includes techniques and methods
that  operate  on  the  infrastructure  to  collect  data,
whether  by  streaming (either  real  time  or  batch
operations) or statics collection processes.

 The services  storing group includes logical  features
that rely over the hardware –  database structures and
storing  techniques.  Non  relational  databases  are
always  used  to  store  huge  amounts  of  data,  while
optionally relational databases used for result storing.

 The  preprocessing group  includes  data  extraction,
transfer,  distribution,  compression,  preparation,
validation, and transformation operations. The group
contains  the  most  time-consuming  and  critical
features  for  the  validity  of  the  input  data  to  be
analyzed.  Data transfer deliver data from sources to
the  system,  Data  compression  compasses the  data
before  deliverance  and  Data preparation  alters  data
structure via cleaning techniques before processed.

 The  processing  group is  the core  of  data  analytics.
Knowledge derives from raw data through processing,
analytics models, analytics services and techniques.

 The  interface group  includes  visualization (how
derived  knowledge  through  data  analytics  is
represented  to the end user, and how an interaction
link will be established) and  platform features (how
the end-product will be operated by the end-users.



The above feature groups are abstract in the tree structure,
and expand further to non-abstract features in larger depths of
complexity  [15],  [20].  Cardinality  relationship  can  also  be
applied  over  the  expanded model.  As  a  result  based  on the
above  conversion  cases,  a  UML  integration  to  transmute
Feature  Models  to  UML  models  is  feasible.  By  this
transmutation,  automatic  generation  of  readable  and
maintainable  code  can  be  achieved.  The  above  proposal
combines  Feature  Models  variability,  Use  Case  Diagrams
interactions, and Class Diagram conceptual extensibility.

C. Deriving the Use Case Diagram

Use Case Diagrams are defined as behavior diagrams that
are  used  to  describe  a  set  of  use  cases,  that  a  system  can
perform with external actors of the system [22]. The described
constraint  reproductivity  is  possible  to  be  converted  to  Use
Case  Diagrams, by  representing  use  sequence  of  actions,  to
provide a measurable value, and system usage requirements.

Fig. 3. A BDA processing and storing use case diagram

For  demonstration  purposes,  consider  the  Feature  Model
Analytics  sub tree based on Figure 1. This model extends the
Storing and Processing features  as described on Figure 2. A
generic  example  of  this  conversion  of  analytics  example  is
depicted in Figure 3.

The  use  case  lists  totally six  event  steps,  two  primary
stakeholders (End user  and Infrastructure  data sources).  The
postcondition  success  guarantee is  to  deliver  data  analysis
results to the End user  (either  by visualisation or  other data
presentation steps, irrelevant to the current scope). Similar, the
Precondition  to  storing  step  inputs  data  from  Infrastructure
data sources  stakeholder. The use case  Trigger  invokes data
storing process.

As for the Basic Flow, the Storing step includes storing and
access to Non-relational databases as a primary data storage,
but  also  extends  to  Relational  databases  as  an  option,  in
correspondence  to  figure  1  feature  tree.  BDA concern  huge
amounts of data nearly all stored in huge non-relational, and a
small  percentage  or  none,  to  relational  databases  [10]  The
Processing stem includes  Analytics and Analytic techniques
steps  to  perform  data  processing.  The  most  noticeable
interaction is the inclusion of Storing by the Processing step. In
order to process data, access to storage is mandatory.

Taking advantage of a BDA near linear use case operation
(collecting, storing, processing, analysing and visualizing data
[15]), fully derivation to a use case diagram can be achieved by
deriving  inclusion  steps  from  mandatory  features,  and
extension steps from optional features. Concerning the figure 1
feature  tree,  for  the  case  of  the  Services  feature  group,  the
expected derivation can be achieved based on this linearity, as
use  case  Extensions.  Concerning  the  Infrastructure  feature
group,  inclusion  or  extension  relations  to  Services  feature
groups can be defined as needed.

Use  Case  Diagram  can  be  further  expanded  to  include
optional or mandatory use case nodes, by converting features to
use  cases.  Also,  the  circumvention  of  the  whole  diagram is
excluded  as  it  requires  more  expansion  deriving  from  the
expanded feature tree. 

D. Deriving the class Diagram

As a result from Feature Model technique and the Use Case
Diagram, a UML Class Diagram conversion is feasible. Class
Diagrams are the main blocks of object-oriented modelling, to
represent  both main elements,  interactions and classes  to  be
programmed [23]. Most common practices involve [27] :

 Encoding  of  Feature  Models  to  class  models  by
converting child-less features (features that cannot be
extended) to attributes and parental features to classes.

 Encoding sub-feature relationships either as property
nesting or as UML composition.

 Encoding  ALTERNATIVE  relationship  to  UML
generalizability.

 Correspond  feature  multiplicities  to  property
multiplicities, and XOR constraints to enumerations.

A generic example of this conversion of analytics example
is depicted in Figure 4 :

Fig. 4. A BDA Storing and Process class diagram

Data is represented as Blobs due to the variability nature of
input data structured to a BDA [27]. Based on the above use
case diagram, six classes are introduced. Databases as parental
class  aggregates  one-or-more  relational  and  non-relational
databases  classes  as  foretold  to  satisfy  data  storage
requirements  [10].  Both these  types  of  databases  serve  data
storing  and  retrieving,  operational  functionality  differs  on  a
SQL and NoSQL basis. A set of databases classes composited
an introduced Storing master class to unify operations (one-to-
many) over different sets of databases.



Processing as parental class aggregates Analytics subclass
for build the data analytics model. Also aggregates one-or-more
Analytics  Techniques  subclass  for  deploying  one  or  more
techniques, based on the family of techniques required for data
analysis  [15].  Last  but  not  least,  Processing class  associates
with Storing class to derive the mentioned inclusion use case
action.

By  converting  each  feature  to  Use  Case  Diagrams  and
extending  each  to  Class  Diagrams,  the  full  conversion  of  a
Feature  Model  is  feasible.  An  empirical  application  should
define the efficiency, complexity and computation effort of this
conversion.  All  Class  Diagram features  can  can  be  derived
through this process to be fully described.

IV. CONCLUSIONS

In  this  paper,  we  have  proposed  a  Feature  Model-based
approach  for  modeling  BDA.  We  have  demonstrated  how
Feature  Models  could be used in  order  to guide the system
variability  depending  on  the  unique  nature  of  this  type  of
applications, and a way of converting Feature Models to UML
models. Modeling BDA is appraised as a high value but also as
a long trade-off topic. Our approach fills the gap in modeling
BDA  by  proposing  feature-oriented  design  to  superimpose
requirements  to  BDA  components,  by  taking  special
consideration over variability and expandability to this specific
family  of  applications.  Also  highlight  the  value  of  applying
Feature Modeling compared to other modeling techniques as
more  effective  and  suitable  over  BDA.  Appliance,
customization  and  deployment  variability, dwell  deep  in  the
heart  of  big  data  nature,  which is  data  variability.  The
suggested  approach  focuses  on  overall  modeling  BDA as  a
different approach from previous research efforts that mostly
focus on single case appliances [19][27].

The usefulness and practicability of the suggested models
can only be proven by conducting empirical case studies and
statistically significant tests using real-life data from existing
libraries for reusable components.  The empirical evaluation of
the proposed model is planned to be presented as future work.
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