
International Conference on Software Reuse (ICSR ‘16)
© Springer-Verlag Berlin Heidelberg 2016

A case study on the availability of open-source
components for game development

Maria-Eleni Paschali1, Apostolos Ampatzoglou2, Stamatia Bibi3,
Alexander Chatzigeorgiou4, Ioannis Stamelos1

1 Department of Computer Science, Aristotle University of Thessaloniki, Greece
2 Institute of Mathematics & Computer Science, University of Groningen, Netherlands
3 Department of Informatics & Telecommunications, University of Western Macedonia, Greece
4 Department of Applied Informatics, University of Macedonia, Greece

mpaschali@csd.auth.gr, a.ampatzoglou@rug.nl,
sbibi@uowm.gr, achat@uom.gr. stamelos@csd.auth.gr

Abstract. Nowadays the amount of source code that is freely available inside
open-source software repositories offers great reuse opportunities to software
developers. Therefore, it is expected that the implementation of several re-
quirements can be facilitated by reusing open source software components. In
this paper, we focus on the reuse opportunities that can be offered in one specif-
ic application domain, i.e., game development. In particular, we performed an
embedded multiple case study on approximately 110 open-source games, ex-
ploiting a large-scale repository of OSS components, and investigated: (a)
which game genres can benefit from open source reuse, and (b) what types of
requirements can the available open-source components map to. The results of
the case study suggest that: (a) game genres with complex game logic, e.g.,
First Person Shooter, Strategy, Role-Playing, and Sport games offer the most
reuse opportunities, and (b) the most common requirement types that can be de-
veloped by reusing OSS components are related to scenarios and characters.

1 Introduction

The last two decades video games have become one of the most important forms of
entertainment in modern societies, with respect to their social and economic impact.
Specifically, in recent years, and especially among the youth, playing games has out-
performed many other types of entertainment, like listening to music or watching
movies. Additionally, it is reported that the worldwide revenue of the game industry
increased from nearly $11 billion in 2003 to $50 billion in 2007 [13] and is still rising
until now. One of the most important business requirements of successful game se-
ries, which is a prerequisite for surviving demanding competition, is the need for con-
tinuous release of newer game versions or patches. Therefore, game development is
an intense process, which requires techniques that will shorten the product time to
market and simultaneously minimize the effort spent for debugging and testing activi-
ties [3] and [30].

Reuse is a software engineering technique that offers such benefits, since it increases
development productivity [8], [32] and product quality [16], [21]. In addition, despite
the fact that games are usually large and complex software projects with high individ-
uality, one can identify a variety of common concepts (e.g., maps, weapons, terrains,
etc.), which can enable reuse among games of the same genre. To introduce reuse into
the game development process, several studies have proposed software architectures
that improve the reusability of games (e.g., [15], [18], and [28]). The aim of such
architectures is to deliver more stable and extensible software, with enhanced interop-
erability, robustness and scalability.
In most of the cases, solutions that facilitate reuse discuss the utilization of compo-
nentized opportunities (e.g., [12] and [34]). In software engineering, components are
typically equivalent to software packages or groups of classes that encapsulate a set of
related and well defined functions [40]. By taking into account the enormous amount
of source code that is available in Open Source Software (OSS) repositories (e.g.,
Sourceforge, Github, etc.), in this paper we perform an exploratory case study to in-
vestigate the opportunity to reuse OSS components in game development. To achieve
this goal, we exploit a large-scale repository of OSS components (namely Percerons1)
that at this point offers approximately 3,000 components retrieved from open source
games. The case study aims at investigating the available open source components,
which can be supplied for reuse in the game development community, based on:

(p1) Game genre specificity: By taking into account that software reuse is more
efficient when performed within the same application domain [24], we inves-
tigate how many components have been identified for each game genre (e.g.,
sports games, strategy games, RPGs, etc.). It is expected that game genres
with high availability of components, can more easily benefit from OSS re-
use. The game genres that we investigate are extracted from sourceforge.net,
i.e., the source code repository, on which the games have been originally
published. The studied genres are: arcade, board, card, first person shooter,
puzzle, role-playing, sports and strategy games.

(p2) Requirements specificity: Even within a specific game genre, components
can be further classified, based on the requirement that they implement. Such
a classification would provide an even more fine-grained level of specificity,
based on which we can further quantify the supply of components. For in-
stance, a component that is related to the scenario of a game, e.g., an invento-
ry of a player in an RPG, is only reusable in scenarios that involve the man-
agement of objects collected by game characters. To this end, we have man-
ually classified a subset of the components of the Percerons database in sev-
en categories: scenario, controls, community, speed, characters, sound, and
graphics. The categories have been retrieved from the work of Ham et al.
[22], on gamers’ satisfaction factors. The connection between game satisfac-
tion factors and requirements is discussed in Section 2.3.

1 http://www.percerons.com

(p3) Reusability: However, the identification of a software component is only the
first step towards its reuse. The next step is its adaptation to the target sys-
tem. The ease of adapting a software component in a new system is quanti-
fied through the reusability quality attribute [1]. Therefore, we investigate if
there are statistically significant differences in the reusability of components,
identified in games of different genres.

The rest of the paper is organized as follows: In Section 2 we introduce the concepts
of software reuse and component-based software engineering. Additionally, we pro-
vide background information that is used in this study, i.e., aspects of game engineer-
ing and the component extraction algorithm of Percerons. In Section 3 we present the
study design in the form of a case study protocol. In Section 4 we provide the results,
organized by research question, and discuss them in Section 5. In Section 6 we dis-
cuss the threats to validity of our study, and in Section 6, we conclude the paper.

2 Background Information

2.1 Software Reuse

Software reuse is the process of implementing or updating software systems using
existing software assets [26]. Software reuse according to Baldassaire [8] is a soft-
ware engineering technique that, when adopted systematically, can improve and even
guarantee software quality. Additionally, it is suggested that reuse has a positive ef-
fect on productivity and quality [8]. The results of the previous study are verified in
[32] where traditional and reuse-based software productions are compared in an in-
dustrial context. Furthermore, a failure mode model for part-based software reuse was
proposed to improve the reuse processes [16].
Source code reuse is considered to be more intense in OSS development compared to
commercial/closed source software [31]. Heinemann et al. performed an empirical
multiple-case study in 20 popular OSS Java projects and concluded that third party
reuse is common in OSS [23], while Raemaekers et al. [36] pointed out that logging
frameworks (e.g., log4j) are the most frequently reused libraries. Sojer and Henkel
[39] investigated, through a survey among 686 open-source developers, the usage of
existing open-source code for the development of new open-source software. Their
results showed that on average 30% of the offered functionality is based on reuse.
Another type of studies aims at diversifying between white-box and black-box reuse.
According to Heinemann et al. [23] black-box reuse is the predominant form of reuse.
These findings are in accordance with those of Haefliger et al. [21], who concluded
that black-box reuse is the dominant form of reuse by analyzing six open source pro-
jects and interviewing their developers. Schwittek and Eicker [38] examined black-
box reuse in OSS web applications resulting that on average this type of applications
reuse 70 libraries, 50% of which come from the Apache Foundation. White-box reuse
has been studied by Frakes et al. and Mockus et al. on 38.7 thousand OSS projects, by
measuring filename overlapping. The results showed that more than 50% of the com-
ponents are reused in more than one projects [16] and [31]. In general it seems that

identifying application domains [38], requirements specificity [36] and type of reuse
[23], [16], and [31] is of great importance in guiding practitioners on where to find
appropriate components of reuse.

2.2 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is an approach that relies on soft-
ware reuse. CBSE purpose is twofold: (a) to facilitate the development of reusable
components that can be used in various independent systems, apart from the one ini-
tially implemented for (i.e. development for reuse), and (b) to exploit reusable com-
ponents for the development of new systems (i.e. development with reuse).
In the literature a variety of terms regarding software components can be found, as the
term “component” is considered so generic that is used to denote any software part:
architectural, design, source code, or requirements unit [17], patterns or even methods
and lines of code [14], [40]. In JavaBeans the component is considered to be a class,
in Component Object Model (COM) and CORBA Component Model (CCM) a com-
ponent is an object, whereas in SOFA, PECOS and Pin it is an architectural unit [27].
However, Szyperski [40] distinguishes between classes and components: components
are more abstract than classes and can be considered to be stand-alone service provid-
ers consisting of one or more classes. Components are “fired” during execution and
therefore considered as deployment units, while classes are considered as develop-
ment artifacts. Unlike classes, components can be synthesized with different technol-
ogies and can contain elements such as global variables, images, html files, etc.
Component adoption in software reuse may occur in many levels of granularity from
a few lines of code to even a whole system [2]. Franch et al. point out the importance
of the component selection process in software engineering, a fact that indicates the
growing need for establishing software reuse patterns and guidelines [17]. The sepa-
ration of the components’ interface from the components’ functionality is an im-
portant aspect of a component that may increase its reuse. For this reason according to
[14] the use of design patterns in components analysis and design can be useful in
increasing component cohesion and minimizing component internal coupling.

2.3 Game Engineering

The main requirement of every game is to be entertaining (see [11], [25] and [41])
and therefore gamers’ satisfaction factors are of paramount importance in the game
analysis phase. The first study that investigated the factors from which gamers gain
satisfaction was performed by Ham et al. [22]. The results of the study suggested that
game satisfaction factors are game genre specific. Ham et al. investigated seven satis-
faction factors (Scenario, Graphics, Sound, Game Speed, Game Control, Character
and Community) and several game genres (Role Playing Games - RPG, First Person
Shooter - FPS, Sport Video Games and Computer-Mediated Board Games). The aver-
age importance of each factor, calculated over all game genres, is depicted in Table I.

Table 1. User Satisfaction Factors [22]

id factor importance id factor importance
1 Character 20,0 % 5 Scenario 11,1 %
2 Graphics 17,6 % 6 Sound 10,8 %
3 Game Control 16,7 % 7 Community 10,1 %
4 Game Speed 13,7 %

While discussing the results of this paper, we have to note that this study has been
published a decade ago, when the state of practice in game industry was substantially
different. A replication of the aforementioned study has been published in 2014, by
Paschali et al. [33]. In the recent study, the results have been updated: Character Sol-
idness, Scenario and Sound are highlighted as the most important factors for gamers’
satisfaction, followed by Game Speed, Game Community, Controls and Graphics.
The fact that the results of the two studies are contradicting is considered rather intui-
tive, in the sense that such factors are highly related to the most popular game genre,
and the state of practice in the industry. In this study, we reuse the game satisfaction
factors as types of requirements.

2.4 An Algorithm for Component Identification

In this section we shortly describe the methodology that is used in the study to identi-
fy components from open source games, as proposed by Ampatzoglou et al. [6]. The
used algorithm is based on the identification of reusable sets of classes, by applying a
path-based strong component algorithm [19]. To apply this algorithm a directed graph
is created that depicts the dependencies among the classes of the system and then
depth-first search is performed to identify strongly connected components, in our
case: sets of classes. The algorithm successively provides sets of classes that are as
independent as possible, grouped together according to the functionality that they
offer. In particular the steps of the applied methodology are the following:
step 1. Create a dynamic two dimensional array where Candidate Components will

be stored in. Each row will store groups of classes that depend on each other.
In row 1 only one class will be stored depending solely on itself. In row two,
couples of classes will be stored that depend on each other, in row three tri-
plets of classes will be stored presenting dependencies, etc. Each row num-
ber defines the maximum number of classes that can be included in a Candi-
date Component. The columns represent the number of possible Candidate
Components that can be used for each component size. At this step only the
first Component Candidate, of size 1, is created for one class of the system.

step 2. Identify the classes that the participants in the Candidate Components identi-
fied in the previous step are connected to.

step 3. Sort the dependencies according to their number of external dependencies in
a descending order.

step 4. For every dependency create an updated Component Candidate and place it
in the corresponding position in the array according to the number of classes
in the dependency group.

step 5. Return to step 2, for every Component Candidate created in the previous
step, according to the order that they have been added in the array. The pro-
cess stops if the maximum number of components is reached or if there are
no external dependencies.

step 6. For every dependency in the list create an updated Component Candidate
and place it in the corresponding position in the data structures.

step 7. For every Component Candidate created in the previous step, following the
order that each candidate was identified, return to step 2. Stop if maximum
number of components is reached or if there are no external dependencies.

For example, by applying the algorithm on the dependency graph of Fig. 1, we obtain
the candidate components presented in Table 2. The intermediate steps on the applica-
tion of the algorithm are presented in detail in the original study [6]. We note that
from the candidate components identified by this algorithm, we only investigate those
that are independent of other system classes (i.e., have zero efferent coupling [29]).

Fig. 1. Dependency Graph

(Example)
Table 2. Extracted Components (Example)

3 Case Study Design

In this section, we present the protocol that has been used for guiding the execution of
this case study. The case study has been designed and is reported based on the guide-
lines of Runeson et al. [37]. Therefore, in Section 3.1 we present the aim of the study
and the research questions in which we decompose it, in Sections 3.2 and 3.3 we de-
scribe the case selection and the data collection processes, and in Section 3.4, we
provide an overview of the data analysis process.

3.1 Research Question

The goal of this case study is to characterize OSS components with respect to their
domain-specificity and reusability from the point of view of software engineers in the
context of game development. To ease the design and reporting of the case study, we
split the aforementioned goal into three research questions, based on the analysis per-
spectives (i.e., game genre specificity, requirements type specificity, and reusability)
that we introduced in Section 1, as follows:

[RQ1]: Which game genres offer the most open source components?
This research question aims at identifying game genres that offer the larger
pool of components. The game genres that are used in this study have been
extracted from sourceforge.net, i.e., the repository from which the OSS pro-
jects have been retrieved. The categorization on sourceforge.net is performed
by the game developers, and therefore is considered accurate. The analysis
will provide an overall view of how many components are found on average
in each game genre.

[RQ2]: Which are the game requirements to which most open source components
are related?
This question explores the types of requirements for which the most compo-
nents are implemented. Requirements are mapped to game satisfaction fac-
tors, as presented in Section 2.3 (see [33]). The analysis will provide insight
on the game requirements for which components are more easily accessible,
based on the quantitative analysis.

[RQ3]: What is the reusability of open source components for each game genre?
The two quality attributes related to software reuse are functionality and re-
usability. These attributes will be analyzed for the components retrieved
across different game genres.

[RQ3.1]: Is there a difference in the average functionality offered by open
source components for various game genres?

[RQ3.2]: Is there a difference in the average reusability of open source com-
ponents for various game genres?

The results of this research question are expected to provide insights on how
easy it is to reuse one component, upon its identification.

3.2 Case Selection

The case study of this paper is a holistic multiple-case study [37] for RQ1 and an em-
bedded-multiple case study for RQ2 and RQ3. The context of the study is OSS game
development, the cases are open source games (for RQ1 games are also the units of
analysis), and units of analysis (for RQ2 and RQ3) are open source components.
In order to select as many cases as possible for our case study, we exploited a reposi-
tory of open source components, namely Percerons (see http://www.percerons.com).
Percerons is a software engineering platform [5] created by one of the authors with
the aim of facilitating empirical research in software engineering, by providing: (a)
indications of componentizable parts of source code, (b) quality assessment, and (c)
design pattern instances. The platform is consistently used for empirical research in
the last three empirical software engineering conferences (ESEM’ 13 [6], ESEM’14
[20], and ESEM’ 15 [7] and [35]). The identification of units of analysis is performed
automatically, by dumping the complete database of the repository.

In its current state Percerons provides 6.4 million candidate components that concern
8 application domains. From these candidate components, 1.1 million have been re-
trieved from OSS computer games. However, we need to note that the majority of
these components are not completely independent, since the algorithm described in
Section 2.4 stores components with efferent coupling less than 10. In our case study
as units of analysis, we consider approximately 3,000 components that are completely
independent and compileable (i.e., efferent coupling equals zero). The average size of
the components that are used as units of analysis is 6.52 classes (standard deviation:
8.92), ranging from single class components to components up to 40 classes.

3.3 Data Collection

In order to answer our research questions for every open source game that we ana-
lyzed we recorded the following variables:

 Game Name: The name of the open source game that we analyzed.
 Game Genre: The genre of the game—Arcade, Board, Card, FPS, Puzzle,

RPG, Sports and Strategy. We note that some categories that are obtained
from Percerons have been excluded or merged, due to the low number of
games that they involved. For example, Educational games have been re-
moved, Turn-Based and Real-Time Strategy games have been merged in a
common category, named Strategy.

 Number of Components: The number of independent and compileable com-
ponents that have been identified for the current game.

Additionally, for each component the following variables have been recorded:
 Component ID: A unique identifier for the component.
 Game Genre: Derived from the case variables.
 Requirement Type: The type of requirement that the component implements.

The possible classes for this variable are: Scenario, Controls, Community,
Speed, Characters, Sound, and Graphics. We note that since this was a man-
ual process, it was performed on only a limited number of components. In
particular, we explored 100 random components, of various sizes, extracted
from different games, belonging to various game genres.

 Reusability: The reusability, as provided by the Percerons database, is calcu-
lated based on the Quality Model for Object-Oriented Design (QMOOD) [9].
QMOOD suggests that reusability is calculated as a function of component
size in classes, cohesion, coupling, and public interface. By taking into ac-
count: (a) the rigorous empirical validation of QMOOD by experienced
software engineers, and (b) its popularity in the software engineering litera-
ture, we assume that it is a valid model for quantifying reusability. In any
case, we note that at this stage we are not interested in the actual value of re-
usability, but only on components ranking.

 Functionality: As a measure of functionality we use Afferent Coupling
(AffC), as proposed by Martin [29]. Afferent coupling counts the number of
system classes that actually invoke any method of the public interface of the
component. In that sense, it is a proxy of the functionality that this compo-

nent offers to the rest of the system. Thus, a component that provides high
functionality to other system classes is more probable to be reused than an-
other that only provides limited services, even in its original system.

3.4 Data Analysis

The data analysis step of this case study includes the calculation of descriptive statis-
tics, and the application of independent sample t-tests and Analysis of Variance
(ANOVA). Table 3 summarizes the data analysis process that we have applied in this
case study.

Table 3. Data Analysis and Presentation Overview
RQ Variable Analysis

Components /
Genre

Number of Components
Grouping Variable: Game Genre

 Descriptive statistics (mean, min, max,
std. dev.)

 Frequencies
 ANOVA

Components /
Requirements

Number of Components
Grouping Variable: Requirement
Type

 Frequencies (pie chart)

Reusability /
Genre

Reusability
Functionality
Grouping Variable: Game Genre

 Descriptive statistics (mean, min, max,
std. dev.)

 Frequencies
 ANOVA

In particular for RQ1 the number of components retrieved per game genre is presented
along with basic descriptive statistics (i.e., minimum, maximum, and average number
of components per game). Also the standard deviation which is calculated to quantify
the amount of variation in the number of components per game is presented. Addi-
tionally Analysis of Variance is performed to identify whether there are certain game
genres that offer significantly more components. One limitation of ANOVA is the fact
that it identifies differences in the mean value of the testing variable, among groups,
but it does not specify which groups are different. Therefore, the results of ANOVA
are further explored with independent sample t-tests, in order to identify which game
genres (i.e., the grouping variable) are different in terms of the number of components
they offered (i.e., independent variable).
Concerning RQ2, we discuss the frequency with which components implement vari-
ous requirement types. The results are presented in the form of a pie chart. The same
descriptive statistics as RQ1 are presented for reusability and functionality metrics
with respect to the various game genres, addressing RQ3. In that case ANOVA and
independent samples t-test are performed to identify whether different game genres
offer components that present significant differences in reusability and functionality.

4 Results

In this section we present the results of our case study, organized by research ques-
tion, and based on the data analysis plan, as presented in Section 3.4. Therefore, first
we present the results as obtained by the statistical analysis and then interpret them.
RQ1 (Availability of Components for Game Genres): Table 4 presents the results that
have been obtained by splitting the dataset by game genre and then calculating basic
descriptive statistics. The results of Table 4 are ranked by the mean value of compo-
nents offered by one game (see column 4). It can be observed that the game genre that
has the highest number of components (see Frequency—column 3) is Board games,
followed by Puzzles. However, we need to underline that these game genres are the
ones with the most games in the dataset (see N—column 2). In terms of average com-
ponents per game, we observe that the maximum value exists for FPS and Strategy
games, whereas the least components per game are found in Board, Card and Puzzle
games. Thus, based on this ranking we can claim that the amount of components that
are available for Board and Puzzle games are only due to the number of explored
games, and not due to game-specific characteristics.

Table 4. Component per Game Genre

Genre N Frequency Mean Std. Dev Min Max
First Person Shooter (FPS) 8 400 50.00 36.02 3 99
Strategy 9 438 48.67 23.71 17 83
Sports 6 212 35.33 27.48 7 72
RPG 10 348 34.80 26.34 9 76
Arcade 17 407 23.94 12.19 8 45
Puzzle 21 464 22.10 18.39 1 64
Card 7 153 21.86 18.89 5 59
Board 31 647 20.87 18.49 4 80

To investigate if the aforementioned differences are statistically significant, we first
perform an Analysis of Variance (ANOVA), which suggested that some of the game
genres offers significantly more components per game (F: 3.62, sig: 0.00). Next, in
order to identify which game genres are those that stand out, either positively or nega-
tively, we performed independent sample t-tests. The results revealed that the top-2
genres (i.e., FPS and Strategy games) are indeed having more available components
than the rest game genres. The second group of game genres (i.e., RPG and Sport
games), although offer on average approximately 10 additional components compared
to the other genres, this result is not statistically significant.
A possible explanation of the aforementioned ranking is the level of game logic com-
plexity of every game genre. For example, Arcade, Puzzle, Card and Board games
have a rather limited game logic (at least compared to the other genres), less impres-
sive graphics, etc. Therefore, the amount of possible components is limited. On the
other hand, the various characters, scenario objects, etc. offered in FPS, Strategy,
Sports games and RPGs, offer many reuse opportunities.

RQ2 (Availability of Components for Requirement Types): Concerning RQ2, we
discuss the frequency with which components implement the various requirement
types (see Fig. 2). The results of the pie chart suggest that most of the identified com-
ponents are implementing requirements that concern the game Scenarios, followed by
Characters. Another interesting finding is that we were not able to identify any com-
ponent that is related to game Speed2.

Fig. 2. Pie Chart (Frequency of Requirement types)

The fact that game speed has not been associated with any component is intuitive in
the sense that speed is a run-time characteristic that cannot be identified with static
source code analysis. In addition, the extensive linkage of components to scenarios
and characters is in accordance to our discussion for RQ1 suggesting that most of the
components are found in games with complex game logic.

RQ3 (Reusability of Components for Game Genres): In order to investigate the reus-
ability of components that are extracted from different game genres, we performed
descriptive statistics, ANOVA, and independent sample t-tests for two testing varia-
bles: component functionality (afferent coupling) and component reusability. In Table
5, we present descriptive statistics concerning the afferent coupling of components
extracted from different game genres. The results suggest that RPGs, FPSs, and Sport
games offer components that are more intensively used inside their games. This fact
can be explained by the average size of these games, in the sense that games with
more classes are expected to have more method invocations to the extracted compo-
nents. Another interesting finding is that all differences that are presented in Table 5
are statistically significant and therefore generalizable to the population, according to
the individual independent sample t-tests. As expected, ANOVA has also revealed a
difference between the groups (F: 46.18, sig: 0.00).
Similarly in Table 6, we present the results on the reusability of components extracted
from different game genres. The descriptive statistics imply that differences between
games genres are rather small in absolute numbers with the only exception of FPS
games. Additionally, although the results of ANOVA (F: 10.11, sig: 0.00) suggest the
existence of significant differences, the independent sample t-tests revealed that these

2 A very small number of classes has been related to sound requirements, but due to its negli-

gible number has not been included in the pie chart.

are limited to the difference of FPSs with all other game genres. The outcome of the
statistical analysis suggests that differences in the reusability of open source games
are rather small, regardless of game genre.

Table 5. Component Functionality per Game Genre

Genre N Mean Std. Dev. Min Max
Arcade 407 11.76 13.00 0 61
Board 647 19.70 24.48 0 109
Card 153 28.83 41.70 0 207
First Person Shooter (FPS) 400 38.72 49.84 0 234
Puzzle 464 15.54 19.33 0 70
RPG 348 43.69 86.97 0 337
Sports 212 33.62 39.14 0 148
Strategy 438 24.12 35.97 0 152

Table 6. Reusability per Game Genre

Genre N Mean Std. Dev. Min Max
Arcade 407 3.313 2.433 0.375 15.633
Board 647 3.576 2.525 0.250 22.516
Card 153 3.623 2.741 0.333 24.025
First Person Shooter (FPS) 400 4.328 4.039 -0.385 69.250
Puzzle 464 3.685 2.868 0.119 18.517
RPG 348 3.768 2.603 0.500 17.034
Sports 212 3.681 4.081 0.308 66.552
Strategy 438 3.550 2.727 0.500 20.026

5 Discussion

The results of this paper revealed that the top-2 genres FPS and Strategy games offer
significantly more components than the rest game genres. In terms of requirements
specificity, most of the identified components are implementing requirements that
concern the game Scenarios, followed by Characters. Concerning component func-
tionality RPGs, FPSs, and Sport games offer components that are more intensively
used inside their games, while in terms of component reusability no significant differ-
ences between games genres are found with the only exception of FPS games. The
results of this study provide useful information both to researchers and practitioners:

 Guidance on the existence of reuse opportunities for practitioners. Based
on the results of this study, game developers can have indications on the fea-
sibility of reuse in different game genres.

o FPS game developers can exploit the great reuse opportunities of-
fered by OSS components. This application domain offers the most
components per game that offer substantial functionality inside
games, and are of optimum design-time reusability.

o Strategy, Sport and Role-Playing game developers can also exploit
the large number of components offered by OSS games, although they
have some limitations. For example, RPGs offer the most functional
components, of high structural reusability. However, their availability
is lower than that of FPS games. On the other hand, despite the fact
that Sport games that offer a high number of components, these com-
ponents are not of optimal reusability or functionality.

o Game developers of any game genre should consider reuse of OSS
components when implementing requirements related to scenarios
and character management.

 Guidance on case selection for researchers. Nowadays, more and more re-
searchers perform empirical studies on OSS projects. The results of the study
can guide researchers in selecting appropriate game genres to identify as
many cases/units of analysis as possible.

 Future work opportunities for researchers. Some interesting future work di-
rections are derived from this study: (a) the actual reuse rates of these com-
ponents in OSS games can be calculated, (b) the reusability of these compo-
nents can be tested by software engineers through experiments, and (c) a
process for systematically reusing these components can be introduced.

6 Threats to Validity

In this section we discuss threats to the validity of our case study, with regard to con-
struct, reliability and external aspects [37]. Threats to internal validity are not dis-
cussed in this paper, since identifying causal relations was out of the scope of this
study. A possible threat to construct validity is related to the metrics that are used to
answer our research questions and the extracted components. In particular, we have
used QMOOD to measure reusability and Afferent Coupling (AffC) to measure func-
tionality. Although we acknowledge that if different measures are used, the results
might be slightly altered, we believe that both choices provide adequat assessments of
the corresponding quality attributes. QMOOD, is an established quality model that
has been rigorously validated [9], whereas AffC offers a well-known proxy of func-
tionality, as explained in Section 3.3. Finally, another threat to construct validity is
whether the candidate components are indeed reusable artifacts that can be ported to
settings beyond their own game. We believe that the component selection algorithm,
which is based on an exhaustive search process, provides adequate recall rates, and
therefore is fitting for the purposes of this study. In any case to the best of our
knowledge there is no algorithm that 100% accurately captures all intended compo-
nents of the original developers.
With regard to reliability, we consider any possible researchers’ bias, during the data
collection and data analysis process. In particular in the data collection phase, the only
possible bias can be identified in RQ2. To gather data on the types of requirements
that components implement we employed a manual process performed by the first
author. In order to increase the reliability of this process the second and the third au-

thor validated the results. Finally, concerning external validity, a potential threat to
generalization is that if the component extraction algorithm was performed on addi-
tional, or different games, the results might be altered. However we believe that the
selected cases (open source games), offer a large and representative sample of the
population. Additionally, we need to clarify that although, the small amount of cases
for RQ3 is a threat to generalization, the manual inspection of additional games was
not possible due to the time consuming nature of the manual inspection.

7 Conclusion

In this paper, we empirically explore an important topic in game development, i.e.,
the opportunity to reuse components from existing games. As parameters in this em-
pirical study we selected two aspects that can affect reusability: the application sub-
domain of the game, namely the game genre, and the requirement specificity that a
certain component may fulfill. To evaluate the relation of the game genre and the
requirement types in games components, approximately 3,000 components were re-
trieved from over 100 open source games. The results of the study suggested that
specific game genres offer more reuse opportunities than others, and that most com-
ponents are related to scenario and characters. Based on these results, we have been
able to provide useful implications for researchers and practitioners. As future work,
we plan to replicate the study with more refined metrics/algorithms and feedback
from game developers. Additionally, we plan to perform an in-depth study of a small
number of games where the actual components that were envisioned for reuse are
actually used for this purpose.

8 References

1. 9126-2001: ISO/IEC, Software engineering - Product quality (Part 1: Quality model), Ge-
neva, Switzerland, 2001.

2. S. A. Ajila and D. Wu, “Empirical study of the effects of open source adoption on software
development economics”, Journal of Systems and Software, Elsevier, 80 (9), pp. 1517-
1529, September 2007.

3. A. Ampatzoglou and I. Stamelos, “Software engineering research for computer games: A
systematic review”, Information and Software Technology, Elsevier, 52 (9), pp. 888-901
2010.

4. A. Ampatzoglou, I. Stamelos, A. Gkortzis, and I. Deligiannis, “Methodology on Extracting
Reusable Software Candidate Components from Open Source Games”, Proceeding of the
16th International Academic MindTrek Conference, ACM, pp. 93–100, Finland, 2012.

5. A. Ampatzoglou, O. Michou, and I. Stamelos, “Building and mining a repository of design
pattern instances: Practical and research benefits”, Entertainment Computing, Elsevier, 4
(2), pp. 131–142, April 2013.

6. A. Ampatzoglou, A. Gkortzis, S. Charalampidou, and P. Avgeriou, “An Embedded Multi-
ple-Case Study on OSS Design Quality Assessment across Domains”, 7th International
Symposium on Empirical Software Engineering and Measurement (ESEM’ 13),
ACM/IEEE Computer Society, pp. 255–258, 10-11 October 2013, Baltimore, USA.

7. E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Introducing a
Ripple Effect Measure: A Theoretical and Empirical Validation”, 9th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM’ 15), ACM/IEEE
Computer Society, Beijing, China.

8. M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An industrial case study on
reuse oriented development”, 21st International Conference on Software Maintenance
(ICSM’05), IEEE Computer Society, 283–292, September 2005.

9. J. Bansiya and C. G. Davies, “A hierarchical model for object-oriented design quality as-
sessment”, Transactions on Software Engineering, IEEE Computer Society, 28 (1), pp.4-
17, January 2002.

10. V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric Paradigm”, Ency-
clopedia of Software Engineering, John Wiley & Sons, pp. 528-532, 1994.

11. D. Callele, E. Neufeld and K. Schneider, “Emotional Requirements in Video Games”, 14th
International Conference on Requirements Engineering, IEEE Computer Society, Minne-
apolis, USA,11 - 15 September 2006.

12. H. Cho and J.S. Yang, “Architecture patterns for mobile games product lines”, Proceed-
ings of the 2008 International Conference on Advanced Communication Technology
(ICACT’08), IEEE Computer Society, pp. 118-122, Korea, 17 – 20 February 2008.

13. Consumer Electronics Association, “Digital America”, published electronically at
http://www.ce.org

14. I. Crnkovic, B. Hnich, T. Johnson and Z. Kiziltan, “Specification, implementation, and de-
ployment of components”, Communications, Association of Computing Machinery, 45
(10), pp. 35-40, October 2002.

15. E. Folmer, “Component Based Game Development – A Solution to Escalating Costs and
Expanding Deadlines”, 10th International Symposium on Component Based Software En-
gineering (CBSE’ 07), Springer-Verlag, pp. 66-73, Medford, MA, USA, 9 – 11 July 2007

16. W. B. Frakes and C. J. Fox, “Quality Improvement Using A Software Reuse Failure
Modes Model”, Transactions on Software Engineering, IEEE Computer Society, 22 (4),
pp. 274–279, April 1996.

17. X. Franch and J. P. Carvallo, “Using Quality Models in Software Package Selection”,
Software, IEEE Computer Society, 20 (1), pp. 34-41, January/ February 2003

18. M. Furini, “An architecture to easily produce adventure and movie games for the mobile
scenario”, Computers in Entertainment, Association for Computing Machinery, 6(2), pp.
1-16, July 2008

19. H. N. Gabow, “Path-based depth-first search for strong and bi-connected compo-
nents”, Information Processing Letters, Elsevier, 74 (3-4), pp. 107-114, May 2000.

20. I. Griffith and C. Izurieta, “Design Pattern Decay: The Case for Class Grime,” 8th Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM ’14),
ACM/IEEE Computer Society, 18-19 September 2014, Torino, Italy

21. S. Haefliger, G. von Krogh, and S. Spaeth, “Code Reuse in Open Source Software”, Man-
agement Science, PubsOnline, 54 (1), 180–193, November. 2007.

22. H. Ham and Y. Lee, “An Empirical Study for Quantitative Evaluation of Game Satisfac-
tion”, 2006 International Conference on Hybrid Information Technology, ACM, pp. 724-
729, November 2006.

23. L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck, “On the Ex-
tent and Nature of Software Reuse in Open Source Java Projects”, 12th International Con-
ference on Top Productivity through Software Reuse (ICSR’ 11), Springer, 2011.

24. I. Johnson, C. Snook, A. Edmunds, and M. Butler, “Rigorous development of reusable,
domain-specific components, for complex applications”, 3rd International Workshop on
Critical Systems Development with UML (CSDUML’04), Springer, 2004.

25. J. Kasurinen, A. Maglyas, and K. Smolander, “Is Requirements Engineering Useless in
Game Development?” Lecture Notes on Computer Science - Requirements Engineering:
Foundation for Software Quality, Springer, 8396, pp. 1-16, 2014.

26. C.W. Krueger, “Software Reuse”, Computing Surveys, ACM, 24 (2), pp. 131-184, 1992.
27. K. K. Lau and Z. Wang: “A Taxonomy of Software Component Models”, 31st

EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA), pp. 88 - 95, IEEE, 2005

28. W. P. Lee, L. J. Liu, J. A. Chiou, “A Component-Based Framework to Rapidly Prototype
Online Chess Games for Home Entertainment”, Proceedings of the International Confer-
ence on Systems, Man and Cybermetrics (SMC’06), IEEE Computer Society, pp. 4011 –
4016, Taipei, Taiwan, 8-11 October 2006

29. R.C. Martin “Agile software development: principles, patterns and practices”, Prentice
Hall, New Jersey. 2003.

30. M. McShaffry, “Game Coding Complete”, Paraglyph Press, Arizona, USA, 2003
31. A. Mockus, “Large-Scale Code Reuse in Open Source Software”, 1st International Work-

shop on Emerging Trends in FLOSS Research and Development (FLOSS’ 07), IEEE Com-
puter Society, 2007.

32. M. Morisio, D. Romano, and I. Stamelos, “Quality, productivity, and learning in frame-
work-based development: an exploratory case study”, Transactions on Software Engineer-
ing, IEEE Computer Society, 28 (9), pp. 876–888, September 2002.

33. M. E. Paschali, A. Ampatzoglou, A. Chatzigeorgiou, and I. Stamelos, “Non-functional re-
quirements that influence gaming experience: A survey on gamers satisfaction factors”,
18th Academic MindTREK Conference (MindTREK’ 15), ACM, 4 – 6 November 2014,
Tampere, Finland

34. E. B. Passos, J. Weslley, E. Walter G. Clua, A. Montenegro and L. Murta, “Smart compo-
sition of game objects using dependency injection”, Computers in Entertainment, Associa-
tion for Computing Machinery, 7(4), October 2009

35. D. Reimanis, “A Research Plan to Characterize, Evaluate, and Predict the Impacts of Be-
havioral Decay in Design Patterns”, 13th International Doctoral Symposium on Empirical
Software Engineering (IDOSE’ 15), Beijing, China.

36. S. Raemaekers, A. van Deursen, and J. Visser, “An Analysis of Dependence on Third-
party Libraries in Open Source and Proprietary Systems”, 6th International Workshop on
Software Quality and Maintainability (SQM’ 12), March 2012.

37. P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case Study Research in Software Engi-
neering: Guidelines and Examples”, John Wiley & Sons, 2012.

38. W. Schwittek, and S. Eicker, “A Study on Third Party Component Reuse in Java Enter-
prise Open Source Software”, 16th International Symposium on Component-based Soft-
ware Engineering (CBSE’ 13), ACM, 75–80, 2013.

39. M. Sojer and J. Henkel, “Code Reuse in Open Source Software Development: Quantitative
Evidence, Drivers, and Impediments”, Journal of the Association for Information Systems,
11 (12), pp. 868–901, December 2010.

40. C. Szyperski, “Component Software: Beyond Object-Oriented Programming”, Addison-
Wesley International, Massachusetts, USA, 1997

41. M. van Lent and W. Swartout, "Games: Once more, with Feeling", Computer, IEEE Com-
puter Society, 40 (8), pp. 98 – 100, August 2007.

