
Knowledge Acquisition during Software
Development: Modeling with anti-patterns.

Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

Abstract Knowledge is a strategic resource; that should be timely acquired and
exploited to manage and control software development. Software development is
a knowledge intensive process characterized by increased uncertainty, presenting
large variations among different development environments. Project uncertainty and
volatility confounds the traditional knowledge-based processes since at any time tra-
ditional software project management techniques and patterns may be considered
out of scope. In this chapter a dynamic and constantly adaptive knowledge encap-
sulation framework is presented. This framework analytically describes a) metric
collection methods along with metrics that attribute to knowledge creation regard-
ing successful software development b) representation mechanisms of the knowl-
edge created in the form of anti-patterns c) Bayesian Network analysis technique
for converting the data to knowledge allowing inference mechanisms for testing the
applicability of the anti-pattern. The presented approach is demonstrated into a case
study showing both its feasibility and applicability.

1 Introduction

Software development is a cross-disciplinary cognitive activity requiring knowl-
edge from several different domains (Terry and Wayne 2005). Human knowledge-

Paraskevi Smiari
Department of Informatics & Telecommunications Engineering, University of Western Macedo-
nia, Greece, e-mail: psmiari@uowm.gr

Stamatia Bibi
Department of Informatics & Telecommunications Engineering, University of Western Macedo-
nia, Greece, e-mail: sbibi@uowm.gr

Ioannis Stamelos
Department of Computer Science, Aristotle University of Thessaloniki, Greece, e-mail: stame-
los@csd.auth.gr

1

2 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

creating activities and past experience should contribute to the constantly evolving
software development knowledge base according to Davenport et al. (Davenport and
Prusak 2000). The key to systematic software development and process improve-
ment is the decent management of knowledge and experience. Many techniques
(Shepperd et al. 1996), (Lucia et al. 2005) have been applied to manage knowledge
regarding software development in order to improve aspects of the whole process
such as, cost estimation and project management, fault identification and quality
of the outcome. These aspects are compound by vulnerabilities such as changing
requirements, team dynamics and high staff turnover (Aurum et al. 2003).

Capturing and representing software project management knowledge while cater-
ing for its evaluation are some of the mechanisms of great importance. This book
chapter provides a framework for effectively capturing the knowledge created dur-
ing software development. This framework consists of three distinct phases:

• The first phase includes the data collection process that could attribute to knowl-
edge creation. Adopting the appropriate qualitative and quantitative data collec-
tion approaches is of major importance for capturing the relevant information.

• The second phase is related to transforming the information and data collected
from the previous step in the form of anti-patterns. Each anti-pattern represents
a management problem and will be described as a set of symptoms, suggested
solutions and identification factors.

• The final phase includes the representation of the anti-patterns created in the
form of a Bayesian Network (BN) in order to be able to proceed to the validation
process of the derived knowledge.

The final output of this framework will be an anti-pattern knowledge base in the
form of Bayesian Networks available to managers and developers that can serve as
a management toolkit.

Software project management anti-patterns propose frequently occurring solu-
tions (Brown et al. 2000) to problems that have to do with flawed behavior of man-
agers or extensive management practices that prevent a software project from suc-
cessful (Laplante and Neil 2006) implementation. Nonetheless, the documentation
of anti-patterns is conducted using informal or semi-formal (Eloranta et al. 2016)
structures that do not readily encourage the reusability and sharing of knowledge.
In addition, the number of defined anti-patterns and the number of printed documen-
tation is expanding to the point that it becomes difficult for it to be effectively used.
Thus better structured anti-pattern representations are required in order for them to
become a widespread practice.

By applying the BN (Settas et al. 2006) representation formalism to anti-patterns
we can gain useful insight about the knowledge created during software develop-
ment and also perform post mortem analysis. The BN model offers a convenient
mechanism to model and disseminate knowledge regarding software management
anti-patterns which incorporates uncertainty. Re-factorings proposed by the anti-
patterns can be tested to view their reflection to the process. The suggested model
can be used by project managers to illustrate the effect of an anti-pattern solution in
the process.

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 3

In order to reinforce the applicability of the proposed framework a case study
is presented that exemplifies the process of creating the anti-pattern BN models. In
particular, we use as a pilot the “BENEFIT” project, an ambitious, highly innova-
tive cross disciplinary crowd-sourcing platform for tourism marketing, where the
“tech-aware” anti-pattern was actually formulated and assessed. In brief the prob-
lem that BENEFIT project was faced from the early stages of implementation was
that there were many technical conflicts and disagreements that inhibited project
progress. Four new metrics were introduced that described better the development
status namely: team synthesis, organizational structure, project integration and prod-
uct innovation. The “tech-aware” anti-pattern was then formulated to test the impact
of changing the organizational structure in order to better monitor technical con-
flicts.

This paper is organized as follows: section 2 describes analytically the three steps
of the knowledge based framework providing guidelines for acquiring and model-
ing the knowledge in the form of BN anti-pattern models. Section 3 presents the
BENEFIT case study were the three steps of knowledge acquisition and assessment
are exemplified. Finally, in section 4, we conclude the chapter and summarize the
knowledge acquisition framework.

2 The Knowledge Acquisition Framework

In this section, we present the framework that is suggested for guiding the process
of acquiring knowledge during software development. The framework consists of
three distinct phases a) collecting data during development b) modeling the data in
the form of anti-patterns c) representing the anti-pattern with the appropriate BN
model and assessing its applicability. Therefore, in Section 2.1 possible methods for
collecting data along with the relevant metrics that can be valuable in assessing a
software process are presented, in Section 2.2 the representation formalism of anti-
patterns is described and in Section 2.3 the Bayesian Networks method is presented.

2.1 Collecting the relevant data

In this section we describe the methods that can be used to acquire the relevant
data that can help us realistically capture the software development status quo of
a team. Additionally possible sources of data and metrics are recorded in order to
offer practitioners a library of metrics that can help in acquiring knowledge relevant
to software development processes.

4 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

2.1.1 Data collection methods

In this section two complementary types of data collection methods will be pre-
sented namely qualitative and quantitative methods (Fenton and Bieman 2014). Both
of these methods can be used to record primary data, data coming directly from the
source (respondents, activities logged, crowd sourcing, etc.) or secondary data, his-
torical data that come from experiments, aggregations and measurements.

Data collection approaches for qualitative research usually involve direct inter-
action and contact of the observer with the key individuals or groups whose opinion
is considered valuable. Among the qualitative methods we can find a) interviews b)
participant observation c) focus groups d) questionnaires/testing.

Interviews, which can be structured, semi-structured or unstructured are used
to collect experience, opinion and emotions of the interviewee. A software project
manager, formally or informally, “interviews” the members of the development team
and holds the behavioral aspects of the responses. It should be mentioned that from
the interviews large amount of data can be derived that can provide the “beat” of
the development team. These data are rich, provide a wealth of information com-
ing from the primary actors of the development process but due to their intangible
nature remain often unrecorded and therefore unexploited. Focus groups method
actually is a form of observation of a group of people that can interact and exchange
opinions letting us gain useful insight regarding the participants’ behavior and at-
titude. On the other hand modern paradigms of this method include data coming
from online social networking platforms such as company blogs, employees’ face-
book, collaborative development tools, etc. Participant observation involves the
intensive involvement of the observer with the software development team. Finally
questionnaires, is among the most common methods to collect data that records
the opinion of the respondents in the form of answers that can be unstructured or
calibrated in a certain scale. In the case of software development process we should
mention that interviews in the form of discussions, focus groups as blogs and collab-
orative tools and short questionnaire completion during and after the development
of a project could provide a valuable source of data.

Quantitative methods on the other hand are less personalized and more unbiased.
Among quantitative methods we can find a) surveys/polls b) automatic collection of
data. Surveys are like questionnaires but they are completed anonymously, usually
without personal contact and usually involve a large sample. In the case of project
development teams that would mean that a survey could be an anonymous evalua-
tion of certain aspects of the process during or after the completion of the project.
Automatic methods may include direct data coming from systems that monitor
or aid the development process and record information regarding the development
progress (log files, nof active members, number of teleconference held etc.). Quan-
titative methods are more accurate and present greater objectivity compared to qual-
itative methods. Still both types of data collection methods are required since both
human perceptions and numerical descriptions are necessary for fully recording the
status of a software development process.

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 5

2.1.2 Software development metrics

Since software development process can present significant deviations compared to
the traditional models found in literature (Dalcher et al. 2006) being able to identify
the relevant metrics that will help us monitor, assess, update and finally improve a
process is very crucial. The classical 4 Ps in software project management, people,
product, process and project (Fenton and Bieman 2014) can help us identify the
relevant metrics that can better describe the software process.

Metrics regarding the stakeholders of a software development project are neces-
sary to address the coordination and cooperation efficiency of the team. Among the
groups of people that affect the team efficiency are the senior manager, the project
manager, the development team with all discrete roles (analyst, programmer, tester),
the customer and the end-users. Metrics that can describe the efficacy of each role
are presented in table 2.1. Typical examples of metrics describing the people in-
volved in software development are those expressing the experience of the team
(analysts’ capabilities, familiarity with the application domain). Cultural character-
istics also affect the performance of a team as well organized teams whose leader-
ship encourage communication and knowledge exchange offering rewards are more
productive compared to impersonal teams. User and customer involvement is also
appointed by recent studies as a critical success factor of software projects. There-
fore, customer participation and end user involvement are among the parameters
that need to be quantified.

Table 2.1 People Drivers

People Drivers Driver Metric

Experience Analysts capabilities 1-5 Scale
Programmers experience 1-5 Scale
Familiarity with the problem domain 1-5 Scale

Cultural issues Reward mechanisms 1-5 Scale
Collaboration 1-5 Scale
Capable leadership 1-5 Scale

Stakeholders participation Customer participation 1-5 Scale
End-user involvement 1-5 Scale

Measurement of process attributes is important for establishing a baseline for
assessing improvements and identifying possible process flaws. All methods, tech-
niques, tools and supplements that may be used to support the development pro-
cess should be quantified and recorded in order to be able to measure the efficiency
of the development process. Among these attributes the use of CASE (Computer
Aided Software Engineering) tools, the utilization of models, techniques and stan-
dards are the main aspects that define the level of support and observation of the
development procedure. Following a well-defined and guided process customized
to each company needs is crucial for delivering quality software within time and
budget constraints. To achieve this target the process should be constantly measured

6 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

and improved to reach the quality goals of the company. Table 2.2 presents process
drivers.

Table 2.2 Process Drivers

Process Drivers Driver Metric

Use of Case Tools Versioning tools % of usage
Analysis & Design Tools % of usage
Testing Tools % of usage

Management Process Use of lifecycle models Yes or No
Managed development Schedule 1-5 Scale

Methodologies Existence of best practices 1-5 Scale
Software Reuse % of the total LOC

Project attributes related to a software project include relevant variables that
describe the type and the size of the project. The aggregation of project variables of-
fers an indicator of the complexity of the project preparing the management for the
risks and difficulties that may appear. Project attributes can be descriptive variables
referring to the development type of the project, the application type and the user
type of the application. Size attributes can be an initial assessment of functional re-
quirements measured in function points or at later stages in the development process
measured as Lines of Code (Boehm 1981). Table 2.3 summarizes project drivers.

Table 2.3 Project Drivers

Project Drivers Driver Metric

Type of project Application Type ERP, Telecom, Logistics, etc.
Business Type Medical, Public Sector, Transports,

Media, etc.
Development Type New Development, Re-development,

Enhance
User type Level of usage Amateur, Professional, Casual

Number of Users 1-50, 50-200, 200-1000, >1000
Size Source Code Lines Lines of Code (LOC)

Function Points Number of Function Points

Product attributes are constraints imposed on the software by the hardware plat-
form and the utilization environment. Such constraints include run-time perfor-
mance, memory utilization, performance standards and transaction rates. Table 2.4
summarizes product metrics.

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 7

Table 2.4 Product Drivers

Product Drivers Drivers Metric

Technical attributes Distributed Databases 1-5 Scale
On-line Processing 1-5 Scale
Data communications 1-5 Scale
Back-ups 1-5 Scale
Memory constraints 1-5 Scale
Use of new, immature technologies 1-5 Scale

Non-functional requirements Reliability 1-5 Scale
Performance 1-5 Scale
Installation Ease 1-5 Scale
Usability 1-5 Scale
Security 1-5 Scale

2.2 Forming the anti-pattern

A project manager needs to ensure that the management of the 4 Ps as described
earlier is carried out effectively without any arising issues. In the occurrence of
these issues, anti-patterns play a significant role due to their ability to describe com-
monly occurring solutions to the problems that lead to undesired results (Brown
et al.2000), (Stamelos 2010). Anti-patterns propose re-factored solutions that can
combat problems with reference to flawed behavior of managers or pervasive man-
agement practices that constrain a software project from being successful (Laplante
and Neil 2006). Any reader who is not acquainted with anti-patterns can start with
(Brown et al.2000), (Laplante and Neil 2006) as introductions to the matter.

Table 2.5 Pattern “Is Five the Optimal Team Size” central concept

Name “Is Five the Optimal Team Size?”
Central Concept It is agreed by most Agilists that smaller teams can be more functional and

productive in comparison to larger teams.
The definition of the optimal team size is, however, still a challenge. In order
to produce more code, large teams are still being used. Nonetheless, a team
size of 5 [Hazrati 2009] seems to satisfy all the conditions related to Scrum
recommendations, Parkinson’s Law, natural limit of short term memory and
favorable communication channels.
Software managers neglect to comprehend the influence of organizational
and environmental matters on choosing the ideal team size.

Dysfunction This anti-pattern is available to the board of managers or the software project
manager, who picked the amount of an agile team without taking into ac-
count the characteristics of the organization and/or the software project.

Explanation The purpose of this anti-pattern is the decision that the optimal team size is
a team of 5 or a large team in order to produce more code.

One way, to identify potential problems and provide a refactored solution in a
practical and reusable manner, is by capturing and representing tacit knowledge in

8 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

the form of an anti-pattern template. An anti-pattern template (Laplante and Neil
2006) is an informal presentation of the anti-pattern that depicts the management
dysfunction and the remedies for all those engaged. The anti-pattern template car-
ries out insight into the causes, symptoms, consequences and identification of the
problem suggesting band-aids and refactoring. For example in Table 2.5 the en-
coding of the problems related with choosing the optimal agile team size is done
by the “Is Five the Optimal Team Size?” anti-pattern (Hazrati 2009) (Table 2.6).
The anti-pattern is described by a central concept, the dysfunction that it presents, a
short explanation of the causes of the problem, a band-aid that suggests a short-term
solution strategy, self-repair mechanisms for selecting the appropriate solutions, re
factoring solutions and finally identification questions that will help a manager ver-
ify whether his team is suffering from the particular anti-pattern.

Table 2.6 “Is Five the Optimal Team Size” anti-pattern refactoring

BandAid No band aid exists for this anti-pattern. No short term management strategy
can be used to handle this problem.

SelfRepair Project managers need to consider the environmental and organizational
concerns that influence the ideal team size. They should start by identifying
key issues that influence the success of a software project given the chosen
team size.

Refactoring It is important that before determining the size of an agile team.
Software project managers should first determine the concerns that influence
the optimal team size and how these concerns affect the progress of the
project. Software managers have to accept that there is no generic team size
that can be used for all agile projects and that each project has exclusive
characteristics that need to be taken into account. Management needs to look
out for the team location (collocated or not), the organization size, iteration
length, and the existence of offshoring teams. Past project data can be used
to detect how different team sizes behave in the same company. This will
grant managers help to calculate the impact of the chosen team size on the
success of the project.

Identification The following questions should be answered with a “Yes” or “No”.

- Has the organization used the same agile team size repeatedly?
- Does the agile project manager always use a team size of 5?
- Does the agile project manager always use a large team size?

If you responded “Yes” to one or more of these statements, your organiza-
tion is probably suffering from “Is Five the Optimal Team Size?”

2.3 Modeling the anti-patterns with Bayesian Networks

In this section we present the Bayesian Network Models background theory (Jensen
2001) and provide a short example coming from the project management domain.
Bayesian Network models known also as Bayesian Belief Networks are casual net-

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 9

works that form a graphical structure. These graphical structures consist of nodes
and links between those nodes without, however, forming a cycle with each other.
This is the reason why they belong in the Directed Acyclic Graphs (DAGs) family
and these graphical structures are popular in the fields of statistics, machine learn-
ing, artificial intelligence and are used to handle uncertainty in software develop-
ment application domains as process modeling (Bibi and Stamelos 2004), (Bibi et
al. 2014), (Fenton et al. 2004), defect prediction (Okutan and Yildiz 2014) and cost
estimation (Khodakarami and Abdi 2014),(Stamelos et al. 2003). Specifically, each
node represents a random variable that has a finite set of mutually exclusive states.
Furthermore, each link represents probabilistic cause-effect relations between the
linked variables.

This type of network is used to track how a change of certainty in one variable
can cause an effect on the certainty of other variables. The relation that links the two
nodes can be seen on Bayes’ rule:

P(A|B) = P(B|A)P(A)
P(B)

For each node A with parents B1, B2,... ,Bn there is attached an NxM Node Prob-
ability Table (NPT), where N is the number of node states and M is the product of
its cause-nodes states. In this table, each column represents a conditional probability
distribution and its values sum up to 1.

Example

In Figure 2.1 we present a simple BN model were two nodes “Mixed Personality”
and “Design Correctness” affect the node “Development Time”. Mixed Personality
is an indicator of heterogeneous developer personality and its states are Yes or No.
The Design Correctness measures the points in 1-10 scale, obtained by each pair for
all the tasks and is divided in two categories, False for points below 5.4 and True for
points above 5.4. The Development Time indicates the total time that took the pair
to complete the tasks and it is divided in two categories, Low for total time below
90 minutes and High for total time above 90 minutes.

The BN model contains 3 variables and 2 connecting links. We have one con-
verging variable connection. In a converging connection if nothing is known about
Development Time except what may be inferred from knowledge of its influenc-
ing variables (parents) Mixed Personality and Design Correctness, then the parents
are independent. This means that evidence on one of them has no influence on the
certainty of the others. If Development Time changes certainty, it allows communi-
cation between its parents.

Specifically, if Mixed Personality is Yes and Design Correctness is True, then
there is a 20% probability that the Development Time will be Low and 80% proba-
bility that it will be High.

10 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

Fig. 2.1 A BN example for modeling “Development Time”

Table 2.7 Node Probability table for the BN model of figure 2.1.

Mixed Personality Yes No
Design Correctness True False True False

Development time Low 0.2 0.7 0.8 0.4
High 0.8 0.3 0.2 0.6

3 The Case Study

This section exemplifies the framework of section 2 by presenting an actual case
where the knowledge acquired during software development were modeled in the
form of anti-pattern to be diffused and assimilated into new projects. In this sec-
tion we will describe analytically the software development project under study. In
section 3.2 we will present the data that were collected during development, in sec-
tion 3.3 the new anti-pattern model and in section 3.4 the knowledge-based models
representing the proposed anti-pattern.

3.1 CASE STUDY: The BENEFIT Platform

The BENEFIT Platform was designed to provide a solution catering to arise brand
marketing, awareness and advertising capability of the tourism sector by provid-
ing an on-line company platform that will offer (a) specialized marketing toolkits
available to the wider public, (b) advanced crowdsourcing tools to process tourism
experience and review data in order to extract and present collective knowledge,
(c) advanced forecasting models exploiting the tourism market sentiment to iden-
tify market trends and threats, (d) novel personalized recommendation systems to
support marketing decisions according to the company’s profile.

The project was funded by a Greek local tourism association in order to promote
the tourism marketing of the area and arise awareness of the local tourism business
sector regarding the arising trends of crowd- sourced tourism innovations. BEN-

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 11

EFIT was an ambitious project and involved the participation of 5 partners with
different backgrounds, the first partner (Partner 1) was a university department spe-
cializing in the area of Marketing and Business Administration, the second partner
(Partner 2) was a university department specializing in Informatics, the third part-
ner (Partner 3) was a Web Company specialized in crowd sourcing applications,
the fourth partner (Partner 4) was an on-line marketing company and Partner 5 was
the Greek local tourism association. Partner’s 1 role was to suggest marketing and
socioeconomic models to predict market trends based on the data provided by the
crowdsourcing tools, Partners 2 and 3 were responsible for designing and imple-
menting the BENEFIT platform. Partner 4 and Partner 5 would pilot the platform
and perform usability tests. All partners were responsible for providing initially the
requirements of the BENEFIT platform and defining user stories to be implemented.

For the development of the project three distinct Committees were defined that
would manage the development of the BENEFIT platform a) the Project Coordi-
nation Committee b) the Work packages committees and c) The Quality Assurance
Management Committee. The Project Coordination Committee, consisting of repre-
sentatives of all partners, was the principal management authority of the BENEFIT
project having the final steering and controlling commitment to the project, making
decisions on contractual, administrative and technical matters attempting to ensure
timeliness and cost effectiveness. The Work Packages Committees was one for each
work package and consisted of representatives from partners participating in each
work package and were responsible for the monitoring the progress of each WP.
The Quality Assurance Management Committee, including representatives from all
partners, were responsible for providing internal quality assurance guidance to the
BENEFIT project, outlining the policies, the purpose, the organization, the proce-
dures and the responsibilities related to ensuring high quality performance of all
activities and also collecting metrics for measuring and improving the process de-
velopment.

3.2 Data collection

The Quality Assurance Committee (QAC) due to the fact that the same partners
had a long series of projects in which they cooperated was determined to collect
data and metrics that would help in the direction of improving the development and
implementation process. Therefore from this project and on they decided to create
a repository of anti-patterns coming from the “lessons-learned” during each project
development (Silva et al. 2015) summarizing the knowledge created by past projects
into the form of anti-patterns and adding also new knowledge created during the
development of the BENEFIT implementation.

The QAC team decided that extra metrics would be important to better describe
the complexity and specialty of BENEFIT project. Several additional metrics were
recorded as the team synthesis, the structural organization, the tools integration com-

12 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

Table 3.1 The new metrics collected for the BENEFIT project

Metric Type Explanation Possible Values

Team synthesis People This metric depicts the appropriate-
ness of the team synthesis. Comple-
mentary teams consist of members
with complementary skills that can
work towards a certain direction, het-
erogeneous teams consist of members
that have diverse orientation and ho-
mogeneous teams consist of members
possessing the skills on the same do-
main.

Complementary teams
Heterogeneous teams
Homogeneous teams

Structure Organi-
zation

Process Represents the organizational struc-
ture of the team emphasizing on
whether the leader-ship is performed
by a management committee, a tech-
nical committee or a combination of
the two

Management Committee
(M)
Technical Committee (T)
Combination (M+T)

Project Integra-
tion

Project The cost of integrating different tools
in a single application.

Low
Average
High values
(depending on the inte-
gration complexity and
time required.)

Product innova-
tion

Product Product innovation expresses the dif-
ficulty to perform to meet the require-
ments of an innovative application in
our case is the importance of produc-
ing accurate estimation results fore-
casting behaviors on the tourism do-
main

Low
Average
High values
(depending on the level
of innovation required.)

plexity and the product innovation. These parameters are analytically described in
table 3.1 and provided the key to form the anti-pattern presented in section 3.3.

3.3 The “tech- aware manager” anti-pattern

Due to the technical problems the QAC decided to form a Technical Management
Committee who would be responsible for the overall technical management of the
project, monitoring the advances performed, ensuring effective coordination of work
packages and timely knowledge exchange. The QAC team formed the “tech-aware”
antipattern as presented in tables 3.2 and 3.3 to depict the necessity of the Technical
Management Committee.

The TMC assesses at first-level progress reports, resolve any internal technical
conflicts between work packages and plans resources re-allocation if required. The

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 13

Table 3.2 Pattern “tech- aware” central concept

Name “tech-aware”
CentralConcept The manager of a software development project should

possess leadership competencies and abilities to motivate,
inspire and encourage the development team, regardless
whether he possess technical competencies or not. That is
true still that depends on the technical complexity of the
project under development. On the other hand is a techni-
cal manager enough to lead a complex software application
development? May be only in projects with small develop-
ment teams?

Dysfunction This anti-pattern is attributable to the project management
board that cannot solve technical problems. Symptoms are:

1. Disagreements regarding technical issues
2. Conflicts in the allocation of resources
3. Difficulty in system integration
4. Limited knowledge dissemination between work pack-

ages

Explanation The cause of this anti pattern is the fact that no technical
experts have been formally appointed to monitor develop-
ment progress and solve technical conflicts.

TMC members maintain a constant communication via audio/video conferencing,
emails and schedule regular meetings every 3 to 4 months. The TMC consisted
of the Project Coordinator and the Work Package Technical representatives and is
chaired by the Technical Manager. The Technical Manager was a senior technical
member of the team and was enrolled to lead the technical activities of the project,
organize the TMC meetings, prepare the agenda, keep and share the minutes.

After this change in the project organizational structure the development of BEN-
EFIT proceeded without conflicts and internal disagreements as the TMC monitored
the development progress and mitigated any technical risks that occurred.

14 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

Table 3.3 The “tech- aware” anti-pattern refactoring

Band-Aid Form a technical management committee that will contain
representatives that possess technical knowledge from all
conflicting stakeholders. Appoint a technical manager re-
sponsible for taking decisions.

Self-Repair Project managers should examine technical complexity of
a project and its size during the early stages of develop-
ment. If they feel that their technical background is limited
within the scope of the project severity they need to form a
technical committee.

Refactoring It is essential that before deciding on the organizational
structure and management of a project to assess the unique
characteristics of the application under development.
Software project managers should first identify among oth-
ers the technical issues that may jeopardize the success of
the project, the team competencies, the technological risks,
the integration costs. Based on all the special attributes
of the project the organizational structure may include a
technical committee, a quality assurance team or in more
complex projects, an external advisory board. On the other
hand in small agile projects the project manager can also
be a technician. Software managers need to understand that
there is no generic team organizational structure that can be
used for all development projects.

Identification The following questions should be answered with a “Yes”
or “No”.

- Does the project depend on immature technology?
- Does the project require increased integration efforts?
- Is the development team heterogeneous with different

back-grounds?
- Is the development team disagreeing usually when tak-

ing technical decisions?
- Is the project relatively complex compared to the other

ones that the team has developed?

If the answer is yes to at least two of these questions then
the development team is suffering from this anti-pattern

3.4 Knowledge-based models of the ”tech-aware” anti-pattern

In this section we model the anti-pattern presented in the previous section with the
help of Bayesian Networks representation formalism in order to investigate the re-
lationship between the identification factors that help us diagnose the problematic
situations and test the impact of the refactored solution on the project progress. The
proposed BN model presented in figure 3.1 consists of a set of nodes that repre-
sent People, Process, Project and Product drivers (P variables from now and on).
Each one of these nodes is affected by the standard metrics described in tables 1 to
4 whose values are represented cumulatively in the first affecting node (for People

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 15

we have the node Team Competencies, for Process the node Process Organization,
for the Project the node Project Complexity and for the Product the node Product
Complexity).

Fig. 3.1 The BN model of the “tech-aware” anti-pattern

In order to test the influence of the anti-pattern we need to insert in the BN
model the new metrics identified in table 3.1 as nodes that describe the “tech-aware”
anti-pattern and affect the relevant P variables. As a consequence four new nodes
are inserted in the model: Team synthesis now affects People node, Organizational
structure affects Process node, Project Integration affects Project node and Prod-
uct Innovation affects Product node. At this point the standard drivers that affect
application development success are now co-influencing along with the tech-aware
anti-pattern nodes the application development success.

Figure 3.1 represents the Bayesian Network as it is formed after the representa-
tions mentioned previously. In this study the values of the Node probability tables
were defined based on the historical data collected at phase 1 and on the experience
and the knowledge gained during the development of past projects from experts
(QAC team) that participated in the BENEFIT team and had in the past a long se-
ries of co-operations. The tools used to construct the network and create the node
probability tables can be found in (Cheng 1998). Figure 3.2 presents the initial belief
status of the network based on the node probability tables defined by the experts. For
example this network provides the following information regarding the development
of projects from the BENEFIT team: In 50% of the projects the team organization
was considered to be high while 70% the projects where leaded solely by a man-

16 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

ager and in totally the people driver was considered in 46% of the cases to be high
meaning that the development team and was well organized and structured. The rest
of the information provided by the network is interpreted accordingly.

Fig. 3.2 The BN belief model for the BENEFIT team based on historical data

This Bayes Network can then be useful for applying inference. Certain infer-
ences can be made to show how the change in the values of a metric can affect the
values of another metric and, finally, reach some conclusions regarding good and
bad practices in software project planning that lead to development success.

In order to apply inference, the answers to the identification questions of table
3.2 and table 3.3 are now expressed as values that initialize the anti-pattern nodes to
a certain state that can more accurately and objectively describe current status of a
project. Figure 3.2 shows an instance of the Bayes Network when it is instantiated
with data coming from the BENEFIT project. We tested the BN model with the ac-
tual values of the metrics that represented the BENEFIT project and the Bayesian
Network was updated to the one of figure 3.3. The BENEFIT platform was a highly
innovative product, incorporating the need of integration of various tools and was
developed by a team possessing complementary skills led both by a project manage-
ment committee and a technical management committee. Changing the values of the
relevant nodes we observe that the probabilities of the affected nodes also changed.
The refactored solution to the “tech-aware” anti-pattern has a positive impact on the
Application Success. On the other hand it would be interesting to test such a change
in projects with low innovation, low project complexity and homogeneous develop-

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 17

ment teams. In such cases the probabilities depict that the appointment of technical
management committee would be of no value.

Fig. 3.3 The BN belief model of the BENEFIT project testing the “tech-aware” anti-pattern

4 Conclusions

In this paper we proposed a Knowledgebased framework for acquiring knowledge
during software project development and model it in the form of anti-patterns rep-
resented by Bayesian Networks. The framework consists of the following phases a)
acquire data during development b) identify problems and model them in the form of
anti-patterns c) represent and assess the anti-pattern in the form of a Bayesian Net-
work Model. BN modeling is particularly useful and well suited to the domain of
anti-patterns because it provides a solid graphical representation of the probabilistic
relationships among the set of variables. This approach offers the underlying rea-
soning engine to support project management decisions providing a formal model
that can be used by project managers to illustrate the effects of uncertainty on a
software project management anti-pattern.

The suggested approach takes into consideration the characteristics and the needs
of the individual software organization under assessment and does not demand a
large amount of resources and investment costs. The method provides a generic

18 Paraskevi Smiari, Stamatia Bibi, Ioannis Stamelos

Bayesian Network that models application development, which can be tailored to
the needs of the development environment, applied. Bayesian analysis can make
measurable each concept represented in the 4Ps of project management, People,
Process, Project, Product. Bayesian Networks is an easily applied and comprehen-
sible statistical tool that can provide very useful information to software managers.
On the other hand the representation form of anti-patterns is a very descriptive and
helpful tool in the hands of managers that can help them identify problems and
provide easy and quick to launch re-factored solutions.

Acquiring a richer set of data from empirical investigations would be more help-
ful in creating knowledge from software development. A web-based community of
software project management anti-pattern contributors would help in the direction of
establishing a freely available, online knowledge base that could provide the tools
to evaluate the impact of management decisions and decision support to software
project managers worldwide.

References

1. Aurum A., Jeffery R., Wohlin C. and Handzic M. (Eds.)(2003) Managing Software Engineer-
ing Knowledge. Springer

2. Bibi, S. and Stamelos, I. (2004) Software process modeling with bayesian belief networks. In
Online Proceedings of 10th International Software Metrics Symposium (Metrics 2004)

3. Bibi, S., Gerogiannis, V., Kakarontzas, G., Stamelos, I. (2014) Ontology based Bayesian Soft-
ware Process Improvenent. ICSOFT EA 2014: 568-575

4. Barry W. Boehm (1981) Software Engineering Economics (1st ed.). Prentice Hall PTR, Upper
Saddle River, NJ, USA.

5. Brown, W., McCormick, H., and Thomas, S. (2000) AntiPatterns in Project Management.
Wiley Computer publishing.

6. Cheng, J. (1998) Power constructor system,
http://www.cs.ualberta.ca/ jcheng/bnpc.htm.

7. Dalcher, D., Thorbergsson, H., and Benediktsson, O. (2006) Comparison of software devel-
opment life cycles: a multi project experiment. IEE Proceedings - Software, Institution of
Engineering and Technology 154 (3): 87-101.

8. Davenport, T. and Prusak, L. (2000) Working Knowledge How organizations manage what
they know. Harvard Business School Press.

9. Veli-Pekka Eloranta, Kai Koskimies, Tommi Mikkonen (June 2016) Exploring ScrumBut-An
empirical study of Scrum anti-patterns, Information and Software Technology, Volume 74:
194-203

10. Norman Fenton, James Bieman (2014) Software Metrics: A Rigorous and Practical Approach,
Third Edition, CRC press

11. Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., and Tailor, M. (2004) Making resource
decisions for software projects. In Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE’04): 397-406.

12. Hazrati, V. (2009) Is five the optimal team size?,
http://www.infoq.com/news/2009/04/agile-optimal-team-size.

13. Jensen, F. (2001) Bayesian Networks and Decision Graphs. Springer.
14. Vahid Khodakarami, Abdollah Abdi (October 2014) Project cost risk analysis: A Bayesian

networks approach for modeling dependencies between cost items, International Journal of
Project Management, Volume 32, Issue 7: 1233-1245.

Knowledge Acquisition during Software Development: Modeling with anti-patterns. 19

15. Laplante, P. and Neil, C. (2006) Antipatterns: Identification, Refactoring and Management.
Taylor and Francis.

16. Lucia, D. A., Pompella, E., Stefanucci, S. (2005) Assessing effort estimation models for cor-
rective software maintenance through empirical studies. Information and Software Technol-
ogy, Elsevier 47 (1): 5-6

17. Okutan, A., Yildiz, O., (2014) Software Defect Prediction using Bayesian networks, Empiri-
cal Software Engineering, 19(1): 154-181.

18. Settas, D., Bibi, S., Sfetsos, P., Stamelos, I., and Gerogiannis, V. (2006) Using bayesian be-
lief networks to model software project management antipatterns. In 4th ACIS International
Conference on Software Engineering Research, Management and Applications (SERA 2006):
117-124.

19. Shepperd, M., Schofield, C., Kitchenham, B. (1996) Effort estimation using analogy. 18th
International Conference on Software Engineering (ICSE’ 96). ACM.

20. P. Silva, A. M. Moreno and L. Peters (May-June 2015) Software Project Management: Learn-
ing from Our Mistakes [Voice of Evidence], in IEEE Software, vol. 32, no. 3: 40-43.

21. Ioannis Stamelos (January 2010) Software project management anti-patterns, Journal of Sys-
tems and Software, Volume 83, Issue 1: 52-59.

22. Stamelos, I., Angelis, L., Dimou, P., and Sakellaris, P. (2003) On the use of bayesian belief
networks for the prediction of software productivity. Information and Software Tech 45(1):
51-60.

23. Terry, F. and Wayne, S. (2005) The effect of decision style on the use of a project management
tool: An empirical laboratory study. The DATA BASE for Advances in Information Systems
36(2): 28-42.

