
Estrangement Between Classes:
Test Coverage-based Assessment of Coupling

Strength Between Pairs of Classes
George Kakarontzas∗, Vassilis C. Gerogiannis†, Stamatia Bibi‡, Ioannis Stamelos‡

∗Computer Science and Engineering Department
Technological Educational Institute of Thessaly

Larissa, Greece
Email: gkakaron@teilar.gr

†Department of Business Administration
Technological Educational Institute of Thessaly

Larissa, Greece
Email: gerogian@teilar.gr
‡Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

Email: {sbibi,stamelos}@csd.auth.gr

Abstract—This work discusses a new metric, Estrangement
Between Classes (EBC), that is derived by executing tests. This
metric is based on the statement coverage of tests and provides
assessment of the strength of associations between classes. We
demonstrate with an illustrative example of the popular Apache
Email component that this new metric can provide additional
information in reverse engineered class diagrams by highlighting
missing associations in these diagrams, the strength of existing as-
sociations and utility classes. It can also be effective in indicating
the important design elements in cases of over-engineered or dead
code. The proposed metric can be potentially used in the context
of agile methods of software development during refactoring and
program maintenance as comprehension aid. Since EBC is based
on tests, no additional effort is required by developers who follow
the Test-Driven approach or generally develop tests.

I. INTRODUCTION

With the extensive use of agile methods [1] and test-driven
development [2] it becomes increasingly probable that test
suites are not only available but that they also provide adequate
coverage of the source code. Extensive test cases with adequate
test coverage are important to the functional correctness of the
source code. Also approaches, such as the one proposed in [3],
use tests for program comprehension activities such as feature
location and the results of these approaches are improved when
test coverage is improved. In this work we use test coverage
values to propose a dynamic metric that captures the lack of
coupling between two classes and that is calculated based on
the statement coverage of the tests. The proposed metric also
contains an internal coupling metric component, which can be
used independently if a coupling metric is required instead.

To explain the basic idea, assume the situation depicted in
Fig. 1. In this example classes A and B are both associated to
class C. This is depicted in the UML class diagram at the top

of Fig. 1. In addition, instances of classes A and B call the
methods m3() and m4() respectively on an instance of class C.
This is depicted in the UML sequence diagram at the bottom
of Fig. 1. Assuming that this is all the information we have, the
coupling between classes (𝐴,𝐶) and between classes (𝐵,𝐶)
is exactly the same, since in both cases a static association
exists and in both cases a method is called.

Fig. 1. Example class and sequence diagrams

However, the situation may be different if we examine the
number of statements in m3() executed as a result of the first

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.13

48

2014 9th International Conference on the Quality of Information and Communications Technology

978-1-4799-6133-7/14 $31.00 © 2014 IEEE

DOI 10.1109/QUATIC.2014.13

48

call and the number of statements in m4() executed as a result
of the second call. This information could be very important
since m3() may be, for example, a simple getter with one line
of code, whereas m4() could be an elaborate service method
with tens of lines of code. Assume, for example, that A and
B belong to different packages and we consider if we should
place C in A’s package or in B’s package. We would like to
take this decision based on the strength of coupling between
these two pairs of classes, namely (𝐴,𝐶) and (𝐵,𝐶), and
select to place C with the class with which it is coupled
more intensely. Static and dynamic coupling measures (e.g.,
CBO [4] and the suite in [5], respectively), discussed in more
detail in the ‘Related Work’ section, although they highlight
coupling they do not provide this information. Intuitively,
however, such information is important, since the number of
statements executed as a result of messages may be indicative
of the significance of the clients’ objects dependence on the
service or provider objects. For example, in the case of Fig. 1
we could say that class B is more strongly coupled to class
C than class A since it uses a larger percentage of class’s C
statements. So this information could help us decide in which
package to place C, if A and B are in different packages and
we want to place C together with the most related class to it.

In this paper we explore the idea that statement coverage
may provide also an indication of the strength of coupling
between classes or the lack of it. Statement coverage is an
adequacy criterion in testing [6], [7] in which “the percentage
of the statements exercised by testing is a measurement of
the adequacy” [6]. Using test coverage of test cases designed
for a particular class in other related classes we can have an
indication of the coupling strength beyond the simple assertion
that two classes are coupled or not. A more accurate estimation
of coupling is important during design and comprehension
activities.

In Section II we discuss the idea of Estrangement Be-
tween Classes (EBC) based on test coverage and introduce
the definition of the EBC metric and its internal part, Test
Coverage Induced Coupling (TCIC). In Section III we present
the results obtained using the EBC metric in the popular
Apache Commons Email component. Then, in Section IV
we perform an initial comparison of the coupling part of the
proposed metric to established coupling metrics. In Section V
we discuss related work and in Section VI we conclude the
paper and briefly discuss future research directions.

II. ESTRANGEMENT BETWEEN CLASSES

Assume that we have two classes A and B. After these
classes are integrated in the system, whenever we test class
A with the test suite prepared specifically for A, the control
may also pass from class B, if A uses B or otherwise depends
on it and given that mock objects are not used in the place of
all real object collaborators. The extent of this usage may be
indicative of the strength of the association that exists between
the two classes during runtime.

Figure 2 depicts a few illustrative cases. In all three cases
we execute the tests of the class on the left-hand side (A1, A2

Fig. 2. Coverage graphic examples

and A3) but, after classes’ integration, control also passes from
classes on the right-hand side (B1, B2 and B3, respectively).
In Fig. 2 shaded areas represent the percentage of statements
covered by the test suite at each class. Intuitively we can
argue that class A2 is more related to class B2 than class A1
is related to class B1. This is because although we achieve
the same coverage in both A1 and A2 (the shaded area), the
coverage in class B2 is larger than that in class B1. Similarly
we can argue that A3 is more related to B3 than A2 is to B2
because the same coverage is achieved in both cases to the
right-hand side class (B2 or B3); however, this coverage is
achieved in the case of B3 with fewer tests since the coverage
in A3 is less extensive compared to the coverage in A2. We
assume that if more tests are added to cover more of A3 the
coverage to B3 will also grow accordingly.

To capture this intuition as a metric, we define the strength
of an association between two classes A and B as the statement
coverage induced in class B by the test suite of class A divided
by the coverage of A. We call this metric Test Coverage
Induced Coupling (TCIC) and is defined as can be seen in
Eq. 1. The denominator signifies the extent to which class A
is tested by the same test suite (i.e., its own test suite). We
use 𝐶𝑇𝑆𝑋

(𝑌) to indicate the statement coverage of test suite
of class X in class Y.

𝑇𝐶𝐼𝐶(𝐴,𝐵) =
𝐶𝑇𝑆𝐴

(𝐵)

𝐶𝑇𝑆𝐴
(𝐴)

(1)

Then EBC from class A to class B is defined by Eq. 2 :

𝐸𝐵𝐶(𝐴,𝐵) =

{
1− 𝑇𝐶𝐼𝐶(𝐴,𝐵) if 𝑇𝐶𝐼𝐶(𝐴,𝐵) ≤ 1

0 if 𝑇𝐶𝐼𝐶(𝐴,𝐵) > 1.
(2)

In Eq. 2:

1) We subtract the strength of coupling (as denoted by the
TCIC) from 1 to get the estrangement between classes.
If two classes are related less, then TCIC will be smaller
and EBC will be larger. Thus, EBC takes larger values
for less related classes. Furthermore, it takes values

4949

in the range [0, 1]. Therefore, it measures the lack of
coupling.

2) In Eq. 2 the bottom case is necessary to avoid negative
EBC values when the statement coverage in B surpasses
that in A. In these cases 𝐶𝑇𝑆𝐴

(𝐵) > 𝐶𝑇𝑆𝐴
(𝐴). This

in turn implies that 𝑇𝐶𝐼𝐶(𝐴,𝐵) > 1.0 which implies
that 1 − 𝑇𝐶𝐼𝐶(𝐴,𝐵) < 0. To restrict the value range
for EBC to values in the range [0, 1] and avoid negative
values, we assign the value 0 to EBC in such cases. It
is worth noticing that these cases can occur in practice
if class B contains one or a few methods that are called
during the testing of class A. Then, if the test suite of
class A does not cover all of A’s statements it will be
a case in which the test coverage of the test suite of
A will be smaller in A than in B. We view EBC as
a measure of the lack of the association of a class to
another class and we consider the estrangement of a
class to itself to be zero and, consequently, we want to
restrict its association to other classes to this value range.
However, if more precision is required then TCIC values
can be used instead.

3) EBC and TCIC are not symmetric since in the general
case 𝐸𝐵𝐶(𝐴,𝐵) ∕= 𝐸𝐵𝐶(𝐵,𝐴) and 𝑇𝐶𝐼𝐶(𝐴,𝐵) ∕=
𝑇𝐶𝐼𝐶(𝐵,𝐴).

4) Both EBC and TCIC are relative to the extent that A
was tested since B’s statement coverage (numerator in
TCIC) is divided by A’s test coverage (denominator in
TCIC). So, for example, if coverage in A is 80% and in
B 20% then the ratio is 25% which is a larger number
than the coverage in B to compensate that some of the
missing relation may be due to not testing A entirely.

5) Most importantly, the proposed metrics can only be
effective if tests have a significant test coverage. Oth-
erwise the metrics possibly cannot provide the desired
information. For example, if a class is not tested at all,
the denominator in TCIC may be zero which makes
EBC undefined. This makes these metrics appropriate
for agile methods that follow the Test-Driven approach
or apply extensively testing to verify the quality of the
source code. In general, we can suggest that EBC/TCIC
should be used as indicators if 𝐶𝑇𝑆𝐴

(𝐴) ≥ 70%
although the actual threshold must be determined with
empirical studies that we will conduct in our future
work. We suggest here using this threshold as a starting
point since it is a large value close to what is considered
in most cases a sufficient test coverage for test adequacy
in practical settings. Notice that the use of statement
coverage for our purposes may be less demanding than
the usual statement coverage use as indication of testing
adequacy for functional correctness. For this latter pur-
pose well-tested code is expected to have a statement
coverage over 80%. As Martin Fowler observes “If you
are testing thoughtfully and well, I would expect a
coverage percentage in the upper 80s or 90s. I would
be suspicious of anything like 100% - it would smell
of someone writing tests to make the coverage numbers

happy, but not thinking about what they are doing” [8].

III. EBC CASE STUDY

In this section, we will first examine (in Section III-A)
how EBC can be used to highlight the importance of classes’
associations. Then we will see (in Section III-B) that EBC can
also pinpoint possibly wrong design decisions under certain
conditions, by examining the same case study after artificially
injecting a ‘design bug’.

A. Using EBC to highlight the importance of class associa-
tions

In order to illustrate the use of 𝐸𝐵𝐶 we used existing unit
tests of the Apache Commons Email ver. 1.3.2 [9] which is
the current release at the time of this writing. Existing tests
include tests such as the HtmlEmailTest which is designed
to test the functionality of the HtmlEmail class. This class
is used for sending HTML formatted email. Along with this
class a number of other classes are also contained in the
same component package, namely org.apache.commons.mail.
Initially, we will only consider classes from this package.
Later, in Section IV, we will also consider classes from other
packages. The classes of this package with extracts from the
comments of their developers describing their functionality are
the following:

1) ByteArrayDataSource: “This class implements a typed
DataSource from an InputStream, a byte array or a String
(Deprecated)”.

2) DataSourceResolver: “Creates a DataSource based on
an URL”.

3) DefaultAuthenticator: “This is a very simple authentica-
tion object that can be used for any transport needing
basic userName and password type authentication”.

4) Email: “The (abstract) base class for all email messages.
This class sets the sender’s email & name, receiver’s
email & name, subject, and the sent date. Subclasses
are responsible for setting the message body”.

5) EmailAttachment: “This class models an email attach-
ment. Used by MultiPartEmail”.

6) EmailConstants: “Constants used by Email classes”.
7) EmailException: “Exception thrown when a checked

error occurs in commons-email”.
8) EmailUtils: “Utility methods used by commons-email”.
9) HtmlEmail: “This class is used to send HTML formatted

email...This class also inherits from MultiPartEmail, so
it is easy to add attachments to the email”.

10) ImageHtmlEmail: “Small wrapper class on top of Htm-
lEmail which encapsulates the required logic to retrieve
images”.

11) MultiPartEmail: “This class is used to send multi-part
Internet email like messages with attachments”.

12) SimpleEmail: “This class is used to send simple Internet
email messages without attachments”.

First we executed (HtmlEmaiTest) which is a JUnit test case
for HtmlEmail class constructed by the component original
developers. The test statement coverage of this test case for

5050

the HtmlEmail class was not 100% but 74.2%, whereas for
another class, namely the DefaultAuthenticator, the coverage
was 100%. This is because the DefaultAuthenticator has only
one method that is called during the test. As we mentioned
already, cases like this necessitate the bottom branch of Eq. 2
for the avoidance of negative 𝐸𝐵𝐶 values since 𝑇𝐶𝐼𝐶 >
1.0. In addition, classes EmailAttachment and EmailUtils also
present higher test coverage values than the HtmlEmail class
with 84% and 82.9% statement coverage, respectively.

We have used in this work EclEmma [10] as the test
coverage tool in the Eclipse IDE. EclEmma provides test
coverage for JUnit [11] tests and reports this coverage as
well as provides coloring for the statements that were covered
during the execution of a test suite.

All the results of running the HtmlEmailTest and the 𝐸𝐵𝐶
of each class to the HtmlEmail class are shown in Table I. In
this table (as well as in Tables II, III, IV and V) we use a gray
row background to indicate which is the source class of EBC
(i.e., the class under test). EBC values reported at each table
are the EBC values for this source class with the other classes
used as targets. Notice that the results are sorted in increasing
EBC order. There are a number of classes that present zero
estrangement to the HtmlEmail class. These classes have in
fact different TCIC values (see Tables VII and VIII for the
details), however their coverage is more than the class under
test and, therefore, according to the bottom case of Eq. 2 their
EBC value is zero. If more discrimination power between the
group of classes that have EBC value of zero is needed, then
the TCIC values can be used instead.

TABLE I
EBC BETWEEN HTMLEMAIL AND OTHER CLASSES BASED ON COVERAGE

OF HTMLEMAILTEST

Class Missed Covered Coverage EBC
DefaultAuthenticator 0 13 100.00% 0.00%
EmailAttachment 8 42 84.00% 0.00%
EmailUtils 49 237 82.90% 0.00%
HtmlEmail 165 475 74.20% 0.00%
Email 916 462 33.50% 54.85%
MultiPartEmail 305 131 30.00% 59.57%
EmailException 47 9 16.10% 78.30%
ByteArrayDataSource 204 0 0.00% 100.00%
EmailConstants 3 0 0.00% 100.00%
ImageHtmlEmail 149 0 0.00% 100.00%
SimpleEmail 17 0 0.00% 100.00%

According to the results in Table I, the most estranged
classes to the HTMLEmail class are SimpleEmail, ImageHtm-
lEmail, EmailConstants and ByteArrayDataSource classes. In-
deed this make sense, since the SimpleEmail class is an alter-
native class to send emails (simple emails and not multipart
HTML emails) where the ByteArrayDataSource class, accord-
ing to its description, is a typed data source and not specific to
the HTML Email core functionality and, furthermore, it is also
deprecated in the tested release. Class EmailConstants contains
only static fields and no methods and ImageHtmlEmail is a
subclass of HTMLEmail (see Fig. 3) and, therefore, is not
referenced in the tests of its parent class.

Using the SimpleEmailTest which tests the SimpleEmail
class, we get a completely different picture, since some
classes that were covered completely (e.g., EmailAttachment,
HtmlEmail) or to a large extent (e.g., MultiPartEmail) by the
HtmlEmailTest are now completely missed. More specifically,
the SimpleEmail class is covered 100% along with the De-
faultAuthenticator. The Email, EmailUtils and EmailException
classes are also covered to a lesser extent. On the other hand,
the HTML-Multipart email group of classes are estranged to
the Simple email class which is a different type of email. The
results of running the SimpleEmailTest and the 𝐸𝐵𝐶 of each
class to the target SimpleEmail class are shown in Table II.

TABLE II
EBC BETWEEN SIMPLEEMAIL AND OTHER CLASSES BASED ON

COVERAGE OF SIMPLEEMAILTEST

Class Missed Covered Coverage EBC
DefaultAuthenticator 0 13 100.00% 0.00%
SimpleEmail 0 17 100.00% 0.00%
Email 850 528 38.30% 61.70%
EmailUtils 185 101 35.30% 64.70%
EmailException 52 4 7.10% 92.90%
ByteArrayDataSource 204 0 0.00% 100.00%
EmailAttachment 50 0 0.00% 100.00%
EmailConstants 3 0 0.00% 100.00%
HtmlEmail 640 0 0.00% 100.00%
ImageHtmlEmail 149 0 0.00% 100.00%
MultiPartEmail 436 0 0.00% 100.00%

Interestingly, the above mentioned partition in two separate
groups of classes (i.e., the MutliPart-HtmlEmail group and the
SimpleEmail group) is also evident by analyzing the source
code statically and generating the UML class diagram with
a static analysis tool, as depicted in Fig. 3. In this diagram
we can see clearly that there is an inheritance hierarchy with
the Email base class as a root and two alternative classes
for sending email: the SimpleEmail class for email messages
without attachments and the MultiPartEmail for email mes-
sages with attachments. Furthermore, the MultiPartEmail class
is extended by HtmlEmail which handles HTML formatted
emails. HtmlEmail, in turn, is extended by ImageHtmlEmail
which handles the retrieval of images in HTML formatted
emails.

To investigate the relationship between two subclasses of
the MultiPartEmail hierarchy of Fig. 3, we also executed the
MultiPartEmailTest in addition to the HtmlEmailTest, shown
in Table I. MultiPartEmailTest is the JUnit test suite for the
MultiPartEmail class and executing it yields the EBC results
shown in Table III.

From the above-mentioned tests we observe the following:

∙ Class EmailAttachment is only a dependency of class
MultiPartEmail. However EBC reveals that this class is
very important both for MultiPartEmail (see Table III)
as well as for HtmlEmail (see Table I), since it is
estranged with both of them by 0.00%. On the other
hand, the parent class of both these classes, namely Email
is estranged to class HtmlEmail by 54.85% (Table I)
and to MultiPartEmail by 52.57% (Table III). Therefore,

5151

Fig. 3. UML Class Diagram of the email component

TABLE III
EBC BETWEEN MUTLIPARTEMAIL AND OTHER CLASSES BASED ON

COVERAGE OF MULTIPARTEMAILTEST

Class Missed Covered Coverage EBC
DefaultAuthenticator 0 13 100.00% 0.00%
EmailAttachment 0 50 100.00% 0.00%
MultiPartEmail 72 364 83.50% 0.00%
Email 833 545 39.60% 52.57%
EmailUtils 185 101 35.30% 57.72%
EmailException 47 9 16.10% 80.72%
ByteArrayDataSource 204 0 0.00% 100.00%
EmailConstants 3 0 0.00% 100.00%
HtmlEmail 640 0 0.00% 100.00%
ImageHtmlEmail 149 0 0.00% 100.00%
SimpleEmail 17 0 0.00% 100.00%

although inheritance is a stronger association than (UML)
dependency, EBC highlights that this specific depen-
dency with EmailAttachment is important. Indeed the
distinguishing characteristic of the Multipart hierarchy
of classes in Fig. 3 is that they have attachments, as
opposed to Simple emails that do not. EBC provides,
therefore, evidence for the strength of the associations
between classes signifying which are more specific to
certain groups of classes.

∙ Some classes are used mildly by many other classes. For
example, HtmlEmail, SimpleEmail and MultiPartEmail
all are related to some extent to the classes EmailEx-
ception and EmailUtils. This suggests that these classes
could be utilities or serving some other general purpose

such as exception handling. Of course this is evident from
the naming of these two classes as well. However, EBC
would have revealed this even if the naming decisions
were different. Notice that these classes, namely EmailEx-
ception and EmailUtils and others, seem unassociated to
other classes in the generated UML diagram in Fig. 3.
This is because these classes are not used as class
variables, method parameters or method return values.
For example, they may be used only as local variables
in methods’ bodies. Then, some UML tools may not
report the dependencies. EBC does not only provide the
dependency but also reports its relative strength to the
tested class.

∙ Some classes are not used at all. For example, class
ByteArrayDataSource is completely estranged to all
tested classes in our case study (see Tables I, II and III).
This is of course a strong indication of dead code. Indeed
this class has been deprecated in the tested version and
another class is used instead.

∙ One class in our case study, namely DefaultAuthenti-
cator, has 𝐸𝐵𝐶 = 0.0% to all three tested classes
(namely HtmlEmail, SimpleEmail and MultiPartEmail in
tables I, II and III). This signifies a utility class that is
used from most other classes in the system and, at the
same time, it is easy to cover entirely. Indeed this class
contains only a public constructor that is used by the
Email base class and, thus, affects all the subclasses.

Examining the coverage in relation to the EBC value in
the various tables discussed in this Section, one could argue
that EBC does not provide much more information than test
coverage. However, the scale imposed by EBC in our opinion
is useful as a possible countermeasure to the fact that test
coverage varies and is not always 100%. If we consider only
one source class and its relation to other classes this is not
evident, since the coverage of the source class is always the
same. However, if we consider two different source classes
and the same target class (e.g., the example in Fig. 1) then
we need to incorporate the extent of the test coverage in the
source class and EBC attempts to do just that.

B. Using EBC to highlight wrong design decisions

Considering the example, EBC is effective in providing ad-
ditional information in the static analysis diagrams. However,
large and complex systems present additional challenges such
as dead or over-engineered code. The proposed measure of
estrangement can help in such cases as well.

To demonstrate the effectiveness of estrangement in the face
of wrong design decisions we refactored the original source
code of the email component by placing an abstract method in
the Email base class. This method is already implemented in
the MutliPartEmail class, it concerns email attachments and is
the attach method. The abstract method placed in the Email
has an identical signature with the MutliPartEmail method:

public abstract MultiPartEmail attach(EmailAttachment at-
tachment) throws EmailException;

5252

This so-called “Pull Up” refactoring is depicted in Fig. 4.
This refactoring does not affect the HtmlEmail class which
already inherits this method by MultiPartEmail class, but it
affects the SimpleEmail class which must now implement this
method (although the implementation is empty) in order to be
syntactically valid.

Fig. 4. Pull up refactoring

By pushing its signature to the base Email class and by
introducing an empty implementation of the method in the
SimpleEmail class, we now have the static analysis generated
UML class diagram depicted in Fig. 5.

Fig. 5. UML Class Diagram of the email component after introducing a
wrong design decision

Notice that four additional dependencies were introduced in
the diagram of Fig. 5 compared to the diagram in Fig. 3, since
both Email and SimpleEmail now contain an abstract declara-
tion and an empty implementation, respectively, of the method
attach. Due to this method’s signature, they both depend now
to EmailAttachment which is a parameter of attach as well
as to MultiPartEmail which is the return type of attach. In
Fig. 5 we have numbered these additional dependencies. As

a result of these newly introduced dependencies, examining
the diagram now does not reveal the cluster of classes where
EmailAttachement belongs. In fact it is not even evident that
we have two separate groups of classes anymore, since the
SimpleEmail class now depends on the EmailAttachment and
MultiPartEmail classes as well. However, we only refactored
the code; Hence we can execute the same tests as before
and measure EBC again, since by definition refactoring does
not affect functionality (i.e., the original tests should still run
successfully). Notice however, that we also had to modify
slightly the MockEmailConcrete class which extends Email
and is used for the tests.

The HtmlEmailTest and SimpleEmailTest were executed
successfully and Tables IV and V contrast the original results
with the results obtained from the refactored component.

Regarding the HtmlEmail test in Table IV, the results are
exactly the same as the original results and regarding the
SimpleEmail test in Table V, the results are (almost) the same
as the original results. The small difference in SimpleEmail’s
EBC values are due to the fact that since the new (null) method
does not get executed, test coverage of this class drops slightly
and, therefore, EBC in three classes, namely Email, EmailUtils
and EmailException, drops slightly as well, although their test
coverage is the same.

Consequently, the tests still reveal the dichotomy between
the SimpleEmail and the HtmlEmail classes although this
dichotomy is not evident anymore by examining the static
structure of the reverse engineering component in Fig. 5. Since
the newly introduced implementation of the abstract method
in the SimpleEmail class, is not executed by the pre-existing
SimpleEmailTest class the coverage is slightly less than 100%
and, therefore, the estrangement is slightly reduced for the
classes that are not estranged to the SimpleEmail class (since
this class coverage is in the denominator of their EBC values).

Of course EBC will be effective if the over-engineered code
is not tested. If the over-engineered code is tested then it
will be indistinguishable from the rest of the program and
both EBC and UML static diagrams will not differentiate it.
But in many cases code like this is inserted in the program
as a placeholder for future extensions and it is not entirely
implemented or tested. In such cases, EBC will be effective
in highlighting the unused code. Thus, EBC can highlight
possible violations of the so-called YAGNI (You’re NOT
gonna need it) principle of Extreme Programming which
advises to “Always implement things when you actually need
them, never when you just foresee that you need them” [12].

IV. COMPARISON TO ESTABLISHED COUPLING METRICS

In this Section, we first define TCIC for a class irrespective
to the classes that it uses and then describe how to compute
coupling at the level of the system using TCIC. Then, we
compare TCIC with established static coupling metrics by
performing a correlation analysis. Notice that since both static
metrics that we use for comparison are coupling metrics, we
use the coupling component of EBC, namely TCIC, which
is defined in Eq. 1. Since EBC in Eq. 2, is merely the

5353

TABLE IV
HTMLEMAIL TEST ON REFACTORED EMAIL COMPONENT

Original Refactored
CLASS Coverage EBC Coverage EBC
DefaultAuthenticator 100.00% 0.00% 100.00% 0.00%
EmailAttachment 84.00% 0.00% 84.00% 0.00%
EmailUtils 82.90% 0.00% 82.90% 0.00%
HtmlEmail 74.20% 0.00% 74.20% 0.00%
Email 33.50% 54.85% 33.50% 54.85%
MultiPartEmail 30.00% 59.57% 30.00% 59.57%
EmailException 16.10% 78.30% 16.10% 78.30%
ByteArrayDataSource 0.00% 100.00% 0.00% 100.00%
EmailConstants 0.00% 100.00% 0.00% 100.00%
ImageHtmlEmail 0.00% 100.00% 0.00% 100.00%
SimpleEmail 0.00% 100.00% 0.00% 100.00%

TABLE V
SIMPLEEMAIL TEST ON REFACTORED EMAIL COMPONENT

Original Refactored
CLASS Coverage EBC Coverage EBC
DefaultAuthenticator 100.00% 0.00% 100.00% 0.00%
SimpleEmail 100.00% 0.00% 89.50% 0.00%
Email 38.30% 61.70% 38.30% 57.21%
EmailUtils 35.30% 64.70% 35.30% 60.56%
EmailException 7.10% 92.90% 7.10% 92.07%
ByteArrayDataSource 0.00% 100.00% 0.00% 100.00%
EmailAttachment 0.00% 100.00% 0.00% 100.00%
EmailConstants 0.00% 100.00% 0.00% 100.00%
HtmlEmail 0.00% 100.00% 0.00% 100.00%
ImageHtmlEmail 0.00% 100.00% 0.00% 100.00%
MultiPartEmail 0.00% 100.00% 0.00% 100.00%

complement of 1 of TCIC, in most cases the correlations
discussed in this section are also valid for EBC. However, in
the correlation analysis reported the result would be equally
strong but negative rather than positive, since estrangement
points to the opposite direction in relation to a coupling metric.

EBC and TCIC are coupling metrics related to pairs of
classes. However, it is usual that sometimes we will want to
assess coupling or the lack of coupling for a class irrespective
of the classes that it uses and at the system level as a whole.
In such cases, it would be useful to use the sum of TCICs
between pairs of a class with other classes for the total
coupling of a class and then use the average of all system
classes’ individual TCIC values as a metric for the coupling
in the system. Equations 3 and 4 define TCIC for a class A and
for a system S, respectively. In these equations, 𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆)
represents the set of all classes in the system.

𝑇𝐶𝐼𝐶(𝐴) =
∑

𝑋𝑖∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆)
𝑇𝐶𝐼𝐶(𝐴,𝑋𝑖) (3)

𝑇𝐶𝐼𝐶(𝑆) =

∑
𝑋𝑖∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆) 𝑇𝐶𝐼𝐶(𝑋𝑖)

∣𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆)∣ (4)

An interesting question to answer is how TCIC for a class is
related to other more established coupling metrics in relation
to coupling. In this work we used two such metrics to perform
our comparison:

∙ Message Passing Coupling (MPC): MPC is a metric that
captures the count of method calls from methods of a

class to methods of other classes [13]. Since TCIC is
also based on the coverage of method calls from tests
of a class to methods of other classes we assume that a
positive correlation may exist between MPC and TCIC.

∙ Coupling Between Objects (CBO): CBO [4] is a metric
that captures the count of other classes a class is coupled
to. Again a positive correlation is assumed to exist
between CBO and TCIC.

Table VI contains the MPC and CBO values of various
classes of the Apache Commons Email component [9]. To-
gether with these two metrics for each of the classes we have
also calculated the sum of TCIC values for each class with the
other classes using Eq. 3. In Tables VII and VIII, the classes
at the first column are used as the source class of which the
tests we execute to measure TCIC and EBC with the other
classes mentioned in the columns. The TCIC value mentioned
in Table VI is the sum of the values of TCIC for each
respective source class from Eq. 3. Notice that here we are
using classes from two other packages of the commons email
component: the class MimeMessageParser from the package
org.apache.commons.mail.util and also the various resolver
classes from the package org.apache.commons.mail.resolver.
Also notice that in Table VI TCIC’s higher value is for the
ImageHtmlEmail class, whereas MPC’s and CBO’s higher
values are for the HtmlEmail class. We will provide an
explanation for this later on.

TABLE VI
TCIC COMPARED TO ESTABLISHED COUPLING METRICS

Class MPC CBO TCIC(Class)
DefaultAuthenticator 0 0 1.00

Email 29 4 2.98
EmailAttachment 0 0 1.00

EmailUtils 1 1 1.00
HtmlEmail 35 7 6.37

ImageHtmlEmail 6 4 8.48
MultiPartEmail 23 4 4.49

SimpleEmail 3 4 2.81
MimeMessageParser 0 0 1.00

DataSourceClassPathResolver 4 1 1.00
DataSourceCompositeResolver 3 2 2.70

DataSourceFileResolver 3 1 1.00
DataSourceUrlResolver 6 1 1.00

We calculated the non-parametric Spearman correlation
𝜌 for (𝑀𝑃𝐶(𝑋), 𝑇𝐶𝐼𝐶(𝑋)),∀𝑋 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆) and for
(𝐶𝐵𝑂(𝑋), 𝑇𝐶𝐼𝐶(𝑋)),∀𝑋 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠(𝑆) to highlight the
relationship between these established static metrics of cou-
pling and the proposed coupling metric in the current work.

TABLE IX
SPEARMAN’S 𝜌 WITH STATIC COUPLING METRICS

Spearman’s 𝜌 P-Value
CBO 0.905426 0.00002061
MPC 0.722784 0.005251

Table IX reports the 𝜌 value and the p-value for these
two tests. As can be seen in table IX, there is a statistically
significant positive correlation between (𝑀𝑃𝐶, 𝑇𝐶𝐼𝐶) and

5454

TABLE VII
TCIC AND EBC FOR APACHE COMMONS EMAIL COMPONENT (PART A)

TARGET ByteArrayDataSource DefaultAuthenticator Email EmailAttachment EmailConstants EmailException EmailUtils HtmlEmail
SOURCE TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC

DefaultAuthenticator 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
Email 0.00 1.00 1.32 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.21 0.79 0.45 0.55 0.00 1.00

EmailAttachment 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
EmailUtils 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00
HtmlEmail 0.00 1.00 1.35 0.00 0.45 0.55 1.13 0.00 0.00 1.00 0.22 0.78 1.12 0.00 1.00 0.00

ImageHtmlEmail 0.00 1.00 1.10 0.00 0.37 0.63 0.93 0.07 0.00 1.00 0.18 0.82 0.92 0.08 0.82 0.18
MultiPartEmail 0.00 1.00 1.20 0.00 0.47 0.53 1.20 0.00 0.00 1.00 0.19 0.81 0.42 0.58 0.00 1.00

SimpleEmail 0.00 1.00 1.00 0.00 0.38 0.62 0.00 1.00 0.00 1.00 0.07 0.93 0.35 0.65 0.00 1.00
MimeMessageParser 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

DataSourceClassPathResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
DataSourceCompositeResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

DataSourceFileResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
DataSourceUrlResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

TABLE VIII
TCIC AND EBC FOR APACHE COMMONS EMAIL COMPONENT (PART B)

TARGET ImageHtmlEmail MultiPartEmail SimpleEmail MimeMessageParser
DataSourceClass

PathResolver
DataSource

CompositeResolver
DataSource
FileResolver

DataSource
UrlResolver

SOURCE TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC TCIC EBC
DefaultAuthenticator 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Email 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
EmailAttachment 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

EmailUtils 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
HtmlEmail 0.00 1.00 0.40 0.60 0.00 1.00 0.70 0.30 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

ImageHtmlEmail 1.00 0.00 0.33 0.67 0.00 1.00 0.65 0.35 0.64 0.36 0.67 0.33 0.00 1.00 0.88 0.12
MultiPartEmail 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

SimpleEmail 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
MimeMessageParser 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

DataSourceClassPathResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00
DataSourceCompositeResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.81 0.19 1.00 0.00 0.00 1.00 0.90 0.10

DataSourceFileResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00
DataSourceUrlResolver 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00

(𝐶𝐵𝑂, 𝑇𝐶𝐼𝐶), indicating that both MPC and CBO tend to
increase simultaneously with TCIC, although due to the small
size we believe that this issue deserves further investigation.
In the future we plan to perform an experiment with more
cases to establish this preliminary result.

Another important observation in relation to the values
reported in Tables VII and VIII, has to do with the packages
and package dependencies. In relation to this, notice that the
classes from the org.apache.commons.mail.resolver package
are totally estranged to all other classes outside their package.
This can be seen by examining the four last rows in Tables VII
and VIII which are based on tests of the various resolver
classes in the org.apache.commons.mail.resolver package. In
these rows we can see that they contain 𝐸𝐵𝐶 = 1.0 and
𝑇𝐶𝐼𝐶 = 0.0 for all the classes, except for the last four
columns in Table VIII which contain the values with target
classes in the same package. Therefore, this shows that this
package is independent to other packages and it does not use
their services.

On the contrary, examining the first nine rows with classes
outside the resolver package in relation to the last four columns
in Table VIII we can see that the only class that uses the
services of the various resolvers is the ImageHtmlEmail class
(the sixth row in Table VIII). This class is related according
to its test suite to some extent with three out of four resolvers.
More specifically: EBC(ImageHtmlEmail, DataSourceClass-
PathResolver) = 0.36, EBC(ImageHtmlEmail, DataSource-
CompositeResolver) = 0.33 and EBC(ImageHtmlEmail,
DataSourceUrlResolver) = 0.12. So, there is a depen-
dency from the package org.apache.commons.mail to the
org.apache.commons.mail.resolver package due to the usage
of the resolver classes from the ImageHtmlEmail class. Notice

that this dependency is difficult to establish using static anal-
ysis alone. Indeed we can see that the class diagram in Fig. 3
depicts the dependency of the ImageHtmlEmail class to the in-
terface DataSourceResolver. This interface is implemented by
the classes in the resolver package, but the actual dependency
with specific resolvers is not captured by the diagram in Fig. 3.
Examining the code of the ImageHtmlEmail class however
clarifies the relationship. As the comments in the beginning
of source code file mention: “The image loading is done by
an instance of DataSourceResolver which has to be provided
by the caller”. The actual setting of the resolver by the users
of the ImageHtmlEmail class is carried out using the method
ImageHtmlEmail::setDataSourceResolver which accepts as a
parameter a resolver instance which is the instance of a class
implementing the DataSourceResolver interface, as shown in
the following code segment.

p r i v a t e D a t a S o u r c e R e s o l v e r
d a t a S o u r c e R e s o l v e r ;
. . .

p u b l i c void s e t D a t a S o u r c e R e s o l v e r
(D a t a S o u r c e R e s o l v e r d a t a S o u r c e R e s o l v e r)

{
t h i s . d a t a S o u r c e R e s o l v e r =

d a t a S o u r c e R e s o l v e r ;
}
Therefore, static analysis only reveals the dependency to

the apparent type which is the DataSourceResolver interface.
Dynamic analysis however, establishes the actual type of
the dependency to the specific resolvers used in testing the
ImageHtmlEmail class. During maintenance it is rather useful
to find the actual types of the dependencies vs. the apparent

5555

types, since it helps highlighting the actual objects involved
in the various scenarios during program execution. Here we
use the terms actual and apparent type as defined by Liskov
in [14], apparent type being the type of the object that the
compiler can deduce from declarations and actual type being
the subtype of the apparent type that the object actually has
during runtime. In fact, by examining Table VI, we can see
that both MPC and CBO obtain their highest value for the
HtmlEmail class. Although the TCIC value for this class is
the second highest, the highest TCIC value is obtained for
the ImageHtmlEmail class which is a subclass of HtmlEmail
and carries all of the coupling of its parent class but introduces
additional coupling. This difference between static metrics and
TCIC is due to the incorporation of coupling with the actual
types during runtime in TCIC. Indeed by summing up TCIC
values for the last four columns of the ImageHtmlEmail class
in Table VIII, which concern the actual DataSourceResolvers
used, we get an increase of TCIC by 2.19, which makes
𝑇𝐶𝐼𝐶(𝐼𝑚𝑎𝑔𝑒𝐻𝑡𝑚𝑙𝐸𝑚𝑎𝑖𝑙) > 𝑇𝐶𝐼𝐶(𝐻𝑡𝑚𝑙𝐸𝑚𝑎𝑖𝑙).

V. RELATED WORK

In the context of program comprehension, feature location
approaches based on dynamic execution of tests are an impor-
tant class. A characteristic example is the work in [3]. In this
work the authors propose Spectrum-based Feature Detection
(SFC) which uses fault localization techniques for feature lo-
cation. Their approach is based on the similarity of component
vectors touched by runs and evolution vectors with values
indicating which runs participate in a feature. The similarity
with the component vectors signifies the participation of a
component in the feature under question. The similarity to
our approach is that it also requires extensive coverage. But
our approach is concerned with the association between pairs
of classes and not with feature location and also uses directly
test coverage values as a way to measure (the lack of) coupling
between pairs of classes and not merely improves with better
test coverage.

The work described here can therefore be best described
as a dynamic metric for assessing the lack of coupling that
exists between classes of an Object-Oriented system. Larger
EBC values denote classes that are related less. If what is
needed instead is a coupling metric then the TCIC component
of EBC can be used.

The traditional way to measure coupling was for decades,
and still is, the use of static coupling and the most popular
metric in this category is the Coupling Between Objects (CBO)
metric proposed by Chidamber & Kemerer in their seminal
work [4]. However, static coupling is not accurate in the
presence of inheritance and polymorphism since it cannot
capture the actual classes of which instances are involved.
Therefore, the use of dynamic coupling may be more accurate
in modern Object-Oriented systems and this is why the use of
dynamic metrics to measure coupling is more recent.

Tahir et al. [15] provide a recent systematic mapping study
on dynamic metrics and software quality. They found a total of
60 papers from January 1992 until June 2011. Specifically for

dynamic coupling metrics they report 25 papers in the same
period. They observe that most works in dynamic coupling
are motivated by the popular Coupling Between Objects
(CBO) static analysis metrics of Chidamber & Kemerer [4].
According to [15], most dynamic metrics are concerned with
maintainability and complexity, they measure coupling, cohe-
sion and polymorphism and they focus on Object-Oriented
systems. Our proposed metric also measures (the lack of)
coupling and also focuses on Object-Oriented systems and can
be used during maintainability but also during development as
a design aid.

Arisholm et al. [5] present a suite of dynamic metrics. These
metrics measure the coupling between objects and classes
by measuring the number of distinct messages, the number
of distinct method calls and the number of distinct classes
involved in the examined scope. Also they include both import
and export coupling. Import coupling measures the coupling
from the user side, whereas export coupling measures coupling
from the provider side. The suite of the proposed metrics in
[5] measures set cardinalities of messages, methods and classes
but does not assign weights at the members of these sets. For
example, all messages are considered equal although some
may result in executing hundreds of lines of code and other
in executing a few lines. Thus, our proposed metric can be
considered complementary to those proposed by [5], since it
can provide an assessment of the strength of the association
between classes.

Mitchell and Power [16] define the Run-time Coupling
Between Objects (RCBO) metric which measures how many
classes are accessed by a class during program run. This is
therefore a metric between classes and, as the authors in [16]
observe, is related to the static CBO metric [4] which measures
the number of classes that could be accessed by a class
during runtime. They also studied the variability in different
classes accessed from objects of the same class during runtime.
They have concluded that, in some cases, objects of the same
class may access different clusters of classes at runtime. Our
approach in using test suites arguably aggregates the behavior
of objects that belong to the class under test since it contains
many expected execution scenarios.

Mitchell and Power again in [17] investigated the influence
of instruction coverage on the relationship between static
and dynamic coupling metrics. They report that “coverage
results have a significant influence on the relationship and
thus should always be a measured, recorded factor in any
such comparison”. The dynamic metrics investigated were the
six class metrics proposed by Arisholm et al. in [5]. Initially
the authors show, using Principal Component Analysis (PCA)
that the dynamic metrics proposed in [5] provide additional
information than the CBO metric [4] and they are not sur-
rogate metrics compared to CBO. Then they used statistical
regression in which each one of the six dynamic metrics were
used in turn as dependent variables and CBO alone and also
along with Instruction Coverage were used as the independent
variables. In 4 of the six dynamic metrics proposed by [5]
there was a significant improvement in 𝑅2 (more than 20%) in

5656

most programs with instruction coverage and CBO together as
opposed to CBO alone. This shows that instruction coverage is
a decisive explaining factor for dynamic metrics. In the current
work we formulate a metric based on test coverage and use
this directly as an indicator of the coupling between classes
or the lack of it.

Another recent survey on dynamic coupling metrics is pro-
vided in [18]. This paper concludes that “the dynamic coupling
metrics domain is still quite young in the field of software
engineering and faces a number of research challenges in terms
of empirical validation and relationship with external software
quality attributes”. They have identified 34 metrics from 8
research groups. Some of these metrics originate from the
same suite. For example, the 12 metrics of Arisholm et al. [5].
None of the metrics described in [18] use test coverage as a
criterion to decide coupling of objects.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We proposed Estrangement Between Classes (EBC) and
Test Coverage Induced Coupling (TCIC), two measures based
on test coverage, as tools for understanding the strength of
associations in existing systems and for assisting in designing
new systems in the context of an agile development process
based on tests. The proposed metrics can compare the strength
of associations in statically generated class diagrams or high-
light missing associations in such diagrams. They can also
be used to detect deprecated or unused code and to highlight
utilities and general purpose classes. The proposed method is
shown to be effective, under some conditions, in the face of
wrong design decisions with an example of our case study.
The proposed method and metric can be used without any
additional cost in the context of an agile development process
in which tests are already constructed, given that mock objects
are not used in place of all collaborators, at least not after
integrating the various classes.

Future steps include the investigation of additional coverage
measures such as branch and path coverage and the empirical
validation of the proposed metric in a number of projects,
since the use of a single case study can be considered a threat
to validity for the generalization of results. Specifically, we
are interested in studying the relationship of EBC/TCIC with
change proneness for large projects. Also a very important
issue is the determination of the threshold of test coverage
required to make the proposed metric useful. We suggested
a threshold of 70% here but it is important to determine this
value empirically. Another interesting idea is to investigate if
the frequency of method calls, an aspect not captured directly
by EBC and TCIC, can improve the proposed metrics. Since
EBC and TCIC are based on test coverage, the number of
times a method is called in a test suite is related more to the
complexity of the method itself (e.g., the number and types
of method’s parameters) rather than the relationship strength
between the caller and the method being called. However,
EBC and TCIC could be enhanced by statistics of real usage
after the program has been put to production in which call
frequencies may be indicative of the association strength

between classes. Such frequency statistics may prove to be
useful in the context of a wider comprehension framework in
tandem with EBC and TCIC.

Finally, an important step is to validate the proposed TCIC
metric using the five coupling properties proposed in [19].

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund) and Greek national funds through
the Operational Program “Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF) -
Research Funding Program: ARCHIMEDES III. Investing in
knowledge society through the European Social Fund, under
the “SPRINT SMEs” project (Research in software process
improvement methodologies for Greek small medium sized
software development enterprises).

We would also like to thank the anonymous reviewers for
providing comments that helped us improve the paper.

REFERENCES

[1] D. Cohen,M. Lindvall and P. Costa, An Introduction to Agile Methods,
Advances in Computers, Volume 62, pp. 1–66, 2004

[2] K. Beck, Test Driven Development: By Example, Addison-Wesley Pro-
fessional, 2002

[3] A. Perez and R. Abreu, A Diagnosis-based Approach to Software Com-
prehension, in proc. of the 22nd International Conference on Program
Comprehension (ICPC 2014), pp. 37–47, ACM, 2014

[4] S. R. Chidamber and C. F. Kemerer, A Metrics Suite for Object Oriented
Design, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476-493, Jun. 1994

[5] E. Arisholm, L. C. Briand and A. Føyen, Dynamic Coupling Measurement
for Object-Oriented Software, IEEE Transactions on Software Engineer-
ing,vol. 30, no. 8, pp. 491–506, August 2004

[6] H. Zhu,P. A. V. Hall and J. H. R. May, Software Unit Test Coverage and
Adequacy, ACM Computing Surveys, Vol. 29, No. 4, December 1997

[7] P. Ammann and J. Offutt, Introduction to Software Testing, Cambridge
University Press, 2008

[8] M. Fowler, Test Coverage, April 2012,
http://martinfowler.com/bliki/TestCoverage.html, accessed June 2014

[9] Apache Commons Email website: http://commons.apache.org/proper/commons-
email/, accessed April 2014

[10] EclEmma website, http://www.eclemma.org/, accessed June 2014
[11] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit in Action, Second

Edition, Manning Publications, 2010
[12] R. E. Jeffries, You’re NOT gonna need it!,

http://www.xprogramming.com/Practices/PracNotNeed.html, accessed
April 2014

[13] W. Li and S. Henry, Maintenance metrics for the object oriented
paradigm, in proc. of the First International Software Metrics Symposium,
pp.52–60, IEEE, 1993

[14] B. Liskov and J. Guttag, Program Development in Java: Abstraction,
Specification, and Object-Oriented Design, 1st edition, Addison-Wesley
Professional, 2000

[15] A. Tahir and S. G. MacDonell, A Systematic Mapping Study on Dynamic
Metrics and Software Quality, in proc. of the 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 326-335, IEEE, 2012

[16] Á. Mitchell and J. F. Power, Using object-level run-time metrics to study
coupling between objects, in proceedings of the 2005 ACM Symposium
on Applied Computing (SAC ’05), pp. 1456-1462, ACM, 2005

[17] Á. Mitchell and J. F. Power, A Study of the Influence of Coverage on
the Relationship Between Static and Dynamic Coupling Metrics, Science
of Computer Programming, vol. 59, no. 1–2, pp. 4–25, January 2006

[18] R. Geetika and P. Singh, Dynamic Coupling Metrics for Object Oriented
Software Systems- A Survey, ACM SIGSOFT Software Engineering
Notes, Volume 39, Number 2, March 2014

[19] L.C. Briand, S. Morasca and V.R. Basili, Property-based software
engineering measurement, IEEE Transactions on Software Engineering,
vol.22, no.1, pp.68–86, Jan 1996

5757

