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Abstract. Defining the required productivity in order to complete successfully 
and within time and budget constraints a software development project is 
actually a reasoning problem that should be modelled under uncertainty. The 
contribution of this paper is the analysis of the applicability of probabilistic 
reasoning approaches, in particular Bayesian Belief Networks (BBN), to this 
problem. BBNs are capable of discovering the dependencies and 
independencies among the attributes of a project and defining the direct impact 
of some of them on productivity. Uncertainty is depicted through the use of 
estimate intervals and probabilities: the estimation is actually an interval within 
which the productivity of a project is likely to fall in, with a certain probability, 
considering both an optimistic and a pessimistic situation. The use of 
predefined intervals is another important feature of the method, allowing the 
control of the estimation process and the generation of meaningful intervals, 
appealing and understood by software managers. The ability of the method to 
classify correctly the rest of the attributes in one of their discrete values is also 
tested, paying further attention on the software development mode. The method 
is applied and evaluated on the widely known COCOMO81 dataset. The 
evaluation shows that BBN is a promising method whose results can be 
confirmed intuitively. BBN are easily interpreted, allow flexibility in the 
estimation, can support expert judgment and create models considering all the 
information that lay in a dataset by including all productivity factors in the final 
model.  

Keywords: Cost estimation, Bayesian Belief Networks, Predefined Intervals, 
COCOMO. 

1 Introduction 

Estimating the Productivity of a Software development project remains a challenge 
for the researchers. Despite the various methods proposed, unsolved questions and 
problems justify further research and experimentation. The diversity of cost factors, 
their unclear contribution to productivity and the lack of information in the early 
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stages of software development are the main components of the problem, classifying 
it to probabilistic reasoning.  

The most critical issue in this scientific endeavour is the agreement on the 
constituent, pertinent elements of the problem. Classical methods demand simple 
linear structures and a wealth of data often missing in software engineering. A 
flexible and competitive method to the above methods is Bayesian Belief Networks 
(BBN). Graphical models such as BBN have become attractive tools because of their 
ability to efficiently perform reasoning tasks and to represent uncertainty in expert 
systems [13]. The knowledge that they manage is in the form of dependence and 
independence relationships, two basic notions in human reasoning. 

BBNs deal with uncertainty in various ways. They manage to articulate expert 
beliefs about the dependencies between different variables and to propagate 
consistently the impact of evidence on the probabilities of uncertain outcomes. They 
suggest a structure between the variables of a problem giving the possibility 
according to the knowledge acquired to determine the starting point of the estimation. 
Although BBNs can handle continuous variables this is rarely suggested due to 
practical problems. As a consequence productivity values have to be quantified into 
categories necessitating the estimation of productivity intervals. Intervals give a 
pessimistic estimate (maximum value) and an optimistic estimate (minimum value) 
between which the actual productivity of a project may fall in. With this approach, 
both uncertainty and risk are considered, weighing the chance of events occurring and 
the impact they might have.  The intervals of productivity have to be pre-defined 
before the estimate generation. This helps to control the estimation procedure, 
distribute the projects in the training dataset as uniformly as possible into the various 
productivity intervals and ensure that estimate intervals will not be too large.  

Purpose of this study is to extract useful patterns from cost estimation data with the 
help of BBNs and to provide some evidence of the prediction accuracy of this 
technique. Also some conclusions will be drawn concerning the factors that tend to 
affect productivity directly. An additional research target is the estimation of software 
development mode based on the values of the rest of the projects attributes. The 
method is applied on the widely known COCOMO81 dataset. 

Studies regarding the use of BBNs in Software Engineering concern mostly 
Software Quality [11], [20]. In Software Productivity Estimation one study is found 
[16] where an empirical BBN, based on Boehm’s informal classification of 
COCOMO cost factors was described. In general, various studies have been found 
suggesting parametric models for software cost estimation, and for evaluating and 
comparing various methods [1], [5], [8], [10], [15]. In particular some of them suggest 
the estimation of intervals [7], [9], [17] and one the estimation of predefined intervals 
[16]. Only one study [19] is found in the literature concerning the estimation of 
Software development mode. 

This paper starts with the description of the dataset in Section 2. Section 3 presents 
briefly the estimation technique. Section 4 provides the results of BBN in the 
COCOMO81 dataset. In Section 5, the advantages and disadvantages of BBN as well 
as future work are discussed. 
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2 Description of the dataset 

The dataset that was used in this analysis is the COCOMO81 [2] dataset coming from 
TRW defense systems. This dataset consists of 63 projects. A set of 17 attributes, 
called cost drivers, that is considered to contribute to productivity, and as a 
consequence to cost, is used in order to extract useful patterns. These attributes, based 
also on the analysis of Kitchenham in [8], can take the following values: Super Low 
(SL), Extra Low (EL), Very Low (VL), Low (L), Nominal (N), High (H),Very High 
(VH), Extra high (EH), Super High (SH). The attributes used are shown in tables 1 to 
4: 
 

Table 1. Product attributes 

 
RELY: Required software reliability.  
DATA: Databases size. 
CPLX: Product complexity 

EL, V, L, N, H, VH 
L, N, H, VH, EH 
VL, L, N, H, VH, EH, SH  

Table 2. Computer attributes 

 
TIME: Constraints in the execution time. 
STOR: Constraints in main memory. 
VIRT:  Availability of virtual machine. 
TURN: Service cycle duration. 

 N, H, VH, EH, SH 
 N, H, VH, EH, SH 
 L, N, H, VH  
 VH, H, N, L, VL 

Table 3. Personnel attributes 

 
ACAP: Analysts capabilities. 
AEXP: Analysts experience. 
PCAP: Programmers capabilities. 
VEXP: Virtual machine experience. 
LEXP: Experience with the language 

SH, VH, H, N, L, VL, SL 
VH, H, N, L, VL 
SH, VH, H, N, L, VL, SL 
H, N, L, VL 
H, N, L, VL 

Table 4. Project attributes 

 
CONT: Personnel’s continuity. 
RVOL: Requirement’s volatility. 
TOOL: Use of programming tools. 
MODP: Use of modern programming practices 
SCED: Time schedule 

L, N, H 
L, N, H, VH, EH, SH 
EH, VH, H, N, L, VL 
EH, VH, H, N, L, VL 
LAX,N, COM,VCOM  

 
Apart from these attributes, the programming language used (LANG), the platform 

on which the project was developed (PLATFORM), the application type (A.T.) and 
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the software development mode (MODE) are also taken into consideration. These 
attributes are shown in Table 5: 

Table 5. Descriptive attributes 

 
LANG 
A.T. 
PLATFORM 
MODE 

COBOL, FORTRAN, ADA etc  
SCI, HMI, SYS, SUP, BUS 
MIN, MAX, MID, MIC 
EMBEDDED, SEMIDETACHED, ORGANIC 

 

3 Bayesian Belief Networks 

3.1 Modeling Technique 

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), which are causal 
networks that consist of a set of nodes and a set of directed links between them, in a 
way that they do not form a cycle [12]. Each node represents a random variable that 
can take discrete or continuous finite, mutually exclusive values according to a 
probability distribution, which can be different for each node. Each link expresses 
probabilistic cause-effect relations among the linked variables and is depicted by an 
arc starting from the influencing variable (parent node) and terminating on the 
influenced variable (child node). The presence of links in the graph may represent the 
existence of direct dependency relationships between the linked variables (that some 
times may be interpreted as causal influence or temporal precedence). The absence of 
some links means the existence of certain conditional independency relationships 
between the variables.  

The strength of the dependencies is measured by means of numerical parameters 
such as conditional probabilities. Formally, the relation between the two nodes is 
based on Baye’s Rule[6]: 

)(
)()|()|(

BP
APABPBAP =

. (1) 

 
For each node A with parents B1, B2,…, Bn there is attached an NxM Node 

Probability Table (NPT), where N is the number of node states and M is the product 
of its cause-nodes states. In this table, each column represents a conditional 
probability distribution and its values sum up to 1. 

 

3.2 Methodology 

Building a BBN for a domain of application involves three tasks. The first of these is 
to identify the variables that are of importance, along with their possible values. The 
second task is to identify the relationships between the variables involved and to 



Bayesian Belief Networks as a Software Productivity Estimation Tool      5 

express them in a graphical structure. The last task in building a probabilistic network 
is to obtain the probabilities that are required for its quantitative part. For software 
productivity estimation all of the above tasks were performed in order to build a BBN. 

The data collection was already done by B.Boehm [2]. In COCOMO81 all 63 
projects were considered. Data cleaning was not necessary due to the well organized 
and carefully selected data. All the variables regarding the project, personnel, 
computer, and project attributes plus the software development mode, the language 
used, the application type of the project and the platform where the project was 
developed, participated in the calculations and their value can be assessed (up to some 
extend) before the completion of the project.  

The variables considered up to now are discrete, categorical, and therefore suitable 
for fitting into a BBN. A problem though arises in productivity that is a continuous 
variable, which needs to be quantified into discrete valued categories. The choice of 
the number of intervals and the width of each interval had to be defined.  The number 
of intervals may be selected automatically according to various rules that are 
proposed in the statistical literature, depending on the number of projects in the 
dataset and the variance of the actual productivity values, keeping in mind that the 
narrower the interval, the more useful the estimate is. Sturge’s rule [18] was taken 
into consideration for the determination of the number of the prediction intervals: 
 

nK log3.31+=  (2) 

 
where n is the number of records in the dataset (63). In this case K ≈ 6.9 ≈ 7. We 
wanted unequal intervals due to the log-normal distribution of productivity values. As 
a consequence, equal intervals of the logarithm of productivity were taken, classifying 
each project into one of these categories. The borders of the categories coming from 
the transformation of the logarithmic values to normal were not rounded but in order 
to make the intervals chosen appealing and easily identifiable by a human we rounded 
lower and upper limits without disturbing the distribution of projects into the 
statistically derived categories.  This method has an additional benefit: intervals grow 
progressively larger, so as to allow larger magnitude errors for higher productivity 
values. For the COCOMO81 dataset, productivity was counted in delivered source 
code per man month namely DSI, representing the size of the project, for which 7 
intervals were also devised. The productivity intervals are shown in (Table 6). 

Table 6. Predefined productivity intervals for the COCOMO81 dataset 

 
Interval 
number 

1 2 3 4 5 6 7 

Ln 
(productivity) 

≤ 
3.6 

3.6- 
4.18 

4.18- 
4.76 

4.76- 
5.34 

5.34- 
5.92 

5.92- 
6.5 

>6.5 

Productivity 
(DSI/MM) 

≤ 
30 

31-
65 

66-
110 

111-
200 

201-
375 

376-
650 

>650 

Number of 
projects 

3 7 10 14 15 8 6 
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The process continues with the automated definition of the structure of the network 

from the training data. For this purpose an heuristic algorithm was applied to the data 
[4]. 

The main problem was that this algorithm, apart from the values of the NPT tables, 
also defines automatically the structure of the BBN. Although this function is very 
useful for datasets with few fields, few categories for each variable and strong 
relationships among them, it tends to complicate things when the database includes 
several fields and many variable categories. In these cases, a very complex Bayesian 
Network arose where variables, which seemed so far independent, according to the 
algorithm were found dependent. The only directions that we can give to the 
algorithm are the order of the nodes, according to which the search of the parents for 
each node is done. The formula that is used for the construction of the BBN is the 
following, where D is a database of cases, Z is the set of variables represented by D 
and Bsi and Bsj are two Bayes network structures containing exactly those variables 
that are in Z: 
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A variable xi in Z has ri possible value assignment ( ), each variable xiirij vv ,......, i in 

Bs has a number of parents who are represented by a list of variables πi ,qi represents 
the unique instantiations of πi , wij denotes the jth unique instantiation of πi, Nijk is the 
number of cases in D in which variable xi has the value of vik and πi is instantiated as 
wij. Further details of k2 algorithm can be found in [4]. 

Although the suggested BBN from this algorithm indicated interesting 
relationships among variables, it needed further refinement and processing. Using our 
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intuition, some nodes were inserted and others were deleted especially in the case of 
productivity node.  

4 Results 

Before discussing the results, it is useful to define the accuracy metrics that will be 
used in order to compare and evaluate the results of the model. In particular, Mean 
Magnitude Relative Error will be used, defined as: 

 

∑
=

−
=

n

i i

ii

P
EP

n
MMRE

1

100
 

(6) 

 
  
where Pi is the actual productivity, Ei is the estimate and n is the number of projects. 
In the case of interval estimates, relative errors are calculated by considering the mean 
of the interval. 

Also,  will be used, i.e. the percentage of projects for which the 

prediction falls within the Y% of the actual value. In this study, we employ 
. 

)(YPRED

)25(PRED
For the evaluation of the models, will also be used [7], i.e. the percentage 

of projects for which the correct interval has been successfully estimated. Usually the 
validation of a model is done by removing one data point at a time from the dataset, 
recalculating the model and estimating the value of the project that was left out (this 
method is known as JackKnifing). Also in order to demonstrate the fitting of the 
model to the data, the same accuracy metrics are presented for the whole dataset 
(same training and validation data). 

hitrate

In the literature, desired values for MMRE and PRED(25) are 0.25 and 0.75 
respectively. However, such values are rarely produced by cost estimation studies 
because of the difficulty of the problem and the lack of suitable data. We consider that 
a reasonable desired value for hitrate may be 0.75.   

Initially, K2 algorithm [4] was applied to the data in order to have a suggestion of 
the structure of the model based totally on automated statistical analysis.  

The BBN that was extracted is presented in Figure 1 with the help of an open 
source tool [14]. 

Each node is accompanied by a number representing fitting hitrate. Algorithms 
searching for the structure of the model tend to reduce as possible the number of the 
parents of each node. Typically, up to 5 parents are accepted for each node. It is 
obvious that in most cases one parent is selected for each node. So in cases that the 
parent has approximately as many discrete values as the child node or more, hitrates 
are improved, estimating correctly the 3/5 of the projects according to the predicted 
attribute (VEXP, PCAP, TIME, CONT). In cases where two parents are considered 
(SCED, MODP, CPLX, MODE) hitrates are further improved, showing that when 
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more parents are considered more information is exploited for estimating the values 
of a particular node and as a result the estimation is more successful.  

 

 

Fig. 1. BBN derived from the original data 

 
In the case of the nodes representing DSI and productivity the results are not so 

impressive. Regarding productivity this result should be expected, considering the 
fact that productivity takes 7 discrete values unlike its parent (MODE), that takes only 
3 discrete values. According to the conditional probabilities for each discrete value of 
MODE, one productivity interval is more likely to be noticed in each case, so only 
three productivity categories are considered and projects belonging to other intervals 
are misclassified. The same explanation stands up for DSI.  

Especially for productivity, it is evident that the parent nodes should be enriched 
considering some additional nodes. The suggested parent node (MODE) remains. 
Application type is inserted as a parent node because from the structure it seems that 
it affects many relevant nodes affecting indirectly productivity. Also CPLX and 
PCAP are added as parent nodes as they are two of the most representative cost 
factors of the product and the programmers’ attributes correspondingly.  Various 
experimentations on the parent nodes indicated that this particular combination of 
parents was the most appropriate for distributing the projects into the right 
productivity interval, as projects with similar values in these attributes in many cases 
belong to the same productivity interval. The proposed alternative structure having 
productivity as an external node is presented in Figure 2. 

The change in the parent nodes of productivity does not affect the rest of the model 
due to the conditional independencies. In this model, more information is taken into 
account when estimating productivity and, as a result, the fitting of the model to the 
data, as well as its estimation accuracy are improved (Table 7). It should be 
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mentioned that in many cases a particular combination of parents were included only 
one time in the dataset so when Jackknifing the model was incapable of estimating 
many projects. However, for the rest 17 cases that can be estimated, it seems that the 
model classified correctly the majority of the projects. 
 

 
 

 

Fig. 2. Productivity node and its parents 

Table 7. Accuracy metrics regarding productivity 

 
Old  model New model Productivity Fitting Fitting Accuracy

Hitrate 0.34 0.92 0.7 
Pred(25) 0.33 0.81 0.7 
MMRE 0.98 0.19 0.32 

 

 
In the original COCOMO model, Mode is pointed out as an important factor that 

affects productivity, so it is crucial to find an automated way to assess its value 
according to the rest of the project attributes. The fitting of the model is satisfying but 
further improvement can be observed when adding the links shown in Figure 3. 

 

Fig. 3. MODE node and its parents 

 
 



10       

 
 In (Table 8) the fitting and the accuracy of the initial model and the processed one 

are presented. 
The results in both cases are competitive to the desired values mentioned above 

and indicate the ability of the BBN to classify correctly the majority of projects to a 
Mode category. For the estimation of Mode, the model was able to provide an 
estimation for the majority of projects, 41.  
 

Table 8. Accuracy metrics regarding MODE 

 
Old model New model MODE 

Fitting Accuracy Fitting Accuracy 
Hitrate 0.77 0.75 0.91 0.81 

 
 
In order to cope with the problem of the non-estimated projects, we decided to 

merge various discrete values of several attributes according to their frequencies and 
their vicinity. The merges that took place are shown in table 9 and left each attribute 
with three or four categories. 

Table 9. Merges of attribute values on COCOMO81 dataset 

 
Cat. (1) (2) (3) (4) 
RELY EL, VL L, N H, VH  
DATA L N,H VH, EH  
CPLX VL, L, N H, VH EH, SH  
TIME N H, VH EH, SH  
STOR N H, VH EH, SH  
VIRT L N H, VH  
TURN VL, L N H, VH  
ACAP SL, VL, L, N H VH, SH  
AEXP VL, L N H VH 
PCAP SL, VL, L N H, VH SH 
VEXP VL, L N H  
LEXP VL, L N H  
RVOL L N H,VH ,EH,SH  
MODP VL, L N,H VH, EH  
TOOL VL, L N H,VH, EH  

 
 
For this case the structure of the BBN is slightly different, many nodes and their 

parents remain the same, but also some changes and additional links are included, as 
can be seen in Figure 4. It is obvious that hitrates are improved in most cases, 
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showing that neighbour categories tend to have the same behaviour. It should be 
mentioned that also in the case of the merged data, when JackKnifing, the model still 
may not always provide an estimation. This time though 27 cases can be estimated. 

No further processing of Mode was considered necessary because the results and 
the efficiency of the method in the original data was satisfying, covering a great range 
of the parents’ value combinations. 

 

 

Fig. 4.  BBN extracted from the merged data 

 
Considering the same parent set as nodes as in the previous situation for the new 
model the accuracy metrics are the following (Table 10): 

 

Table 10.  Accuracy metrics for the merged data regarding productivity. 

 
Old  model New model Productivity Fitting Fitting Accuracy

Hitrate 0.47 0.86 0.55 
Pred(25) 0.42 0.76 0.55 
MMRE 0.96 0.26 0.44 
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5 Conclusions 

 
 

In this paper various Bayesian Belief Networks have been implemented and evaluated 
on COCOMO81 dataset. The accuracy of this method and its fitting to the data have 
been tested. Although no general conclusions can be drawn, some tentative remarks 
can be made on the suitability of the method, its advantages and drawbacks. 

The results coming from the application of BBN to the original COCOMO81 
dataset, combining automated statistical methods with expert judgement, are 
encouraging regarding the suitability of the method in the area of software cost 
estimation. Even with few attributes, it seems that the combination of the values of 
some attributes (CPLX, PCAP, MODE and application type) are capable of 
classifying correctly a project to a productivity interval. Although BBN is a method 
estimating intervals and should be evaluated exclusively with hitrate, it seems that 
even when they are forced to give a point estimate, taking the mean of each interval, 
their results can be considered satisfactory. Also when observing the internal nodes, 
that represent the attributes that characterize a project and the dependencies among 
them it seems that most of the links can be confirmed intuitively. In most links among 
nodes, fitting hitrates are over 60% and further improvement can be expected with the 
insertion of some additional links. Especially in the case of MODE the results of the 
fitting of the model, as well as the accuracy metrics are impressive and the suggested 
structure can have practical use.  

BBNs offer a convenient way to solve problems that are not explained logically but 
rather probabilistically [3]. Software cost estimation is one of these problems: we are 
not sure of the factors that affect productivity directly and we expect a support from 
statistical methods to point out the underlying relationships that appear in cost data. 

 Regarding the advantages of BBN we should mention their ability to combine 
expert knowledge with past historical, empirical cost data. Expert judgment becomes 
vital when partial or subjective information is provided about some of the important 
variables. Also expert knowledge can be used partially for the definition of the 
models structure, suggesting some factors that directly affect productivity.  

Also, it is important that BBNs express uncertainty in many ways. Firstly, by 
considering productivity intervals, allowing flexibility in the prediction and providing 
a best and a worst case scenario for productivity during the implementation of the 
project. Secondly, by assigning to each node a probability distribution given its 
parents values configuration allowing us to see the strength of each particular 
combination of values in the training dataset.   

BBNs can also integrate partial knowledge and data concerning a project in the 
form of observed values of some nodes. As a consequence, they can be used as 
backward reasoning tools in post-mortem analysis, as well as for what if analysis in 
order to explore the impact of changes among productivity factors and to productivity. 

In general, BBNs combine visual representation with a strong mathematical 
background (Bayes theory, Pearl’s polytree algorithm, Jensen’s junction trees). They 
are easily interpreted, as they are represented by dependence and independence 
relationships, two basic human notions. Their construction is fairly easy, although we 
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should pay some attention in the growth of the model that leads to the exponential 
growth of the probability matrices.  

An issue that deserves further attention is the fact that BBN may not cover all the 
cases that can appear. This undesirable situation occurs when the parent attributes of 
the new “unknown “ projects have not been met in the training dataset, so the method 
becomes incapable of making an estimation. It is reasonable to expect that this 
problem will diminish in large datasets. In any case, BBNs may be used in 
combination with another estimating method, when incapable of producing an 
estimate for a specific project. In software cost estimation this is common practice. In 
addition, BBNs present the usual drawback of all machine learning techniques, i.e. the 
possibility of over-specialization to the training data. For this reason, the sensitivity of 
the method to various parameters must be investigated in order to consolidate the 
obtained results.  

Further research needs to focus on confirming and evaluating these results on large 
multi-organizational datasets, such as those coming from ISBSG. The results in that 
case will be more indicative of the suitability of the approach. Another interesting 
idea is to provide a systematic, automated approach to combine expert knowledge and 
empirical data in order to produce the structure of the model, allowing at the same 
time the updating of the model.  
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