
Bayesian Belief Networks as a Software Productivity
Estimation Tool

S. Bibi, I. Stamelos, L. Angelis

Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki,

Greece
E-mails: {sbibi,stamelos,lef}@csd.auth.gr

Abstract. Defining the required productivity in order to complete successfully
and within time and budget constraints a software development project is
actually a reasoning problem that should be modelled under uncertainty. The
contribution of this paper is the analysis of the applicability of probabilistic
reasoning approaches, in particular Bayesian Belief Networks (BBN), to this
problem. BBNs are capable of discovering the dependencies and
independencies among the attributes of a project and defining the direct impact
of some of them on productivity. Uncertainty is depicted through the use of
estimate intervals and probabilities: the estimation is actually an interval within
which the productivity of a project is likely to fall in, with a certain probability,
considering both an optimistic and a pessimistic situation. The use of
predefined intervals is another important feature of the method, allowing the
control of the estimation process and the generation of meaningful intervals,
appealing and understood by software managers. The ability of the method to
classify correctly the rest of the attributes in one of their discrete values is also
tested, paying further attention on the software development mode. The method
is applied and evaluated on the widely known COCOMO81 dataset. The
evaluation shows that BBN is a promising method whose results can be
confirmed intuitively. BBN are easily interpreted, allow flexibility in the
estimation, can support expert judgment and create models considering all the
information that lay in a dataset by including all productivity factors in the final
model.

Keywords: Cost estimation, Bayesian Belief Networks, Predefined Intervals,
COCOMO.

1 Introduction

Estimating the Productivity of a Software development project remains a challenge
for the researchers. Despite the various methods proposed, unsolved questions and
problems justify further research and experimentation. The diversity of cost factors,
their unclear contribution to productivity and the lack of information in the early

2 S. Bibi, I. Stamelos, L. Angelis

stages of software development are the main components of the problem, classifying
it to probabilistic reasoning.

The most critical issue in this scientific endeavour is the agreement on the
constituent, pertinent elements of the problem. Classical methods demand simple
linear structures and a wealth of data often missing in software engineering. A
flexible and competitive method to the above methods is Bayesian Belief Networks
(BBN). Graphical models such as BBN have become attractive tools because of their
ability to efficiently perform reasoning tasks and to represent uncertainty in expert
systems [13]. The knowledge that they manage is in the form of dependence and
independence relationships, two basic notions in human reasoning.

BBNs deal with uncertainty in various ways. They manage to articulate expert
beliefs about the dependencies between different variables and to propagate
consistently the impact of evidence on the probabilities of uncertain outcomes. They
suggest a structure between the variables of a problem giving the possibility
according to the knowledge acquired to determine the starting point of the estimation.
Although BBNs can handle continuous variables this is rarely suggested due to
practical problems. As a consequence productivity values have to be quantified into
categories necessitating the estimation of productivity intervals. Intervals give a
pessimistic estimate (maximum value) and an optimistic estimate (minimum value)
between which the actual productivity of a project may fall in. With this approach,
both uncertainty and risk are considered, weighing the chance of events occurring and
the impact they might have. The intervals of productivity have to be pre-defined
before the estimate generation. This helps to control the estimation procedure,
distribute the projects in the training dataset as uniformly as possible into the various
productivity intervals and ensure that estimate intervals will not be too large.

Purpose of this study is to extract useful patterns from cost estimation data with the
help of BBNs and to provide some evidence of the prediction accuracy of this
technique. Also some conclusions will be drawn concerning the factors that tend to
affect productivity directly. An additional research target is the estimation of software
development mode based on the values of the rest of the projects attributes. The
method is applied on the widely known COCOMO81 dataset.

Studies regarding the use of BBNs in Software Engineering concern mostly
Software Quality [11], [20]. In Software Productivity Estimation one study is found
[16] where an empirical BBN, based on Boehm’s informal classification of
COCOMO cost factors was described. In general, various studies have been found
suggesting parametric models for software cost estimation, and for evaluating and
comparing various methods [1], [5], [8], [10], [15]. In particular some of them suggest
the estimation of intervals [7], [9], [17] and one the estimation of predefined intervals
[16]. Only one study [19] is found in the literature concerning the estimation of
Software development mode.

This paper starts with the description of the dataset in Section 2. Section 3 presents
briefly the estimation technique. Section 4 provides the results of BBN in the
COCOMO81 dataset. In Section 5, the advantages and disadvantages of BBN as well
as future work are discussed.

Bayesian Belief Networks as a Software Productivity Estimation Tool 3

2 Description of the dataset

The dataset that was used in this analysis is the COCOMO81 [2] dataset coming from
TRW defense systems. This dataset consists of 63 projects. A set of 17 attributes,
called cost drivers, that is considered to contribute to productivity, and as a
consequence to cost, is used in order to extract useful patterns. These attributes, based
also on the analysis of Kitchenham in [8], can take the following values: Super Low
(SL), Extra Low (EL), Very Low (VL), Low (L), Nominal (N), High (H),Very High
(VH), Extra high (EH), Super High (SH). The attributes used are shown in tables 1 to
4:

Table 1. Product attributes

RELY: Required software reliability.
DATA: Databases size.
CPLX: Product complexity

EL, V, L, N, H, VH
L, N, H, VH, EH
VL, L, N, H, VH, EH, SH

Table 2. Computer attributes

TIME: Constraints in the execution time.
STOR: Constraints in main memory.
VIRT: Availability of virtual machine.
TURN: Service cycle duration.

 N, H, VH, EH, SH
 N, H, VH, EH, SH
 L, N, H, VH
 VH, H, N, L, VL

Table 3. Personnel attributes

ACAP: Analysts capabilities.
AEXP: Analysts experience.
PCAP: Programmers capabilities.
VEXP: Virtual machine experience.
LEXP: Experience with the language

SH, VH, H, N, L, VL, SL
VH, H, N, L, VL
SH, VH, H, N, L, VL, SL
H, N, L, VL
H, N, L, VL

Table 4. Project attributes

CONT: Personnel’s continuity.
RVOL: Requirement’s volatility.
TOOL: Use of programming tools.
MODP: Use of modern programming practices
SCED: Time schedule

L, N, H
L, N, H, VH, EH, SH
EH, VH, H, N, L, VL
EH, VH, H, N, L, VL
LAX,N, COM,VCOM

Apart from these attributes, the programming language used (LANG), the platform

on which the project was developed (PLATFORM), the application type (A.T.) and

4 S. Bibi, I. Stamelos, L. Angelis

the software development mode (MODE) are also taken into consideration. These
attributes are shown in Table 5:

Table 5. Descriptive attributes

LANG
A.T.
PLATFORM
MODE

COBOL, FORTRAN, ADA etc
SCI, HMI, SYS, SUP, BUS
MIN, MAX, MID, MIC
EMBEDDED, SEMIDETACHED, ORGANIC

3 Bayesian Belief Networks

3.1 Modeling Technique

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), which are causal
networks that consist of a set of nodes and a set of directed links between them, in a
way that they do not form a cycle [12]. Each node represents a random variable that
can take discrete or continuous finite, mutually exclusive values according to a
probability distribution, which can be different for each node. Each link expresses
probabilistic cause-effect relations among the linked variables and is depicted by an
arc starting from the influencing variable (parent node) and terminating on the
influenced variable (child node). The presence of links in the graph may represent the
existence of direct dependency relationships between the linked variables (that some
times may be interpreted as causal influence or temporal precedence). The absence of
some links means the existence of certain conditional independency relationships
between the variables.

The strength of the dependencies is measured by means of numerical parameters
such as conditional probabilities. Formally, the relation between the two nodes is
based on Baye’s Rule[6]:

)(
)()|()|(

BP
APABPBAP =

. (1)

For each node A with parents B1, B2,…, Bn there is attached an NxM Node

Probability Table (NPT), where N is the number of node states and M is the product
of its cause-nodes states. In this table, each column represents a conditional
probability distribution and its values sum up to 1.

3.2 Methodology

Building a BBN for a domain of application involves three tasks. The first of these is
to identify the variables that are of importance, along with their possible values. The
second task is to identify the relationships between the variables involved and to

Bayesian Belief Networks as a Software Productivity Estimation Tool 5

express them in a graphical structure. The last task in building a probabilistic network
is to obtain the probabilities that are required for its quantitative part. For software
productivity estimation all of the above tasks were performed in order to build a BBN.

The data collection was already done by B.Boehm [2]. In COCOMO81 all 63
projects were considered. Data cleaning was not necessary due to the well organized
and carefully selected data. All the variables regarding the project, personnel,
computer, and project attributes plus the software development mode, the language
used, the application type of the project and the platform where the project was
developed, participated in the calculations and their value can be assessed (up to some
extend) before the completion of the project.

The variables considered up to now are discrete, categorical, and therefore suitable
for fitting into a BBN. A problem though arises in productivity that is a continuous
variable, which needs to be quantified into discrete valued categories. The choice of
the number of intervals and the width of each interval had to be defined. The number
of intervals may be selected automatically according to various rules that are
proposed in the statistical literature, depending on the number of projects in the
dataset and the variance of the actual productivity values, keeping in mind that the
narrower the interval, the more useful the estimate is. Sturge’s rule [18] was taken
into consideration for the determination of the number of the prediction intervals:

nK log3.31+= (2)

where n is the number of records in the dataset (63). In this case K ≈ 6.9 ≈ 7. We
wanted unequal intervals due to the log-normal distribution of productivity values. As
a consequence, equal intervals of the logarithm of productivity were taken, classifying
each project into one of these categories. The borders of the categories coming from
the transformation of the logarithmic values to normal were not rounded but in order
to make the intervals chosen appealing and easily identifiable by a human we rounded
lower and upper limits without disturbing the distribution of projects into the
statistically derived categories. This method has an additional benefit: intervals grow
progressively larger, so as to allow larger magnitude errors for higher productivity
values. For the COCOMO81 dataset, productivity was counted in delivered source
code per man month namely DSI, representing the size of the project, for which 7
intervals were also devised. The productivity intervals are shown in (Table 6).

Table 6. Predefined productivity intervals for the COCOMO81 dataset

Interval
number

1 2 3 4 5 6 7

Ln
(productivity)

≤
3.6

3.6-
4.18

4.18-
4.76

4.76-
5.34

5.34-
5.92

5.92-
6.5

>6.5

Productivity
(DSI/MM)

≤
30

31-
65

66-
110

111-
200

201-
375

376-
650

>650

Number of
projects

3 7 10 14 15 8 6

6 S. Bibi, I. Stamelos, L. Angelis

The process continues with the automated definition of the structure of the network

from the training data. For this purpose an heuristic algorithm was applied to the data
[4].

The main problem was that this algorithm, apart from the values of the NPT tables,
also defines automatically the structure of the BBN. Although this function is very
useful for datasets with few fields, few categories for each variable and strong
relationships among them, it tends to complicate things when the database includes
several fields and many variable categories. In these cases, a very complex Bayesian
Network arose where variables, which seemed so far independent, according to the
algorithm were found dependent. The only directions that we can give to the
algorithm are the order of the nodes, according to which the search of the parents for
each node is done. The formula that is used for the construction of the BBN is the
following, where D is a database of cases, Z is the set of variables represented by D
and Bsi and Bsj are two Bayes network structures containing exactly those variables
that are in Z:

(3)

),(
),(

)(
),(

)(
),(

)|(
)|(

DBP
DBP

DP
DBP

DP
DBP

DBP
DBP

Sj

Si

Sj

S

Sj

S

i

i ==

(4)

!
)!1(

)!1()(),(
11 1
∏∏∏
== = −+

−
=

ii r

k
ijkij

n

i

q

j iij

i
ss NN

rN
rBPDBP

(5) ∑
=

=
ir

k
ijkij NN

1

A variable xi in Z has ri possible value assignment (), each variable xiirij vv ,......, i in

Bs has a number of parents who are represented by a list of variables πi ,qi represents
the unique instantiations of πi , wij denotes the jth unique instantiation of πi, Nijk is the
number of cases in D in which variable xi has the value of vik and πi is instantiated as
wij. Further details of k2 algorithm can be found in [4].

Although the suggested BBN from this algorithm indicated interesting
relationships among variables, it needed further refinement and processing. Using our

Bayesian Belief Networks as a Software Productivity Estimation Tool 7

intuition, some nodes were inserted and others were deleted especially in the case of
productivity node.

4 Results

Before discussing the results, it is useful to define the accuracy metrics that will be
used in order to compare and evaluate the results of the model. In particular, Mean
Magnitude Relative Error will be used, defined as:

∑
=

−
=

n

i i

ii

P
EP

n
MMRE

1

100

(6)

where Pi is the actual productivity, Ei is the estimate and n is the number of projects.
In the case of interval estimates, relative errors are calculated by considering the mean
of the interval.

Also, will be used, i.e. the percentage of projects for which the

prediction falls within the Y% of the actual value. In this study, we employ
.

)(YPRED

)25(PRED
For the evaluation of the models, will also be used [7], i.e. the percentage

of projects for which the correct interval has been successfully estimated. Usually the
validation of a model is done by removing one data point at a time from the dataset,
recalculating the model and estimating the value of the project that was left out (this
method is known as JackKnifing). Also in order to demonstrate the fitting of the
model to the data, the same accuracy metrics are presented for the whole dataset
(same training and validation data).

hitrate

In the literature, desired values for MMRE and PRED(25) are 0.25 and 0.75
respectively. However, such values are rarely produced by cost estimation studies
because of the difficulty of the problem and the lack of suitable data. We consider that
a reasonable desired value for hitrate may be 0.75.

Initially, K2 algorithm [4] was applied to the data in order to have a suggestion of
the structure of the model based totally on automated statistical analysis.

The BBN that was extracted is presented in Figure 1 with the help of an open
source tool [14].

Each node is accompanied by a number representing fitting hitrate. Algorithms
searching for the structure of the model tend to reduce as possible the number of the
parents of each node. Typically, up to 5 parents are accepted for each node. It is
obvious that in most cases one parent is selected for each node. So in cases that the
parent has approximately as many discrete values as the child node or more, hitrates
are improved, estimating correctly the 3/5 of the projects according to the predicted
attribute (VEXP, PCAP, TIME, CONT). In cases where two parents are considered
(SCED, MODP, CPLX, MODE) hitrates are further improved, showing that when

8 S. Bibi, I. Stamelos, L. Angelis

more parents are considered more information is exploited for estimating the values
of a particular node and as a result the estimation is more successful.

Fig. 1. BBN derived from the original data

In the case of the nodes representing DSI and productivity the results are not so

impressive. Regarding productivity this result should be expected, considering the
fact that productivity takes 7 discrete values unlike its parent (MODE), that takes only
3 discrete values. According to the conditional probabilities for each discrete value of
MODE, one productivity interval is more likely to be noticed in each case, so only
three productivity categories are considered and projects belonging to other intervals
are misclassified. The same explanation stands up for DSI.

Especially for productivity, it is evident that the parent nodes should be enriched
considering some additional nodes. The suggested parent node (MODE) remains.
Application type is inserted as a parent node because from the structure it seems that
it affects many relevant nodes affecting indirectly productivity. Also CPLX and
PCAP are added as parent nodes as they are two of the most representative cost
factors of the product and the programmers’ attributes correspondingly. Various
experimentations on the parent nodes indicated that this particular combination of
parents was the most appropriate for distributing the projects into the right
productivity interval, as projects with similar values in these attributes in many cases
belong to the same productivity interval. The proposed alternative structure having
productivity as an external node is presented in Figure 2.

The change in the parent nodes of productivity does not affect the rest of the model
due to the conditional independencies. In this model, more information is taken into
account when estimating productivity and, as a result, the fitting of the model to the
data, as well as its estimation accuracy are improved (Table 7). It should be

Bayesian Belief Networks as a Software Productivity Estimation Tool 9

mentioned that in many cases a particular combination of parents were included only
one time in the dataset so when Jackknifing the model was incapable of estimating
many projects. However, for the rest 17 cases that can be estimated, it seems that the
model classified correctly the majority of the projects.

Fig. 2. Productivity node and its parents

Table 7. Accuracy metrics regarding productivity

Old model New model Productivity Fitting Fitting Accuracy

Hitrate 0.34 0.92 0.7
Pred(25) 0.33 0.81 0.7
MMRE 0.98 0.19 0.32

In the original COCOMO model, Mode is pointed out as an important factor that

affects productivity, so it is crucial to find an automated way to assess its value
according to the rest of the project attributes. The fitting of the model is satisfying but
further improvement can be observed when adding the links shown in Figure 3.

Fig. 3. MODE node and its parents

10

 In (Table 8) the fitting and the accuracy of the initial model and the processed one

are presented.
The results in both cases are competitive to the desired values mentioned above

and indicate the ability of the BBN to classify correctly the majority of projects to a
Mode category. For the estimation of Mode, the model was able to provide an
estimation for the majority of projects, 41.

Table 8. Accuracy metrics regarding MODE

Old model New model MODE

Fitting Accuracy Fitting Accuracy
Hitrate 0.77 0.75 0.91 0.81

In order to cope with the problem of the non-estimated projects, we decided to

merge various discrete values of several attributes according to their frequencies and
their vicinity. The merges that took place are shown in table 9 and left each attribute
with three or four categories.

Table 9. Merges of attribute values on COCOMO81 dataset

Cat. (1) (2) (3) (4)
RELY EL, VL L, N H, VH
DATA L N,H VH, EH
CPLX VL, L, N H, VH EH, SH
TIME N H, VH EH, SH
STOR N H, VH EH, SH
VIRT L N H, VH
TURN VL, L N H, VH
ACAP SL, VL, L, N H VH, SH
AEXP VL, L N H VH
PCAP SL, VL, L N H, VH SH
VEXP VL, L N H
LEXP VL, L N H
RVOL L N H,VH ,EH,SH
MODP VL, L N,H VH, EH
TOOL VL, L N H,VH, EH

For this case the structure of the BBN is slightly different, many nodes and their

parents remain the same, but also some changes and additional links are included, as
can be seen in Figure 4. It is obvious that hitrates are improved in most cases,

Bayesian Belief Networks as a Software Productivity Estimation Tool 11

showing that neighbour categories tend to have the same behaviour. It should be
mentioned that also in the case of the merged data, when JackKnifing, the model still
may not always provide an estimation. This time though 27 cases can be estimated.

No further processing of Mode was considered necessary because the results and
the efficiency of the method in the original data was satisfying, covering a great range
of the parents’ value combinations.

Fig. 4. BBN extracted from the merged data

Considering the same parent set as nodes as in the previous situation for the new
model the accuracy metrics are the following (Table 10):

Table 10. Accuracy metrics for the merged data regarding productivity.

Old model New model Productivity Fitting Fitting Accuracy

Hitrate 0.47 0.86 0.55
Pred(25) 0.42 0.76 0.55
MMRE 0.96 0.26 0.44

12

5 Conclusions

In this paper various Bayesian Belief Networks have been implemented and evaluated
on COCOMO81 dataset. The accuracy of this method and its fitting to the data have
been tested. Although no general conclusions can be drawn, some tentative remarks
can be made on the suitability of the method, its advantages and drawbacks.

The results coming from the application of BBN to the original COCOMO81
dataset, combining automated statistical methods with expert judgement, are
encouraging regarding the suitability of the method in the area of software cost
estimation. Even with few attributes, it seems that the combination of the values of
some attributes (CPLX, PCAP, MODE and application type) are capable of
classifying correctly a project to a productivity interval. Although BBN is a method
estimating intervals and should be evaluated exclusively with hitrate, it seems that
even when they are forced to give a point estimate, taking the mean of each interval,
their results can be considered satisfactory. Also when observing the internal nodes,
that represent the attributes that characterize a project and the dependencies among
them it seems that most of the links can be confirmed intuitively. In most links among
nodes, fitting hitrates are over 60% and further improvement can be expected with the
insertion of some additional links. Especially in the case of MODE the results of the
fitting of the model, as well as the accuracy metrics are impressive and the suggested
structure can have practical use.

BBNs offer a convenient way to solve problems that are not explained logically but
rather probabilistically [3]. Software cost estimation is one of these problems: we are
not sure of the factors that affect productivity directly and we expect a support from
statistical methods to point out the underlying relationships that appear in cost data.

 Regarding the advantages of BBN we should mention their ability to combine
expert knowledge with past historical, empirical cost data. Expert judgment becomes
vital when partial or subjective information is provided about some of the important
variables. Also expert knowledge can be used partially for the definition of the
models structure, suggesting some factors that directly affect productivity.

Also, it is important that BBNs express uncertainty in many ways. Firstly, by
considering productivity intervals, allowing flexibility in the prediction and providing
a best and a worst case scenario for productivity during the implementation of the
project. Secondly, by assigning to each node a probability distribution given its
parents values configuration allowing us to see the strength of each particular
combination of values in the training dataset.

BBNs can also integrate partial knowledge and data concerning a project in the
form of observed values of some nodes. As a consequence, they can be used as
backward reasoning tools in post-mortem analysis, as well as for what if analysis in
order to explore the impact of changes among productivity factors and to productivity.

In general, BBNs combine visual representation with a strong mathematical
background (Bayes theory, Pearl’s polytree algorithm, Jensen’s junction trees). They
are easily interpreted, as they are represented by dependence and independence
relationships, two basic human notions. Their construction is fairly easy, although we

Bayesian Belief Networks as a Software Productivity Estimation Tool 13

should pay some attention in the growth of the model that leads to the exponential
growth of the probability matrices.

An issue that deserves further attention is the fact that BBN may not cover all the
cases that can appear. This undesirable situation occurs when the parent attributes of
the new “unknown “ projects have not been met in the training dataset, so the method
becomes incapable of making an estimation. It is reasonable to expect that this
problem will diminish in large datasets. In any case, BBNs may be used in
combination with another estimating method, when incapable of producing an
estimate for a specific project. In software cost estimation this is common practice. In
addition, BBNs present the usual drawback of all machine learning techniques, i.e. the
possibility of over-specialization to the training data. For this reason, the sensitivity of
the method to various parameters must be investigated in order to consolidate the
obtained results.

Further research needs to focus on confirming and evaluating these results on large
multi-organizational datasets, such as those coming from ISBSG. The results in that
case will be more indicative of the suitability of the approach. Another interesting
idea is to provide a systematic, automated approach to combine expert knowledge and
empirical data in order to produce the structure of the model, allowing at the same
time the updating of the model.

References

1. L.Angelis, I.Stamelos, A Simulation Tool for Efficient Analogy Based Cost Estimation,

Empirical Software Engineering 5,35-68 (2000)
2. B.Boehm, Software Engineering Economics, Prentice-Hall: Englewood Cliffs, N.J, 1981
3. E.Charniak, “Bayesian Networks without Tears”, AI Magazine 1991.
4. G.Cooper, E.Herskovits , “A Bayesian Method for the Induction of Probabilistic Networks

from Data”, Machine Learning 9, 1992
5. A.Heiat, Comparison of artificial neural network and regression models for estimating
 software development effort, Information and Software Technology 44(2002) pp.911-922.
6. F.Jensen, Bayesian Networks and Decision Graphs, Springer, 2002.
7. M.Jorgensen, An effort prediction interval approach based on the empirical distribution of

previous estimation accuracy, Information and Software Technology 45 (2003)123-126.
8. B.Kitchenham, A procedure for analyzing unbalanced datasets, IEEE Transactions on

Software Engineering, 24, 4(April 1998),pp278-301.
9. B.Kitchenham , S.Linkman , Estimates, uncertainty and risk, IEEE Software14 (3) ,1997, pp

69-74.
10 K.Maxwell, L.Briand, K.Emam, D.Surmann, I.Wieczorek, An Assessment and Comparison
 of Common Software Cost Estimation Modeling Techniques, Proceedings of the 22nd

International Conference on Software Engineering ,ICSE 2000,Limerick,2000, pp.377-386.
11 M.Neil, N.Fenton, Predicting Software Quality using Bayesian Belief
 Networks,Proceedings of the 21st Annual Software Engineering Workshop ,1996,
12. J.Pearl, “Causality”, Cambridge University Press, 2000.
13. J.Pearl, “Probabilistic Reasoning in Expert Systems :Networks of Plausible Inference.San
 Mateo, Calif.:Morgan Kaufmann.
14. SERENE Home, http://www.hugin.dk/serene.
15. K.Srinivisan, D.Fisher.Machine learning approaches to estimating software development
 effort, IEEE Transactions on Software Engineering,21,2 (February 1995),pp. 126-137.

14

16. I.Stamelos, L.Angelis, P.Dimou, E.Sakellaris, On the use of Bayesian belief networks for
 the prediction of software productivity, Information and Software Technology 45 (2003)
 51-60.
17. I.Stamelos, L.Angelis, Managing uncertainty in project portfolio estimation, Information
 and Software Technology 43 (13),2001, pp 759-768.
18. H.Sturge , The choice of Class Interval, Journal of American Statistical Association(1926)
 , pp 65-66.
19. G.Subramanian, An Empirical Examination of Software Development Modes, J.Systems
 Software.
20. H.Ziv, D.Richardson, Constructing Bayesian-network Models of Software Testing and
 Maintenance Uncertainties, Proceedings of the International Conference on Software
 Maintenance,1997.

	References

