
Ontology based Bayesian Software Process Improvenent

Stamatia Bibi1, Vassilis C. Gerogiannis2 , George Kakarontzas3 and Ioannis Stamelos1
1Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

2Department of Business Administration, Technological Educational Institute of Thessaly, Larissa, Greece
3Department of Computer Science and Engineering, Technological Educational Institute of Thessaly, Larissa, Greece

{sbibi, stamelos}@csd.auth.gr, {gerogian, gkakaron}@teilar.gr

Keywords: Software Process Improvement, Bayesian Networks, Software Process Ontology, Process Estimation.

Abstract: This paper presents an ontology based approach that can support small and medium-sized software
enterprises (SMEs) to achieve their software process improvement goals. The approach consists of four
steps: i) assessment of the software process and identification of areas under improvement, ii) development
of a process knowledge base, iii) conceptualization and analysis of an ontology that represents the process
domain, iv) Bayesian analysis on the ontology, experimentation and suggestions for process improvement.
The main concept of the approach is presented through a generic software process ontology model. To
validate the approach parts of this model was instantiated using company specific process data from a
telecommunication SME. The resulted process models are further analysed through applying Bayesian
analysis.

1 INTRODUCTION

Software Process Improvement (SPI) in the context
of small medium-sized software development
enterprises (SMEs) is gaining momentum in
software engineering research (Pettersson et al.,
2008). SPI is a challenging endeavour for most
software SMEs aiming at preventing software
project failures, reducing development costs and
delivering high-quality software products/services
consistent with end-customers’ needs (Zahran,
1998). Software SMEs though are often
characterized by insufficient human resources,
limited development and supporting environment
and lack of budget. Therefore, for most SMEs SPI is
a major challenge (Mishra and Mishra, 2009).

In this paper, a practical approach for supporting
the improvement of selected software process areas
which take place in a software SME is suggested.
The approach is called SPRINT (Software PRocess
ImprovemeNT) SMEs and adopts an ontology-based
knowledge representation to capture the relevant
data that describe a software process. The
representation of a process tacit knowledge, through
the use of a software process ontology, allows this
knowledge to become accessible and transferable.
The software process ontology is then represented
and analysed in the form of a Bayes Network (BN)

(Bibi & Stamelos, 2004). By adopting the BN
formalism we can gain useful insight about the
elements of the software process and perform post
mortem analysis. The use of BNs enables the
estimation of process measures (for example,
process cost, quality or other measurable artefacts)
and adequately handles uncertainty. Thus, the BN
process representation can be used as a tool for
experimenting with different process changes and
testing their effects. In particular, the SPRINT SMEs
approach consists of the following steps:

(i) Identification of software process areas of a
SME and selection of specific areas which require
mprovement.

(ii) Definition of a knowledge base that describes
a process area under improvement.

(iii) Conceptualization and analysis of an
ontology that represents the process domain.

(iv) BN analysis and suggestions for process
improvement.

The paper structure is organised as follows.
Section 2 provides a brief literature review on the
use of ontologies and BNs for software process
representation and analysis. Section 3 describes the
steps of the SPRINT SMEs approach. In Section 4
the approach is validated by considering the
software development process that takes place in a
SME active in telecommunications area. Finally, in

section 5, we conclude the paper and present ideas
for future work.

2 LITERATURE REVIEW

The concept of using BNs as predictive models in
certain phases of software process is found in
several research studies. For example, BNs have
been used for handling uncertainty in defect
prediction and software quality modelling (Fenton et
al., 2002; Fenton et al. 2007, Okutan, Yildiz, 2014).
BNs have been applied for software cost estimation
as well (Stamelos et al., 2003, Mendes et al. 2007).
A survey in research studies using BN models for
software cost estimation can be found in (Radlinski,
2010). As far as software process representation is
concerned, BNs were adopted by (Bibi et al., 2010)
to model a customized software development
process in a case software company. The process
representation through the use of a BN allowed the
estimation of certain process aspects, such as defects
and effort. BNs were also applied for modelling
general software processes, such as the eXtreme
Programming (XP) process (Abouelela and
Benedicenti, 2010, Settas et al., 2006).

On the contrary, there are rather fewer studies
that suggest the use of ontologies to represent a
shared conceptualisation of a software process. In
(Liao et al., 2005) an OWL-based ontology is
suggested for capturing knowledge in software
development processes. Falbo and Bertollo (2009)
proposed an ontology that was specified with the use
of a UML profile to define a vocabulary of concepts
met in process quality models/standards, such as
ISO/IEC 12207 and CMMI. Barcellos and Falbo
(2009) reengineered a Software Enterprise Ontology
based on the Unified Foundational Ontology (UFO)
suggested by Guizzardi et al. (2008). These works
were further extended by Bringuente et al. (2011) to
address the conceptualisation of activities which
take place in software project planning. Finally,
Henderson et al. (2014) recently proposed an
ontological infrastructure for representing, in a
unified way, the software engineering standards
developed under ISO/IEC SC7.

The SPRINT SMEs approach that is suggested in
this paper utilizes mainly the generic Software
Process Ontology proposed in (Bringuente et. al.,
2011) with the aim to consider specific project,
process and experience concepts. Also in SPRINT
SMEs ontology we propose attributes that can be
recorded to describe each of the above concepts
along with operations (actions) that can be

performed for each concept. Ontologies due to their
deterministic nature are unable to adequately capture
uncertainty. Thus, we consider uncertainty
dimensions in the proposed software process
ontology by synergizing the ontology with BNs. The
benefits of this combination are twofold: a) Process
area knowledge is combined with probabilistic
information. The software process ontology offers a
convenient framework to model and disseminate
knowledge regarding the development process
which incorporates uncertainty. BNs enable to
analytically measure and handle this uncertainty. b)
Changes proposed by the ontology actions can be
tested to view their reflection to the process. Thus,
the BN process model can be used by
project/process managers to illustrate the effect of
process changes.

3 A KNOWLEDGE-BASED
APPROACH FOR SPI

The SPRINT SMEs approach follows a lightweight
paradigm for efficiently improving certain process
areas in the context of a software SME. The
approach is tailored to the needs of individual SMEs
as it is efficient, easily adoptable, non bureaucratic
and independent of company’s specific assets. The
approach follows four steps described in the current
section. It should be also noted that the SPRINT
SMEs approach presents commonalities with
established SPI approaches (Paulk et.al, 1994; ISO,
2013) and, in addition, offers a toolset (comprised
by ontologies and BNs) to assist their application.

The first step of the approach involves the
identification of a defective process area to be
improved. The approach concentrates on supporting
the improvement of particular process areas and not
the complete software development process. We
consider this decision more effective/efficient when
addressed to software SMEs since the effort required
to improve all aspects of a software process is often
prohibitive in terms of time and cost and most SMEs
do possess neither the know-how nor the resources
to achieve holistic improvement goals (Pettersson et
al., 2008). Defining the software process area that
will be set under assessment and improvement is a
managerial decision that depends on the needs of a
specific SME and the type of projects that it handles.
For example, the area under improvement can be
decided from traditional software lifecycle models:
requirements engineering, design specification

programming and development, software testing,
software project management etc.

The target of the second step is to specify and
design a knowledge base that consists of information
relevant to the knowledge required for improving the
area(s) selected in the previous step. A knowledge
base is a database that stores data and rules for
knowledge management (Simari & Rahwan, 2009).
Knowledge management (KM) refers to the set of
practices adopted in an organisation to identify,
create, represent, distribute, and enable adoption of
insights and experiences (Nonaka & Krogh, 2009).
Using a KM approach, the tacit knowledge
developed during the application of a software
process is captured, stored, disseminated and reused,
so that to achieve better quality and productivity.
KM supports process management decisions, such as
software process definition, human resource
allocation and effort estimation of development
activities as well as quality planning and control
(Falbo et al., 2004). In a SPI project, the process
manager should answer two main questions in order
to create a knowledge base for the software process
(Bibi et al., 2010): (i) which metrics can provide
useful information for each particular process area?
(ii) which projects will be considered to create a
process area knowledge base?

The relevant literature points out numerous
metrics to describe software processes (Kan, 2003).
A well-known categorization of metrics involves
project, process, product and personnel oriented
metrics (Boehm, 1981). Regarding the projects that
participate in the knowledge base, the manager
should, for example, select the most relevant ones to
the recent activity of the SME or the most recent
ones. These project types are suggested since the
process followed in these projects is likely to be
repeated in the future. The manager should ensure
that data of the selected projects are objectively and
consistently recorded. It should be noted that the
way to perform these types of activities (e.g. data
collection) is not precisely specified by the SPRINT
SMEs approach, since useful relevant guidelines are
suggested by the generic SPI approach (e.g.,
ISO/IEC 12207) in the context of which SPRINT
SMEs can be applied.

In the third step of the SPRINT SMEs approach
we adopt an ontology-based paradigm (Katifori et
al., 2007). Ontologies formally represent knowledge
as sets of concepts within a domain by using a
shared vocabulary to denote the types, properties
and interrelationships of those concepts. Different
complementary ontologies have to be developed to
address knowledge in software process improvement

projects (i.e., tacit and explicit knowledge,
knowledge about projects, knowledge in projects
and knowledge from projects). A generic structure
of the software process ontology has been proposed
by Bringuente et al. (2011) and it is depicted in
Figure 1.

Figure 1: Software Process Ontology (Bringuente et al.,
2011).

The ontology of Figure 1 describes a general
procedure to define a software process for a
company’s project. The project manager should
identify the activities that have to be performed to
achieve the project goals. This is done by tailoring
organizational standard processes, taking the project
particularities and team features into account. The
project process is the basis for the further project
management activities. After defining the process,
the project manager creates the network of project
activities, define how long each activity will last,
and allocate people to perform them. For a good
understanding of these tasks, we need a shared
conceptualization regarding software processes.

The SPRINT SMEs approach suggests three sub-
ontologies to develop for covering three process
improvement knowledge domains, respectively:
 Experience ontology: The experience ontology

describes skills and qualifications required for
performing specific improvement practices.

 Process ontology: The process ontology enables
the definition of a hierarchical process structure
and alternative process decompositions and
dependencies.

 Project content ontology: The project content
ontology supports the representation of
information about the improvement of the
project content which includes project artefacts
(e.g. requirements artefacts, UML diagrams,
source code components, etc.).

We will present, as a proof of concept, the
analytical ontology for the project planning phase as
the target of improvement attempts. During project
planning, the project objectives are defined along
with the project schedule and its activities. People to
perform the project activities have to be allocated.
Also project monitoring and control should be

performed. This involves tracking the
accomplishment of project activities and managing
the necessary time to perform them. In particular,
software project planning involves activities such as:
 Project process selection: This might involve

the selection of a standard process such as
RUP, SCRUM, ICONIX, XP or even hybrid
methods that fit the particular needs of a
specific company.

 Resource allocation: This task involves the
selection of the development team, the
allocation of people to tasks. Also in this task
the selection of the necessary software tools
and hardware equipments is performed.

 Project monitoring and controlling: They
involve the necessary estimations relevant to
the effort or the productivity required to
complete a software project.

The generic ontology of Figure 1 is further
extended to include process attributes and
operations. Figure 2 depicts the class diagram of this
extended ontology. In Figure 2, the class Software
Process consists of certain attributes like Size,
Effort, Complexity and Quality. The operations
encapsulated in this class are Planning, Scoping,
Assessing, Deciding, Measuring, Monitoring and
Improving. The class Standard Process is associated
with the metrics that show conformance to RUP,
ICONIX or XP process models, while the class
Project Process represents the use of a customized

variation of these standard processes for a specific
project. The class Organization is represented by
metrics describing each individual SME. Such
metrics may include the Size of the Organization,
the Years of Experience and the Organization Type.
The class Project defines project specific metrics,
such as Development Type and Business Area Type.
The Activity class represents standard activities
performed in software development like Planning,
Specification, Design, Build, Implementation and
Testing. Depending on what area of project planning
has to be improved, the Activity class may represent
the relevant quality metrics for each activity or effort
metrics (Deliverables, Milestones, etc.) for each
activity. The class Human Resource is associated
with metrics, such as Personnel skills and Roles for
the Project Staff subclass or Expertise for the
Manager subclass, while the class Software
Resource is associated with metrics such as Use of
Case Tools, Programming Language and Data Base.
Finally, the class Hardware is associated with
metrics, such as the Development Platform and the
Architecture type.

In the fourth step, the SPRINT SMEs approach
utilises BNs to experiment with the ontologies
defined in the previous step. A BN is a directed
acyclic graph that represents a causal network
consisting of a set of nodes and a set of directed
links between them, in a way that they do not form a
cycle (Jensen & Nielsen, 2007).

Figure 2: The extended software process ontology.

Each node in a BN represents a random variable
that can take discrete or continuous, mutually
exclusive values according to a probability
distribution, which can be different for each node.
Each link in a BN represents a probabilistic cause-
effect relation between the linked variables and it is
depicted by an arc starting from the influencing
variable (parent node) and terminating on the
influenced variable (child node). The strength of the
dependencies is measured by means of conditional
probabilities depicted in the form of Node
Probability Tables (NPTs).

BNs are helpful in software process evaluation
and improvement since they offer (Bibi et al., 2010):
i) a way to represent project/process attributes and
identify their interrelationships, ii) capabilities for
performing multiple attribute estimations, iii) results
indicating confidence of the estimations, iv)
solutions that can be easily interpreted and
confirmed by intuition, and v) analytical methods
that can be used alone or combined with expert
judgment. A simple BN example is presented in
Figure 3. The model consists of two nodes. The first
node (NofClasses) represents the number of classes
in a software package and the second node
(Maintenance Effort) represents the effort required
for package maintenance. We consider that the
values of these two nodes fall into two discrete
categories (Low and High). For the node
NofClasses, Low values range between 1 class and
10 classes, while High values represent packages
with more than 10 classes (30 classes the most). For
the node MaintenanceEffort, Low values range from
1 man month to 3 man months, while High values
range from more than 3 man months up to 10 man
months.

Figure 3: A BBN for software effort estimation.

Table 1: The NPT of the node MaintenanceEffort in
Figure1.

NofClasses Low High
Maintenance Effort Low 0.7 0.45

High 0.3 0.55

A simple example to comprehend the NPT

presented in Table 1 is the following: If the number
of classes falls in the low category then there is 70%
probability that the maintenance effort will also fall
in the low category.

Figure 4 shows the resulting BN model for the
ontology of Figure 2. The metrics of each class of
the ontology is represented by a node and each
attribute of a class is represented by a node pointing
to the “class” node. This representation implies that
the accumulative value of a class node is affected by
the values of the metrics that define the class node.

4 VALIDATION OF THE
APPROACH

In the following section, we present an example of
applying the SPRINT SMEs approach in a case
study that took place in a Greek SME running
projects in software telecommunications field. The
study lasted one week. The company occupies
almost 35 employees mainly scientific, technical and
management personnel. In the case study we have
followed the SPRINT SMEs approach to evaluate

Figure 4: A BBN for software effort estimation.

the company’s project management and process
improvement decisions. The first step was to
identify the process areas that needed further
support. For this reason, we interviewed three
company’s employees (project managers) with at
least 5 years experience covering all aspects of
company’s activities. The employees pointed two
areas of interest, namely effort/duration estimation
and software reuse.
The second step was to develop a knowledge base
that included all relevant information regarding the
aforementioned process areas of interest. After the
interviews, we selected to record metrics that are
company specific and relevant to the
telecommunication software that the company
develops and also more general metrics, such as
effort and size metrics.
Then, we selected the historical projects that would
participate in the analysis to define the required
process models. We selected five recent projects that
the managers considered more indicative of the
current activity of the company.

These projects offered information that could be
retrieved even if we had to perform post-mortem
analysis. The data that were collected involved
software process, product and implementation
metrics and they are presented in Table 2.

The third step resulted in a process ontology that
represented the targeted improvement areas
(effort/duration estimation and software reuse). To
implement this step we have used parts of the
ontology described in Figure 2. In general, for the
ontology creation there can be several alternative
solutions for each specific company. Therefore, we
have used the generic ontology presented in Figure
2, as it is difficult for an SME to create its own
process ontology from scratch. This generic
ontology can be modified according to the needs of a
specific company.

The fourth step was to design appropriate BNs
based on the ontological representation of the
knowledge base. To ensure better readability and
clarity of the results, two BN models were created,
one involving the effort estimation process and
another one involving the software reuse process.
The first BN is presented in Figure 5.

In the BN of Figure 5 network nodes are shown
as bar charts providing additional information for the
data allocation at each node. This BN model
demonstrated the following assertions: The total
effort value mainly depends on the effort of the first
development phase of a process that is often
followed in the company’s projects (P1Effort) and
on the Lines of Code (LOC) written, apart from code

written in Specification and Description Language
(SDL).

Table 2: Metrics of the knowledge base for the case
company with low (L) and high (H) ranges.

Variable Min Categories
LOC Lines of Code L(≤12105),H(>12

105)
Duration # of months L(≤9.5), H(>9.5)

Effort # of months L(≤5.50), H(>5.5)
P1Duration Analysis & design

phase, man months
L(≤4.5),H(>4.5)

P1Effort man months L(≤5),H(>5)
P2Duration Coding & testing

phase, man months
L(≤5),H(>5)

P2Effort man months L(≤3.5),H(>3.5)
TeamSize # of people in the

project
L(≤2),H(>2)

Reuse % of reusage of
previous project

products

L(≤25%),
H(>25%)

Reusability % of the project
products reused

L(≤35%),
H(>35%)

TN_B # of Blocks L(≤3),H(>3)
TN_P # of Processes L(≤14),H(>14)

TN_ST # of States L(≤54),H(>54)
TN_PT # of Process Types L(≤1),H(>1)

TN_SYS # of Systems L(≤0),H(>1)
TN_TMR # of Timers L(≤15),H(>15)
TN_BT # of Block Types L(≤0),H(>0)
TN_T # of Data Types L(≤0),H(>0)
TN_G # of Gates L(≤23),H(>23)

TN_CH # of Channels L(≤0),H(>0)
TN_BIP # of Built in

Procedures
L(≤8),H(>8)

TN_Ent_VS # SDL Entities
with Valid Suffix

L(≤49),H(>49)

TN_Ent_IS # SDL Entities
with Invalid Suffix

L(≤38),H(>38)

The company develops software using a mix of
(i) graphical development with the use of SDL
telecommunication modelling language and tools
that execute directly the SDL models and (ii)
programming in C language. The Lines of Code are
affected by the percentage of reuse from previous
projects which affects intuitively also the size of the
development team. Larger teams produce more
Lines of Code. A large percentage of reuse can
reduce the actual number of new lines of code and
the total effort value. The effort of the second
development phase (P2Effort) that is followed in the
company’s projects mainly depends on TNL (Total
Number of Lines) that correspond to lines written in
SDL. The value of TNL is also affected by the
percentage of reuse.

The NPT (Node Probability Table) of the node
effort in the BN of Figure 5 is presented in Table 3.
This table can be used for the estimation of the total
effort required for the completion of a new project in
the company. The total development effort of a new
project is estimated to be high (second category)
with probability 64% when the effort required for
the first development phase is high and the number
of Lines of Code is also high.

A second BN model (Figure 6) was developed
during the case study to analyse the company’s
software reuse process. A more conventional format
is selected in Figure 6 to show this BN (nodes are
depicted with icons). This model indicated that the
variable ΤΝ_PT (Total Number of process types)
actually affects the values of other code structure
variables, such as the number of block types and the
number of gates (these are all SDL specific metrics).
According to the BN of Figure 6, the percentage of
code from a particular project that can be reused is
affected by the number of entities with invalid
suffix, i.e., inappropriate naming choices
(TN_Ent_IS). This result indicated that reuse heavily
depends on the formality that the programmers adapt
when naming the entities on the code. This
intuitively affects the understandability of the code
that enables further reuse.

Figure 5: Software process BN for effort estimation.

Post-mortem analysis was applied on the BN
model of Figure 6 and resulted in the following
useful insights: The lower the number of code
structure variables the greater the reuse. It seems that
smaller parts of code can be more easily reused.
According to the company’s management, future
projects are possible to breakdown to smaller
autonomous packages that could perform different
aspects of functionality. This decomposition would
enable greater percentage of reuse. The company’s
management so far preferred the use of smaller
teams, while there is also the possibility of using
larger ones. The idea was that small teams can be

more flexible, communicate better and produce more
quickly results. It seems though from the analysis
results that larger teams can produce results in
shorter time and they are able to reuse larger
percentage of code from previous projects. The
management currently is validating the experimental
results on larger teams.

Table 3: NPT for effort estimation.

P1Effort X1 X2
LOC X1 X2 X1 X2
X1 0,75 0,42 0,36 0,31
X2 0,25 0,58 0,64 0,69

Figure 6: Software process BN for reusability.

5 CONCLUSIONS

This paper presented an approach to support
software process improvement activities for software
development SMEs. The approach takes into
consideration the characteristics and the needs of the
individual software organization under assessment
and does not demand a large amount of resources
and investment costs. The approach utilizes a
generic ontology that is tailored to the needs of an
SME and applies Bayesian network analysis to make
measurable each concept that is represented in the
process ontology. As a proof of concept, we
presented the approach validation in a case study
aimed to improve software effort estimation and
reuse in a company that delivers hardware/software
solutions in the telecommunications area. As future
work the proposed approach will be further validated
at a multiple case study involving Greek SMEs,
which show interest in improving their development
practices and changing their role from bespoke to
market-driven software product developers.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Union (European Social Fund) and Greek national

funds through the Operational Program "Education
and Lifelong Learning" of the National Strategic
Reference Framework (NSRF) - Research Funding
Program: ARCHIMEDES III. Investing in
knowledge society through the European Social
Fund.

REFERENCES

Abouelela, M. and Benedicenti, L., 2010. Bayesian
Network based XP Process Modelling, IJSEA, 1(3), 1-
15.

Barcellos, M. P., Falbo, R. A., 2009. Using a Foundational
Ontology for Reengineering a Software Enterprise
Ontology. In Advances in Conceptual Modeling -
Challenging Perspectives, Lecture Notes in Computer
Science 5833, 179-188.

Bibi, S. Stamelos, I., Gerolimos, G., Kollias, V., 2010.
BBN based Approach for Improving the Software
Development Process of an SME - a Case Study,
Journal of Software Maintenance, 22(2).

Bibi, S., Stamelos, I., 2004. Software Process Modeling
with Bayesian Belief Networks. 10th International
Software Metrics Symposium (Metrics 2004), Chicago.

Boehm, B., 1981. Software Engineering Economics,
Englewood Cliffs, Prentice-Hall.

Bringuente, A., Falbo, A., Guizzardi, G., 2011. Using a
Foundational Ontology for Reengineering a Software
Process Ontology, Journal of Information and Data
Management, 2(3), 511-526.

Falbo, R., Bertollo, G., 2009. A software process ontology
as a common vocabulary about software processes,
International Journal of Business Process Integration
and Management (IJBPIM), 4(4), 239-250.

Falbo, R., Borges, L. S. M., Valente, F. F. R., 2004. Using
Knowledge Management to Improve Software Process
Performance in a CMM Level 3 Organization.
International Conference on Quality Software (QSIC
2004), 162-169.

Fenton, N., Krause, P., Neil, M., 2002, Probability
modeling for software quality control, Journal of
Applied Non-Classical Logics, 12(2), 173-188.

Fenton , N., Neil, M., Marsh, W. , Hearty,P., Marquez,D.,
Krause,P., Mishra, R., 2007. Predicting Software
Defects in varying Development Lifecycles using
Bayesian Nets, Information & Software Technology
49(1), 32-43.

Guizzardi, G., Falbo, R. A., Guizzardi, R. S. S., 2008.
Grounding Software Domain Ontologies in the
Unified Foundational Ontology (UFO): the Case of the
ODE Software Process Ontology. XI Iberoamerican
Workshop on Requirements Engineering and Software
Environments, pp.244-251.

Henderson-Sellers,B., Gonzalez-Perez, C., Mc Bride,T.
Low, G., 2014. An ontology for ISO software
engineering standards: 1) Creating the infrastructure,
Computer Standards & Interfaces, 36(3), 563-576.

International Organization for Standardization /
International Electrotechnical Commission, 2013.
ISO/IEC FDIS 26550: Software and Systems
Engineering -Reference Model for Product Line
Engineering and Management.

Jensen F., Nielsen, T., 2007. Bayesian Networks and
Decision Graphs, Springer Verlag.

Kan, S., 2003. Metrics and Models in Software Quality
Engineering, Pearson Education Limited.

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C.,
Giannopoulou, E., 2007. Ontology Visualization
Methods - a Survey, ACM Computing Surveys, 39(4).

Liao, L., Qu, Y., Leung, H. K. N., 2005. A Software
Process Ontology and its Application 1st International
Workshop on Semantic Web Enabled Software
Engineering.

Mendes, E., 2007. The Use of a Bayesian Network for
Web Effort Estimation. International Conference on
Web Engineering (ICWE 2007), 90-104.

Mishra, D., Mishra, A., 2009. Software Process
Improvement in SMEs: a Comparative View,
Computer Science and Information Systems, 6(1), 111-
140.

Nonaka, I., Krogh, G., 2009. Tacit Knowledge and
Knowledge Conversion: Controversy and
Advancement in Organizational Knowledge Creation
Theory, Organization Science, 20 (3), 635–652.

Okutan, A., Yildiz, O., 2014. Software Defect Prediction
using Bayesian networks, Empirical Software
Engineering, 19(1), 154-181.

Paulk, M., Curtis, B., Chrissis, B., Weber,M., 1994.
Capability Maturity Model for Software: Guidelines
for Improving the Software Process, Addison-Wesley.

Pettersson, F., Ivarsson, M., Gorsheck, T., Ohman, P.,
2008. A Practitioner's Guide to Lightweight Software
Process Assessment and Improvement Planning,
Journal of Systems and Software, 21(6), 972-995.

Radlinski, L., 2010. A Survey of Bayesian Net Models for
Software Development Effort Prediction, International
Journal of Software Engineering and Computing, 2(2),
95-109.

Settas, D., Bibi, S., Sfetsos, P., Stamelos, I., Gerogiannis,
V. C., 2006. Using Bayesian Belief Networks to
Model Software Project Management Antipatterns. 4th
International Conference on Software Engineering,
Research, Management and Applications, pp. 117-
124.

Simari, G., Rahwan, I., 2009. Argumentation in Artificial
Intelligence, Springer.

Stamelos, I., Angelis, L., Dimou, P., Sakellaris,E., 2003.
On the Use of Bayesian Belief Networks for the
Prediction of Software Productivity, Information and
Software Technology, 45(1), 51-60.

Zahran, S., 1998. Software Process Improvement:
Practical Guidelines for Business Success. Addison-
Wesley.

