
A Preliminary Analysis of Publicly Available FLOSS
Measurements: Towards Discovering Maintainability

Trends ∗

Ioannis Samoladas
Department of Informatics

Aristotle University of
Thessaloniki

542 24, Thessaloniki, Greece
ioansam@csd.auth.gr

Stamatia Bibi
Department of Informatics

Aristotle University of
Thessaloniki

542 24, Thessaloniki, Greece
sbibi@csd.auth.gr

Ioannis Stamelos
Department of Informatics

Aristotle University of
Thessaloniki

542 24, Thessaloniki, Greece
stamelos@csd.auth.gr

Sulayman Sowe
Department of Informatics

Aristotle University of
Thessaloniki

542 24, Thessaloniki, Greece
sksowe@csd.auth.gr

Ignatios Deligiannis
Information Technology

Department
Technological Education

Institute
54700, Thessaloniki, Greece

ignatios@it.teithe.gr

ABSTRACT
The spread of free/libre/open source software (FLOSS) and
the openness of its development model offer researchers a
valuable source of information regarding software data. The
creation of large portals, which host a vast amount of FLOSS
projects make it easy to create large datasets with valuable
information regarding the FLOSS development process. In
addition initiatives such as FLOSSMole provide researchers
with a single point and continuing access to those data. Up
to now the majority of datasets from FLOSSMole offered
data regarding the development process and not the code
itself. From February 2007 FLOSSMole offers data donated
by SourceKibitzer, which contain source code metrics for
FLOSS projects written in Java. In this paper we provide
a premilinary analysis on those data using machine learning
techniques, such as classification rules and decision trees.
Using the first available data from February 2007, we tried
to build rules that can be used in order to estimate the
future values of metrics offered for March. Here we present
some preliminary results that are encouraging and deserve
to be further analyzed in future releases of SourceKibitzer
datasets.

∗This work is funded by the Greek Ministry of Education
(25%) and European Union (75%) under the EPEAK II
program Archimedes and partly by the European Commu-
nity’s Sixth Framework Programme under the contracts of
projects FLOSSMETRICS (FP6-IST-5-033547) and SQO-
OSS (FP6-IST-5-033331)

Keywords
open source public available metrics data, machine learning,
classification, decision trees, estimation

1. INTRODUCTION
Research in software engineering has always been in need for
data. Performing research inside large software companies,
working with a limited set of projects available was the usual
way of obtaining those data. Researchers usually couldn’t
disseminate their data along with their results, since compa-
nies were reluctant to allow such publicity. Although some
widely available datasets exist (such as the ISBSG dataset)
it is rather difficult for software engineering researchers to
apply their ideas and methodologies to a large amount of
data and different kind of projects. In addition the fact
that the majority of the research conducted, involves propri-
etary software, makes replication rather difficult as datasets
are not publicly available. The latter is very important for
science, since replication of research allows validation of re-
sults.

With the arrival and the spread of Free/Libre/Open Source
Software 1 (FLOSS) the software research community has
a unique opportunity for obtaining experimentation data.
The open development process of FLOSS and the fact that
the majority of the projects are hosted under the same
provider, has made this data easily accessible. Further-
more there are research groups that extract all the avail-
able data from these hosting providers and monitor them
regularly. This fact allows research to focus on the anal-
ysis of data instead of their collection. Such a group that
provides data from various sources is FLOSSMole2 [2]. The
majority of data at FLOSSMole involves the development

1With the term FLOSS we are referring to the kind of soft-
ware that is well known as either “open source software” or
“free software” or “libre software” without separating these
three terms.
2http://ossmole.sourceforge.net



process of FLOSS projects and the description of projects
available at the major hosting sites (like Sourceforge.net).
Until recently, in FLOSSMole there were no datasets avail-
able regarding the source itself, i.e. source code metrics. In
February 2007, a site providing metrics results for FLOSS
projects written in Java, SourceKibitzer3 decided to share
its data with the research community donating its metrics
database to FLOSSMole.

In this study we provide a first analysis on those data uti-
lizing the open source machine learning tool WEKA[6]. We
have downloaded the available datasets involving metrics
collected in February 2007 and March 2007. We constructed
classification models estimating the evolution from February
to March for five metrics.

2. DATA DESCRIPTION AND METHODOL-
OGY

In order to perform our analysis we downloaded from FLOSS-
Mole website the datasets from February and March 2007.
These datasets contain the metric results of projects written
in Java. From these files only the projects that appear in
both of these months were considered in order to participate
in the estimation from February to March. The resulted join
of the two sets was a sample of 539 projects, appearing both
in February and March data sets. From these two files we
constructed a third one by subtracting the February values
from those of March. These differences were the target of
our estimation models.

The metrics available from SourceKibitzer are:

loc Total number of lines including blank lines, executable
lines and comments.

cloc Number of lines with comments.

nloc Number of lines that are not comments.

dc Density of comments (i.e. CLOC
LOC

).

nom Number of methods.

wmc Weighted method count. Sum of the McCabe’s Cy-
clomatic Complexity [3] of all source files.

ncss Number of non commenting source elements (source
statements).

npath Sum of NPATH complexity (i.e. number of execu-
tion paths) of methods in a package.

fanout Sum of the FANOUT complexity (i.e. the num-
ber of classes of a given source file relies on) values of
source files.

abstr coupl Sum of the data abstraction coupling (i.e. the
number of instantiations of classes within a source file).

todo count Sum of the number of TODO comments in a
source file. Includes also comments with the words:
TO-DO, FIX-ME, FIXME, FIX-IT, FIXIT, XXX, TBD.

3http://www.sourcekibitzer.org

bool exp Sum of the boolean expression complexity of all
expressions in a source file (i.e. the sum of the number
of logic operators of a given expression).

In order to extract the estimation models we used the Weka
machine learning library [6] [1]. The data used for the anal-
ysis (independent variables) were the February data, while
dependent variables were the differences between February
and March values. Some descriptive statistics regarding the
February values are shown in Table 1.In total 539 projects
were considered. The new variables that represent the dif-
ferences in values between the two months are denoted with
a DD prefix.

3. MODEL AND ANALYSIS DESCRIPTION
The goal of our analysis is to model the fluctuation of vari-
ables nloc, nom, ncss, npath and fanout from February to
March. These variables are selected because they are con-
sidered to affect a critical quality aspect of software, namely
its maintainability. In particular decision trees and rules
will be used to estimate the difference of the values of the
above variables observed during March given February val-
ues. The methods used provide estimates in the form of
interval values and consequently the values of nloc, nom,
ncss, npath and fanout were discretised according to Table
2. The variables were discretized using the SPSS discretiza-
tion function. Initially we aimed at equal frequency binning
which was not possible due to the granularity of data. Fi-
nally three intervals were considered automatically by SPSS
for each variable the first interval contains negative values,
the second interval values close to zero and the third in-
terval conatins relatively high values. Negative values refer
to code entities removed (e.g. deleted lines of code). In
practice, Interval (Category) 1 represents variable decrease,
Interval 2 represents variable stability and Interval 3 rep-
resents variable growth. The models are produced by two
symbolic algorithms C4.5 (J48) [4] and RIPPER (JRIP)[5].
The first algorithm outputs a decision tree, while the other
outputs a set of classification rules.

The decision tree model J48 consists of an hierarchy of uni-
variate binary decisions. The algorithm used operates by
choosing the best variable for splitting data into two groups
at the root node. It can use any one of several different
splitting criteria, all producing the effect of partitioning the
data at an internal node into two disjoint subsets in such
way that the class labels are as homogeneous as possible.
This splitting procedure is then applied recursively to the
data in each of the child nodes. Finally, a decision tree is
produced and specific branches of this tree are pruned ac-
cording to the stopping criteria, so as to avoid overfitting of
the data and over-specialization of the model.

RIPPER is a rule induction algorithm that provides classi-
fication rules. Each rule has a body, which consists of one or
more conditions under which the rule will fire, and a head
which consists of the predicted class of faults. These algo-
rithms learn one rule, remove the examples that this rule
covers and proceed with the next rule. Any remaining un-
covered examples, are handled by a default rule that fires
without any conditions and predicts the most frequent class
among the remaining examples. This also implies that the



Table 1: Descriptive statistics of the estimated variables for February values
Variable Descriptive Statistics

Minimum Maximum Mean Standard Deviation
nloc 29 1296302 53179.249 105400.071
nom 1 86577 3319.803 6406.675
ncss 8 652473 24554.621 49398.615
npath 1 2147483647 280526718.413 661792242.014
fanout 0 4322 2595.493 4718.206

Table 2: Intervals estimated for each variable
Variables Category

Name Original Variable 1 2 3
DDnloc nloc [-132287, 0) [0, 91) [91, 29497]
DDnom nom [-8039, 0) [0, 4) [3, 1645]
DDncss ncss [-62891, 0) [0, 35) [35, 14750]
DDnpath npath [-2147431420, 0) [0, 1) [1, 983729144]
DDfanout fanout [-2676, 0) [0, 4) [4, 1046]

rules are presented in the order that they are discovered,
and during execution they are considered in this order. The
methods are further described in [1], [4].

Both of the above methods are applied using the default
parameters as implemented in Weka except for the minimum
number of items in each class which is increased to 10. This
is done to avoid overspecialization of the model to the data,
as the training set has relatively many observations.

The evaluation method used to assess the estimation accu-
racy of the models is 10 folds cross validation. The 10-fold
cross-validation process splits the data into 10-equal disjoint
parts and uses nine of these parts for training the classifica-
tion framework and one for testing. This is done 10 times,
each time using a different part of data for testing. The
training data are used to train a classification algorithm.
The learned model is then applied to the test data. Then
according to the classification accuracy of the model we cal-
culate hitrate which is the ratio of the number of metric
values estimated to the correct interval to the total number
of estimations.

4. RESULTS
For the estimation of the DDnloc the model derived from
the whole set of data is presented in Figure 1. The values
of abstract coupling of February are used to estimate the
fluctuation of the nloc of March values. The tree of Figure
1 can be interpreted as following:

• If the abstr coupl is equal or less than 1159 then DDnloc
is estimated to be in the second interval. This leaf clas-
sifies totally 438 projects from which 85 are incorrectly
estimated to the second interval.

• Otherwise if abstr coupl is greater than 1159 DDnloc
will be in the third interval. This leaf classifies 100
projects from which 34 are misplaced to the third in-
terval.

As mentioned 10 folds cross validation is used for the evalua-
tion of the model. The model succeeds 75.84% hitrate in this

Figure 1: Decision tree for the estimation of DDnloc

case. JRIP algorithm suggests two rules for the estimation
of DDnloc, presented in Table 3:

The first rule states that if ncss value is more or equal to
14726 and abstr coupl is more or equal to 1182 then DDnloc
will be in the third interval. This rule classifies 100 projects
from which 34 are misclassified. The second rule classifies
the remaining438 projects to the second interval being inac-
curate in 85 cases. The hitrate of the model is 75.84%.

The next variable participating in this preliminary analy-
sis is DDnom. The tree (Figure 2) suggests abstr coupl,
todo count, loc and dc as the variables used to classify the
increase in the number of methods into an interval. This
tree presents 76.2% hitrate.

The rules used to classify DDnom are presented in Table
3. Rules point out fanout, todo count, dc and abstr coupl
as the major attributes that can classify DDnom. The hi-
trate of the rules evaluated with 10 folds cross validation is
75.84%.

The tree for DDncss variable is presented in Figure 3. The
hitrate of the tree model is 76.95%. abstr coupl, todo count
and dc classify DDncss into an interval. Rules on the other
hand use the values of ncss of February to estimate the
DDncss for March along with abstr coupl. The suggested
rules has 75.28% evaluation hitrate and is presented in Ta-
ble 3.



Table 3: Variable estimation rules
Variable Rules
DDnloc (ncss ≥ 14726) and (abstr coupl ≥ 1182) ⇒ DDnloc = 3(100.0/34.0)

⇒ DDnloc = 2(438.0/85.0)
DDnom (fanout ≥ 3086) ⇒ DDnom = 3(126.0/49.0)

(todo count ≥ 30) and (dc ≤ 0.1352) and (abstr coupl ≤ 716) ⇒ DDnom = 3(33.0/12.0)
⇒ DDnom = 2(379.0/53.0)

DDness (ncss ≥ 14726) and (abstr coupl ≥ 1182) ⇒ DDncss = 3(100.0/33.0)
⇒ DDncss = 2(438.0/82.0)

DDnpath (abstr coupl ≥ 247) and (npath ≤ 2129242501) and (loc ≥ 79814) ⇒ DDnpath = 3(68.0/22.0)
⇒ DDnpath = 2(470.0/117.0)

DDfanout (todo count ≥ 45) and (fanout ≥ 3422) ⇒ DDfanout = 3(95.0/29.0)
⇒ DDfanout = 2(443.0/82.0)

Figure 2: Decision tree for the estimation of DDnom



Figure 3: Decision tree for the estimation of DDncss

Figure 5: Decision tree for the estimation of
DDfanout

The estimation of DDnpath (Figure 4) by J48 algorithm was
a difficult task as many variables participated in the estima-
tion of the particular variable such as npath, ncss,loc, dc,
todo count with relatively low accuracy (69.33% hitrate).
On the other hand rules consider only abstr coupl, npath
and loc as the most important variables in the classification
of DDnpath. The rules of Table 3 present 71.75% hitrate.

The tree for estimating the difference in the values of fanout
observed during March uses only fanout values of February.
The tree has 77.51% hitrate and is presented in Figure 5.
JRIP rules apart from fanout uses the todo count values to
estimate DDfanout. The rules of Table 3 present 78.25%
estimation accuracy

5. CONCLUSIONS - FUTURE RESEARCH
In this paper we present a premilinary analysis on publicly
available measurements from SourceKibitzer using classifi-
cation models. The analysis produced trees and rules that
estimate the fluctuation of certain metrics. The results were
encouraging and the models built estimated future values of
metrics with a relatively satisfactory accuracy. This kind of
analysis, in this application level, enables us to:

• perform less measurements or measure less frequently

• identify future problematic situations (e.g. we can pre-

dict that a FLOSS application that we consider for the
first time, will present a high value of fan out or com-
plexity and will probably face maintainability prob-
lems in future releases)

Apart from the application level metrics, SourceKibitzer of-
fers detailed file level metrics. Our intention is to apply
similar models at the file level, to allow the identification
of fault prone files. Future research also includes verifica-
tion of the model with new metrics releases from SourceK-
ibitzer and finding and validating relationships of individual
or composite metrics with external, high level, user specific
quality attributes of the FLOSS software examined.

6. REFERENCES
[1] W. W. Cohen. Fast effective rule induction. In

Proceedings of the 12th International Conference on
Machine Learning, pages 115–123. Morgan Kaufmann,
1995.

[2] M. Conklin, J. Howison, and K. Crowston.
Collaboration using ossmole: a repository of floss data
and analyses. In MSR ’05: Proceedings of the 2005
international workshop on Mining software repositories,
pages 1–5, New York, NY, USA, 2005. ACM Press.

[3] T. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4):308–320, 1976.

[4] R. J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Francisco, 1993.

[5] I. Witten and E. Frank. Data Mining: Practical
machine learning tools with Java implementations.
Morgan Kaufmann, San Francisco, 1999.

[6] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques, 2nd Edition.
Morgan Kaufmann, San Francisco, 2005.



Figure 4: Decision tree for the estimation of DDnpath


