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Summary. In this chapter we suggest several estimation techniques for the predic-
tion of the functionality and productivity required to develop an Intelligent System
application. The techniques considered are Analogy Based Estimation, Classifica-
tion trees, Rule Induction and Bayesian Belief Networks. Estimation results of each
technique are discussed and several conclusions are drawn regarding the methods,
the platform and the languages used for the development of Intelligent Systems. The
data set used in the analysis is the publicly available ISBSG data set.

1 Introduction

Software cost estimation is the process of predicting the amount of effort
or the productivity required for the completion of a software artifact. Typi-
cally software cost estimation involves initially an assessment of the project
attributes and then the application of a method for the generation of an
estimate. This estimate is used for a number of purposes including budget-
ing, trade off and risk analysis, project planning and control, and investment
analysis. The potential advantages that arise from this procedure can explain
the vast amount of literature that exists on this area covering a wide range of
methods and practices for software cost estimation.

With the growing importance of Intelligent Systems (IS) in various applica-
tion domains [10,28,36], many practitioners see the measurement of intelligent
applications [22] as a particularly interesting area of research. IS support the
decision-making process in organizations and public sectors. As a consequence,
enterprises and organizations adopt IS in order to discover hidden information
and improve their performance in various areas such as public relationships,
customer satisfaction and services innovation.

Successful completion of a software project requires appropriate software
development and project management processes. For project managers, cost
estimation is one of the crucial steps at the beginning of a new software
project [27]. In the field of software cost estimation there is a trend to calibrate
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estimation models with the needs of particular applications, e.g. Web appli-
cations [32]. IS development differs substantially from traditional software
development because in such projects there are additional constraints due to
the different development approach, the cost of computation, the hardware
demands and the different programming languages, platforms and algorithms
used. Additionally it is known that cost estimation models are sensitive to
the data used for their construction. Estimation models present increased
accuracy when the projects used to predict future projects are developed in
similar environment and under the same constraints with the projects under
estimation. One method has been proposed for estimating the cost of IS devel-
opment [26] based on COCOMO II model [7] that demands a wealth of data
regarding the projects variables. This model is very analytical as it requires
the values of 23 cost variables and then calculates a parametric cost equation.
Considering that often in the initialization of a project there is no available
knowledge regarding the factors discussed in [26] we suggest in this chapter the
exploitation of knowledge of previously completed projects. A low cost method
for productivity analysis is learning from past projects to predict future ones.
In this study we extract knowledge from Isbsg data set [15] regarding two types
of IS, namely Decisions Support Systems (DSS) [35] and Knowledge Based
Systems (KBS) [30]. Using this knowledge one should be able to: (a) Identify a
productivity interval for the development of IS projects, (b) Discover possible
influence of project attribute values on productivity (the utilization of certain
tools, languages, databases used may increase or decrease productivity).

This chapter provides an in depth analysis of the productivity required
to complete an IS application. We apply several machine learning techniques,
namely Analogy based estimation (ABE), Classification trees, Rule induction
and Bayesian analysis in order to estimate size, productivity and extract useful
knowledge regarding the development of IS projects. It should be mentioned
that the applications studied were implemented with non AI languages. To
our knowledge there is no publicly available data set with specialized data
on the development of IS projects, such as language, mining algorithm, com-
putational costs and database size. As a consequence we limit our analysis
on a sample of IS projects coming from a large multi-organizational data set
containing several other types of projects as a well. Due to the different type
of projects that appear in the data set, the data considered in the study are
general and they do not provide more specific knowledge involving issues,
mentioned earlier concerning purely IS development.

2 Related Work

There are many studies in literature regarding the implementation of data
mining techniques [9,12,22] for the development of IS projects. Various meth-
ods, techniques and algorithms for implementing IS have been a research issue
for several studies [14, 39]. In these studies, certain methods for extracting
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knowledge from data bases have been analyzed, implemented and evaluated
in terms of computational time, predictive accuracy, descriptive accuracy and
misclassification costs. Comparative studies for different kind of development
techniques and algorithms address issues regarding the mining efficiency of the
methods but they do not deal with issues involving the time needed for the
implementation of the applications, the tools and the productivity required for
such projects when implemented with different kind of data mining techniques.

There are only few studies in literature dealing with software engineering
issues in the development of IS. In [13] a software engineering environment
for developing IS is suggested, that enables the cooperation of various tech-
nologies for that purpose. The reusability of database components utilized in
the development of IS is discussed in [38]. Organizing IS development process
with Crisp DM methodology is suggested in [9] that provides a framework
that contains the corresponding phases of a project, their respective tasks,
and relationships between these tasks. These studies propose methods for
simplifying the development of IS projects. Another approach to simplify the
development of IS projects is to effectively schedule the whole software engi-
neering process of IS systems. One part of scheduling involves the estimation
of costs. An estimation of the time needed to complete an IS project and of the
way the selection of software development language, platform or methodology
affects this time could provide useful knowledge especially in the initialization
of an IS project. One method has been proposed for estimating the cost of IS
development [26] based on COCOMO II model [7] that utilizes data regarding
the projects variables. This model is very analytical as it requires the values
of 23 cost variables, such as number of tables and tuples, type of data sources,
type and number of models extracted, and then calculates a parametric cost
equation. To our knowledge no other study is found in literature regarding
specifically IS development costs.

On the other hand there is a vast literature in the area of software
cost estimation (SCE). An extensive review of software cost estimation
methods can be found in [6]. Expert judgment [19–21,29], Model based tech-
niques [1, 7, 16, 17, 33] and Learning oriented techniques [3, 4, 24, 25] are the
main categories of software cost estimation methods. The wide application of
the techniques in several development environments for the estimation of soft-
ware costs has indicated that the combination of methods provides improved
results. Cost estimation techniques can present several advantages and disad-
vantages in terms of accuracy, comprehensibility, causality, applicability and
risk management. The combination of methods can provide a more complete
estimation framework than one method alone. In this study taking into con-
sideration the findings of [23] we suggest the combination of several learning
oriented methods in order to improve the estimation and descriptive efficiency
of predictive models for an IS project.

Learning oriented techniques, are recently applied in SCE and use data
from past historical projects to estimate and control the new ones. Learn-
ing oriented techniques are very useful when a company stores its own data
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and wants to utilize this knowledge in order to guide and control the devel-
opment of future projects. Literature has indicated several advantages and
disadvantages of these methods when applied alone.

ABE is a widely used method to identify historical projects, with attributes
similar to the project under estimation, that will provide an estimation [2].
ABE is a very accurate method when the historical data set includes similar
projects to the one under estimation but can be very inaccurate in other
situations.

Neural networks [25] can be very accurate but difficult to apply and inter-
pret, while rule induction and decision trees [24] are easy to understand but
of lower accuracy. Association rules as a descriptive modeling method [4, 5]
can address causality, are easily interpretable but they cannot always provide
an estimate. Bayesian Networks [3, 34] identify the underlying relationships
among all project attributes, can be easily combined with expert judgment
but usually they demand large data sets in terms of accuracy.

In this study we experiment with several learning methods regarding the
SCE of IS in order to provide a complete estimation framework. In particular
we apply:

• Rule induction and Classification And Regression Trees (CART): to esti-
mate size and productivity with probability values that assess uncertainty.

• ABE: to identify important attributes and distance metrics for productiv-
ity and size estimation.

• Association rules: to explore patterns that associate various project at-
tributes.

• Bayesian Belief Networks (BBN): to identify the dependencies among the
project attributes.

3 Estimation Methods

In this section we present analytically the methods used to analyze and model
data regarding the implementation of IS systems.

3.1 Classification and Regression Trees

CART is a widely used statistical procedure for producing classification and
regression models with a tree-based structure in predictive modeling [8]. The
CART model consists of an hierarchy of univariate binary decisions. The algo-
rithm used operates by choosing the best variable for splitting data into two
groups at the root node. It can use any one of several different splitting cri-
teria, all producing the effect of partitioning the data at an internal node
into two disjoint subsets in such way that the class labels are as homogeneous
as possible. This splitting procedure is then applied recursively to the data
in each of the child nodes. A greedy local search method to identify good
candidate tree structures is used. Finally, a large tree is produced and specific
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Fig. 1. A CART for software productivity estimation

branches of this tree are pruned according to the stopping criteria, so as to
avoid overfitting of the data and over-specialization of the model.

CART are able to classify not only all the projects in the training data set,
but unknown projects from a wider group of projects of which the training
projects is presumed to provide a representative example. In our study a
serial algorithm is applied. The decision tree classifier consists of two phases:
a growth phase and a prune phase. In the growth phase, the tree is built
by recursively partitioning the data until each partition is either ‘pure’ or
sufficiently small. The form of the split used to partition the data depends on
the type of the attribute used in the split. Only binary splits are considered.
Once the tree is fully grown, it is ‘pruned’ in the second phase to generalize the
tree by removing dependence on statistical noise. Pruning a branch of a tree
consists of deleting all descendants of the branch except from the root node.
The pruning algorithm used is based on the Minimum Description Length
principle [31].

A simple CART for software productivity estimation is presented in Fig. 1.
In order to estimate the productivity category of a new project, starting from
the root node, the right branch is selected according to the project’s attributes
at each level, moving down until a terminal node is reached. In particular the
tree of Fig. 1 can be interpreted as following:

If software complexity is average or low productivity value is estimated
to be greater than 30 fp h−1 and equal or less than 60 fp h−1. If software
complexity is high or very high and the team size is less than five people
productivity value is estimated from 60 to 80 fp h−1. Otherwise if the team size
includes five or more people productivity will be between 80 and 120 fp h−1.

We use classification trees for the analysis because they handle variables
with nominal and ordinal scales, they provide results easy to interpret, and
they can handle data sets with few cases.

3.2 Association Rules

Association rules [14] are among the most popular representations of local
pattern recognition. They are a form of descriptive modeling and have as
a target to describe the data and their underlying relationships with a set
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of rules that jointly define the target variables [39]. Their target is to find
frequent combinations of attribute values that lay in databases. An association
rule is a simple probabilistic statement about the co-occurrence of certain
events in a database.

Each rule consists of two parts. The left part is the Rule Body (antecedent)
and is the necessary condition in order to validate the right part, Rule Head
(consequent). Each rule states that if the rule body is true then the rule
head is also true with probability p. It is obvious that the A.R are Boolean
propositions with true or false values. In the rule head, any Boolean expression
can be used, but usually conjunction is preferred for simplicity purposes.

Given a set of observations over attributes A1, A2, . . . , An in a data set D
a simple association rule has the following form:

(A1 = X ∧ A2 = Y) ⇒ A3 = Z
confidence = p(A3 = Z|A1 = X, A2 = Y ), support = freq (X ∪ Y ∪ Z, D)

This rule is interpreted as following: when the attribute A1 has the value X
and attribute A2 has the value Y then there is a probability p (confidence) that
attribute A3 has the value Z. For this rule two major statistics are computed,
confidence and support values. Confidence is the probability p defined as the
percentage of the records containing X, Y and Z with regard to the overall
number of records containing X and Y only. The other statistic is support
value which is a measure that expresses the frequency of the rule and is the
ratio between the number of records that present X, Y and Z to the total
number of records in the dataset.

AR mining is a two stage process. The first stage involves the identifi-
cation of all frequent set of attributes contained in the given data set. A
set of attributes is frequent if its associated support exceeds a certain support
threshold defined by the user. The second stage is generating all pertinent ARs
from these itemsets. An AR is pertinent if its associated confidence exceeds a
certain confidence threshold specified by the user.

A simple example of an Association Rule coming from software data sets
is presented in Table 1.

The association rule of Table 1 states that 80% of the cases that involve
the development of a DSS project Inhouse also use a Methodology. If the data
set used contains 39 instances then 12 out of 39 projects (support = 12/39 =
30.8%) of the data set satisfy the particular rule and 12 out of 14 projects
(confidence = 12/14 = 80%) that involve the development of a DSS project
Inhouse use a Methodology.

Table 1. Association rule describing whether methodology is used or not

Support Confidence Rule Body Rule Head

30.8 80.0 DSS + DevelopedInhouse Methodology Yes
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AR was selected because it is a method for descriptive modeling that
identifies specific relationships often ignored by predictive models. Frequent
and pertinent relationships among the project attributes and the development
productivity are discovered. The knowledge extracted from the data set is in
the form of if-then rules that are easily understood, giving the chance to
experts to analyze, validate and combine known facts about the domain.

3.3 Bayesian Belief Networks

Bayesian Belief Networks are Directed Acyclic Graphs (DAGs), which are
causal networks that consist of a set of nodes and a set of directed links
between them, in a way that they do not form a cycle [18]. Each node repre-
sents a random variable that can take discrete or continuous finite, mutually
exclusive values according to a probability distribution, which can be different
for each node. Each link expresses probabilistic cause-effect relations among
the linked variables and is depicted by an arc starting from the influencing
variable (parent node) and terminating on the influenced variable (child node).
The presence of links in the graph may represent the existence of direct depen-
dency relationships between the linked variables (that some times may be
interpreted as causal influence or temporal precedence). The absence of some
links means the existence of certain conditional independency relationships
between the variables.

The strength of the dependencies is measured by means of numerical
parameters such as conditional probabilities. Formally, the relation between
the two nodes is based on Bayes’ Rule [11]:

P (A|B) =
P (B|A)P (A)

P (B)
. (1)

For each node A with parents B1, B2, . . ., Bn there is attached an NxM
Node Probability Table (NPT), where N is the number of node states and M
is the product of its cause-nodes states. In this table, each column represents
a conditional probability distribution and its values sum up to 1.

A simple BBN estimating software effort is the one presented in Fig. 2.
Attached to the node of effort there is a node probability table that pro-
vides possible values of the effort needed to develop the intelligent system,
based on the combination of values that the programming language and the
development platform nodes take.

In this study the extraction of BBN is achieved with an award winning
algorithm [11]. BBN were selected because of their ability to represent all the
dependencies among the variables participating in the study.

3.4 Rule Induction

RI, as CART method, is a particular aspect of inductive learning. Induc-
tive learning is then the process of acquiring general concepts from specific
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Fig. 2. A BBN for software effort estimation

Table 2. Rule induction for software productivity estimation

If language used = java and development type = enhancement then
40 < productivity ≤ 60 total no of projects = 10 wrong estimates = 2

examples. By analyzing many examples, it may be possible to derive a general
concept that defines the production conditions.

Rule induction is an alternative approach to CART that takes each class
separately, and try to cover all examples in that class, at the same time
excluding examples not in the class. This is a so called, covering approach,
because at each stage a rule is determined that covers some of the exam-
ples. Covering algorithms operate by adding tests to the rule that is under
construction, always trying to create a rule with maximum accuracy. Whereas
CART algorithm chooses an attribute to maximize the separation between the
classes (using information gain criterion), the covering algorithm chooses an
attribute-value pair to maximize the probability of the desired classification.

In this chapter, we apply the PART algorithm that is based on extracting
partial decision trees. The method also handles missing values by assigning an
instance with missing value to each of the tree branches with a weight propor-
tional to the number of training instances descending that branch, normalized
by the total number of training instances with known values. In this study
for the induction of classification trees and rules we utilize the Weka machine
learning library [37].

A simple rule coming from the domain of software cost estimation will
have as Rule Body certain software project attribute values and as a Rule
Head a productivity (or cost, or effort) value. A simple example of a rule is
presented in Table 2.

This rule is interpreted as following: If the language that will be used for
the development of new project is java and the development type of the project
is enhancement then there is (10-2)/10 = 80% (confidence value) probability
that the productivity value of the project will be between 40 and 60 lines of
code per hour.
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One advantage of inductive learning over other machine learning methods
is that the rules are transparent and therefore can be read and under-
stood. Proponents of RI argue that this helps the estimator understand the
predictions made by systems of this type.

3.5 Analogy Based Estimation

ABE is essentially a form of case based reasoning. The main aspect of the
method is the utilization of historical information from completed projects
with known size, effort or productivity. The most appropriate attributes are
selected according to which the new project is compared with the old ones in
the historical dataset. The attribute values are standardized (between 0 and
1) so that they have the same degree of influence and the method is immune
to the choice of units.

The next step is to calculate how much the new project differs from the
other projects in the available database. This can be done by using a ‘distance’
metric between two projects, based on the values of the selected attributes
for these projects. The most known such distance metric is the Euclidean or
straight-line distance which has a straightforward geometrical meaning as the
distance of two points in the k-dimensional Euclidean space:

dnew,i =

⎧
⎨

⎩

k∑

j=1

(Yj − Xij)2

⎫
⎬

⎭

1/2

, i = 1, 2, ..., n (2)

Other possible distance metrics are the Minkowski distance, the Can-
berra distance, the Czekanowski coefficient and the Chebychev or ‘Maximum’
distance (see [2] for definitions).

In conclusion the estimation of the productivity using analogies is based
on the completed projects that are similar to the new one. The user of the
method has to calculate the distances of the new project from all the database
projects and identify few ‘neighbour’ projects, i.e. those with relatively small
distance value. The estimation of the productivity is eventually obtained by
some combination of the productivities/efforts of the neighbor projects. Typi-
cally, the statistic used is the mean (weighted or simple) or the median of these
effort values. The calibration of the analogy-based method requires the detec-
tion of the best configuration of the available method options. The options
that may be adjusted are:

(a) The distance metric by which the projects of the database will be sorted
according to their similarity to the one under estimation (e.g. Euclidean
distance, Manhattan distance)

(b) The number of closest projects (analogies)
(c) The set of attributes for judging analogy
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Fig. 3. Best calculation parameters for effort estimation

Fig. 4. Estimation of the effort value of a new project based on the best parameters
of Fig. 3

In this study we apply and calibrate ABE for size and productivity predic-
tion with the help of Brace tool [2]. A simple example that demonstrates the
calibration of the method and the selection of best parameters is presented
in Fig. 3. In this example the most appropriate distance metric to be used
for the calculation of distances among similar projects for the particular data
set is Canberra distance, the size adjusted median of the predicted interval is
selected as a point estimate and the number of analogies is set to three. The
Mean Magnitude Relative Error (MMRE) is 26.9% and the prediction within
25% of actual value is 56%. The size adjusting attribute is function points, a
choice made by the user.

The results of the application of ABE in the estimation are presented in
Fig. 4. Similar projects from the training set to the project under estimation
are presented in descending order. The effort values of the first three similar
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projects are used for the calculation of an effort interval of the new project.
Apart from a low and a high effort value, a point estimate is calculated along
with a bias value.

4 Data Description and Preparation

The data set used for this analysis is the widely known ISBSG7 data set, a
publicly available multi-organizational data set. ISBSG is a repository main-
tained by the International Software Benchmarking Standards Group to help
developers with project estimation and benchmarking. ISBSG data repository
release 7 [15] contains 1,239 projects that cover the software development
industry from 1989 to 2001. The data set contains over 50 fields involving
the projects origin, age, context, the type of the product and the project and
the development environment, the methods and tools utilised. We selected the
particular data set because it contained 39 projects involving the development
of Decision Support Systems and Knowledge Based Systems that could form
a sample data set for our analysis. All variables were taken into account in the
study regardless of the missing values observed. The variables are presented
in Tables 3 and 4.

Table 3. Variables in ISBSG data set

Attribute Values

DT: Development type Enhancement, NewDevelopment,
Re-development

LT: Language type 3GL,4GL
PPL: Programming language 4GL, ACCESS, C, COBOL, CSP, JAVA,

NATURAL, OTHER 4GL, VISUAL BASIC
OT: Organization type Banking, Communication, Community

Services, Electricity & Gas & Water,
Insurance, Manufacturing, Professional
Services, Public Administration, Computers

AT: Application type DSS, Knowledge based
UCT: Use of case tools Yes, No
PC: Package customization Yes, No
BAT: Business area type Banking, Engineering, Financial, Insurance,

Manufacturing, Personnel, Sales &
Marketing, Social Services,
Hardware/Software

DBMS: Database system ADABAS, ACCESS, IMS, SQL, ORACLE,
RDB, M204

Used Methodology: whether
methodology was used to build
the software

Yes, No

DP: Development platform MF, MR, PC
HMA: How methodology
acquired

Developed/purchased, Developed Inhouse,
Purchased
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Table 4. Descriptive statistics for the attributes of IS systems

Variable Min Max Mean St. deviation

Function points 18 1,474 413.846 403.827
Effort 220 16,000 3,093.154 3,874.975
Productivity 0.024 1.147 0.28 0.306
Max team size 0 18 4.235 4.562
Date 1993 2000 1995.703 1.869

Table 5. Descriptive statistics for the attributes of MIS systems

Variable Min Max Mean St. deviation

Function points 25 17,518 557.276 1,097.789
Effort 17 99,088 6,412.665 11,107.226
Productivity 0.01 5.35 0.204 0.402
Max team size 0 468 8.184 36.071
Date 1989 2001 1996.201 2.871

In the data set there are two variables indicative of the projects cost,
i.e. size measured in function points and effort measured in hours. Function
Points (FP) is a standard metric for the relative size and complexity of a
software system, originally developed by Alan Albrecht of IBM [1]. The size is
determined by identifying the components of the system as seen by the end-
user: the inputs, outputs, inquiries, interfaces to other systems, and logical
internal files. The components are classified as simple, average, or complex.
All of these attributes are then assigned a score by the analyst and the total is
expressed in Unadjusted FPs (UFPs). Complexity factors described by 14 gen-
eral systems characteristics, such as reusability, performance, and complexity
of processing can be used to weight the UFP. Factors are also weighted on a
scale of 0–5. The result of these computations is a number that correlates to
system functional size. We decided to estimate the productivity value of the
projects as well defined as the ratio between the function points of a project
and the effort measured in hours.

In the same data set there are data regarding the implementation of other
application type projects. It is interesting to compare such data with those of
the IS data set. In Table 5, descriptive statistics regarding the function points,
effort, productivity, max team size and date values of Management Informa-
tion Systems are presented. Maximum values of function points between the
two application types are quite different but the min and mean values are close
for both types. Regarding the effort we can conclude that in the particular
data set a simple MIS project requires less effort than an IS application but in
total the mean effort required for a MIS project is more than the mean effort
required for an IS application. Mean productivity values for both applica-
tion types are quite similar although MIS projects require larger development
teams, almost double in size, than IS projects. Finally, as expected MIS



Estimating the Development Cost for Intelligent Systems 37

Table 6. Productivity and function points intervals considered in the study

Variable Low Average High Very high

Productivity 0.024–0.09 0.09–0.168 0.168–0.6075 0.6075–1.147
Function points 18–157 157–254.5 254.5–916 914–474

application had earlier implementation dates than IS applications. We must
mention that this comparison is limited to the specific information included
in ISBSG data set. Also the observations regarding IS projects are only 39
and the ones regarding MIS projects are 352.

In order to apply the estimation methods we had to discretize [5] the field
of productivity and assign productivity values into intervals. Discretization
of productivity raised two issues: the number of intervals and the discretiza-
tion method. Due to the few projects contained in the data set we intuitively
decided to define four intervals of productivity each one related to approx-
imately equal number of projects. The productivity (measured in function
points per hour), and function point intervals are presented in Table 6.

Especially for Bayesian analysis data preparation was slightly different as
the method cannot handle missing values. We had to dismiss records with
missing values in several variables so as to leave as many projects and vari-
ables as possible in the analysis. The final set of projects was 20, the number
of productivity intervals 3 0.02–0.1, 0.1–0.4, 0.4–1.15 and the variables that
participated are the ones in Tables 4 and 5 apart from dbms, hma and bat
that presented many missing values. Also for variables like organization type
and language that presented many different values we grouped together values
that had the same effect on productivity.

5 Results and Discussion Regarding Functional Size

In this section the results regarding the estimation of the size of IS applications
will be presented in the form of classification tree and rules. The classification
tree suggested is presented in Fig. 5. It seems that the business area type in
which the system will be applied and the data base used can affect the size
of the application. Applications implemented for financial and engineering
business area types are relatively large in size. For the rest of the applications,
the ones that used Adabas, Access, Oracle and Relational Data Bases as a
data base management system presented average size while the rest could
be considered as small applications. The classification and regression tree of
figure can classify correctly 53.85% of the data set.

PART decision rules regarding the estimation of size are presented in
Table 7. The rules comply with the CART of Fig. 5 and additionally pro-
vide two hints: Applications developed in Access with the help of Case tools
present average size. Decision support systems also are of average size. The
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BAT

DBMS

254,5< Size< 916

Engineering Financial

ADABAS, ACCESS,
ORACLE, RDB

157< Size< 254.5 Size> 157

Fig. 5. CART for the estimation of functionality of an IS

Table 7. Rule set for the estimation of function points

Rules

BAT = Financial: 254.5 < size < 916 (6.78/2.26)
Dbms = Access AND CaseTool = Yes: 157 < size < 254.5 (4.33/1.41)
BAT = Engineering: 254.5 < size < 916 (3.52/1.23)
AT = DSS: > 157 < 254.5 (14.33/8.12)
else: size < 157 (10.04/5.42)

Date

Application type

Organization type

Development
Platform

PPL

Language Type

productivity

Package
customization

Case Tools FP

Development
type

Fig. 6. BBN for predicting the productivity of IS

rule set of Table 7 is also able to classify correctly 53.85% of the projects into
a size interval.

ABE pointed out as the best configuration to use the Euclidean distance
metric with one analogy considering as best point estimate the mean value
of the size interval. The best attribute subset for providing an estimation is
considered the development type, the development platform, the language type
the data base used and the use of case tools.

Bayesian analysis presented in Fig. 6 indicated the use of case tools as the
only variable that directly affects software size. Also the number of function
points is conditionally independent from organization type and development
type when there is knowledge regarding the use of case tools. Since the values
of case tools (no, yes) are uniformly distributed the only conclusion we can
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Table 8. Node probability table for the estimation of function points

Use of case tools size No Yes

Size < 225 0.244 0.445
225–800 0.378 0.311
Size > 800 0.378 0.244

reach regarding the number of function points is that when there is absence
of case tools the functionality that has to be implemented is increased which
is a strange finding. The use of case tools enables the implementation of the
same projects with less functionality implemented by the developers, a fact
that reduces complexity and therefore the possibility of fault existence. The
node probability table for the estimation of the number of function points
is presented in Table 8. The last column of Table 8 can be interpreted as
following: The functional size of an IS project when case tools are used to aid
the development is 44.5% possible to be less than 225 fp, 31.1% is likely to be
between 225 and 800 fp and there is only 24.4% possibility to be more than
800 fp.

6 Results and Discussion Regarding Productivity

This section contains the details of a formal analysis of the data set, comprising
a classification tree analysis, rule induction and Bayesian analysis.

The tree extracted from the data is presented in Fig. 7. In the tree, the
variables Business Area Type, Function Points and Primary Programming
Language are able to classify correctly 69.23% of the projects. Low pro-
ductivity values are observed in Banking, Insurance, Personnel and Social
Services applications. High productivity value is presented in large applica-
tions developed mainly with Cobol, Access, C and other not mentioned 4GL
languages. The intermediate classes of productivity are obtained in relatively
small application (<800 fp) or in applications developed with Natural, Java,
SQL and Csp.

Table 9 presents the rule extracted with PART algorithm. The first number
in brackets is the total number of projects that comply with the rule body
while the second number is the number of the projects being misclassified by
the rule in the subset of the examples the rule is applied.

The rules are applied in the order discovered and are able to classify cor-
rectly 71.8% of the projects participating in the study. Important attributes
that appear often in the rules are Organization and Application type. Func-
tion points also seam to be a critical estimation variable. Low productivity
values are observed in the development of projects designated to Insurance
and Public administration organizations. Projects designed for Energy organi-
zations are mainly assigned to high productivity values while projects applied
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BAT

FP

PPL

Banking, Insurance, Personnel,
Social Services

FP<800

0.168<Productivity<0.6075

0.09<Productivity<0.168 Productivity<0.6075

Natural, Java,
SQL, Csp

Productivity<0.09

Fig. 7. Classification tree for predicting the productivity of IS

Table 9. List of rules for predicting the productivity of IS

Rules

OT = Communication AND FP ≤ 937: 0.168 < productivity < 0.6075 (10.0/4.33)
OT = Insurance: productivity < 0.09 (7.52/3.52)
AT = DSS AND OT = PublicAdministration: productivity < 0.09 (5.44/1.44)
OT = Energy: productivity > 0.6075 (3.21/0.21)
AT = DSS AND FP <= 722: 0.168 < productivity < 0.6075 (6.84/2.28)
AT = DSS: 0.09 < productivity < 0.168 (3.0/0)
else: productivity > 0.6075 (3.0/0)

Table 10. Node probability table for the estimation of the productivity of IS

ppl productivity Access Other 4GL, sql,c,csp,java
cobol,
natural

Productivity < 0.1 0.185185 0.547619 0.138889
0.1–0.4 0.185185 0.261905 0.638889
Productivity > 0.4 0.62963 0.190476 0.222222

to Communication organizations tend to fall in the intermediate classes of
productivity.

The results observed from the Bayesian analysis, presented in Fig. 6 are
also very interesting. A strange absence of dependency in the BBN of Fig. 6
is the one between FP and productivity. This may be explained due to the
small training set, the few intervals defined in each variable and the multi orga-
nizational data set that prevented the homogeneity of the data. Interesting
dependency is the one between programming language used and productiv-
ity value. Language type can classify correctly 80% of the projects into a
productivity interval with the help of Table 10.
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Interesting assumptions regarding the Bayesian analysis can be summa-
rized as following:

• Applications developed in mainframe platforms had mostly as destination
public administration organizations, were programmed mainly with 4GL
languages and presented low productivity values. On the other hand appli-
cations developed in PC was designated mainly for communication and
electricity, gas, water and energy providers, were developed in Access and
SQL and had high productivity values. Intermediate productivity values
were observed in projects developed in SQL.

• Regarding the size of the projects measured in Function points it appears
that it is negatively correlated with the use of case tools.

• It seems that productivity values remain equally distributed into intervals
and unaffected by the time. Someone would expect that in most recent
projects productivity would be higher but this is not justified by the anal-
ysis. It seems that IT personnel becomes more experienced as time passes
but still they have to practice in a variety of new technologies.

The results of ABE pointed out that the best configuration to use is Can-
berra distance metric [2] with one analogy, considering as a point estimate
the mean value of the estimated interval. Canberra distance metric is defined
as following:

dnew,i =

⎧
⎨

⎩

k∑

j=1

|Y i −Xij |
|Y i + Xij |

⎫
⎬

⎭ i = 1, 2, ..., n (3)

The best attribute subset used for estimation is considered the development
platform and the development type.

7 Identification of Associations Between Attributes

In this section we will identify several useful patterns that exist in the
IS project data. Frequent and pertinent relationships among the project
attributes are discovered and interpreted intuitively. For this purpose AR will
be utilized as a method for descriptive modeling. With rules as those presented
in Table 11 it is possible to identify often used techniques and methodologies,
trends in the development of IS and their evolution over time and finally
patterns that a practitioner should avoid.

Certain conclusions that we can reach from the rules are summarized in
the following list:

• Methodology is used mainly in Decision Support Systems projects, devel-
oped inhouse, unlike Knowledge Based systems where no methodology
is mostly used. The use of case tools is observed mainly in applications
destined for personnel business area type.
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Table 11. Association rules detected for attribute estimation

Support Confidence Rule Body Rule Head

30.8 80.0 DSS+DevelopedInhouse Methodology Yes
43.6 100.0 4GL DSS
25.6 90.9 MTS < 2.5 DSS
28.2 91.7 Communication CaseTool No
23.1 75.0 Communication Methodology No
25.6 83.3 Communication KB
15.4 100.0 CaseTool Yes+Methodology Yes DevelopedInhouse
10.3 100.0 BAT Personnel CaseTool Yes
17.9 77.8 CaseTool No+Methodology No KB
25.6 90.9 KB CaseTool No

• From 1993 to 2000 communication organizations demanded mainly knowl-
edge based systems.

• The 4GL, non AI languages used for the New development projects is
mainly Access and SQL.

• The absence of case tools and methodology is mainly observed in the
development of knowledge based systems.

• Projects developed by small teams < 2.5 and in 4GL languages are usually
decision support systems.

8 Conclusions and Future Work

In this chapter we examined four machine learning techniques in estimating
the productivity for the development of IS. All of the methods were able
to classify the majority of projects in the correct productivity interval and
provide several assumptions regarding the development environment. CART
are able to provide a simple, easily understood estimation framework, rules
can provide a more informed estimation and BBN support thorough analysis
of the dependencies and independencies among the projects attribute and
productivity. Possible advantages of these methods in the estimation of IS
systems are:

• The knowledge extracted from the application of the methods is relevant
to the data collected. Therefore each organization can specify the data
of interest, collect the appropriate information and estimate the target
fields. Therefore even if in our study the data analyzed were of multi
organizational nature a company could calibrate and adjust the models to
its needs collecting the appropriate data.

• The output of the models is easily understood. The models support visual
representation of the results, have a strong mathematical background and
can be extracted with the use of several tools available free from the
internet [9, 37].
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It is evident that for more detailed analysis of these issues further research
has to be done applying and comparing the previously mentioned methods on
data involving IS development with pure AI techniques as well. Data pertain-
ing to the development of IS could involve the mining algorithm used for the
implementation of them, the tools, languages and platforms utilized specifi-
cally for the development of such projects, the requirements in storage and
memory during the application of the systems. When a large cost data base for
AI development projects is available, more thorough analysis will be possible
and the pros and cons of each development tool, technique or algorithm will
be easier to observe. In addition sensitivity analysis will show the robustness
of the methods. Finally, collecting such data over long periods will permit
trend analysis, providing a picture of AI development evolution over time.
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