
A Novel HMM-Based Learning Framework for Improving Dynamic 
Wireless Push Systems Performance 

 
 

Vasiliki L. Kakali, Panagiotis G. Sarigiannidis, Georgios I. Papadimitriou*, and Andreas S. Pomportsis 
Department of Informatics, Box 888, Aristotle University of Thessaloniki, 54124, Greece 

*corresponding author’s e-mail: gp@csd.auth.gr  
 
 
 
Abstract—A new machine learning framework is introduced in this paper, based on Hidden Markov Model (HMM), designed to provide 
scheduling in dynamic wireless push systems. In realistic wireless systems, the clients’ intentions change dynamically, hence a cognitive 
scheduling scheme is needed to estimate the desirability of the connected clients. The proposed scheduling scheme is enhanced with self-
organized HMMs, supporting the network with an estimated expectation of the client intentions, since the system’s environment characteristics 
alter dynamically and the base station (server side) has no a-priori knowledge of such changes. Compared to the original pure scheme, the 
proposed machine learning framework succeeds in predicting the clients’ information desires and overcomes the limitation of the original static 
scheme, in terms of mean delay and system’s efficiency. 
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1. Introduction 

 
For applications that deal with traffic, weather information, sightseeing guidelines and news distribution, data broadcasting is 

an efficient way for delivering information over wireless networks. In such applications, the client demands are often 
overlapping. Thus, the broadcast of one information item will probably satisfy a large number of clients that have the same 
demand at the same time period. Among other architectures (pull and hybrid approaches), the push systems [1, 2, 3] seem to be 
the most promising, since they achieve high scalability and low complexity. Their operation involves a server being located onto 
a base station, which makes a priori assumptions about the demand probability of the information items and schedules its 
broadcasts according to these assumptions without any participation of the client side. This paper focuses on push systems. 

The problem considering these systems lies on the fact that the server can only make assumptions about the client demands of 
the information items or simply consider that all the items have equal demand probability to avoid the starvation of some items 
due to faulty assumptions. Thus, the “pure” push systems [1, 2, 3] are unable to adapt to a priori unknown client demands. Other 
adaptive push systems use a learning automaton module, trying to adapt to environments with a priori unknown client demands 
[4].  

The main disadvantage of the specific adaptive approaches lies in the determination of the optimized values regarding the 
operational parameters of the learning automaton, especially in environments under dynamic alterations of their characteristics. 
For example, two critical parameters affect the learning automaton’s performance. The former one, known as the convergence 
speed parameter, determines the speed and accuracy of the adaptation process, while the latter one, known as lowest probability 
threshold, affects the broadcast frequency of the unpopular items. Apparently, both parameters should be suitably tuned 
according to the related environment so that undesirable phenomena are avoided, such as low performance, starvation, slow 
convergence and lack of adaptive nature. Hence, the usage of learning automata demands fine tuning which presupposes a priori 
known environments. However, in most realistic cases, the environment includes unknown and dynamic parameters. This pitfall 
should be addressed with a novel compact prediction scheme operating independently of the optimized system parameters. 

Extending our previous efforts [5] to environments where the clients’ intentions and geographic locations change 
dynamically, a novel learning framework for wireless push systems is proposed in this paper, called Predictive Push Scheme 
(PPS). The scheme is designed on the basis of machine learning realized by Hidden Markov Models (HMMs) and targets at 
estimating the clients’ intentions in environments with dynamic characteristics. HMMs have been widely used for prediction, 
machine learning, cognitive systems or pattern recognition [6]. The introduced learning method is evaluated by a scheduling 
algorithm, which is applied in order to accommodate the forthcoming broadcasts in the context of a wireless push network. In 
fact, HMMs provide a broadcast schedule, estimating the most desirable information items in accordance with their demand 
probability. The PPS aims at reducing the mean time delay that a client experiences waiting to receive the desired information 
item. Concurrently, according to the conducted simulation experiments, it seems to improve the wireless broadcast system 
performance.  

The remainder of the paper is organised as follows: Section 2 presents the original static wireless push system, Section 3 
analyses the proposed learning framework and simulation results are presented in Section 4. Finally, Section 5 concludes the 
paper. 
 



2. A Static Environment Scheduling Scheme 
 

The method presented in [2], optimizes the system performance of a static environment scheduling scheme. The algorithm 
operates as follows: The server contains a database of K information items, and p' is the vector of the estimated probability 
demand per item. Assuming that t is the current time and T(i) is the time when item i was last broadcast, for each broadcast, the 
server selects to transmit the item i that maximizes the cost function (objective function): 
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where pi
' is the estimated demand probability for item i, li is the item’s length, E(li) is the probability that an item of length li is 

received with an unrecoverable error, T(i) is initialized to -1 and if the maximum value of CF(i) is given by more than one items, 
the algorithm selects one of them arbitrarily. Upon the broadcast of item i at time t, T(i) is changed so that T(i)=t. 

The main limitation of this method is its static orientation as it does not support a mechanism able to update the estimated 
probability vector p' at environments with dynamic changes at the clients’ preferences. In the remainder of this paper this method 
will be referred as the “static push scheme”. 

 
 
 

3. The Predictive Push Scheme 

3.1 The System Architecture 
The main entities of the studied push system are the base station and the set of connected mobile clients. Specifically, the 

system consists of P clients gathered into N groups and the members of each group may demand M different information items. 
The clients’ grouping is being held logically, without disorientating the broadcast manner of the system. The base station consists 
of one omni-directional antenna, while the server, located into the base station, maintains a database of K= N×M different items. 
The server utilizes a number of N×M HMMs in order to schedule the item broadcasts as described in subsection 3.3. The base 
station broadcasts the server’s data items while satisfied clients respond (“vote”) to the server’s broadcasts. For the uplink 
communication, the Code Division Multiple Access (CDMA) technique has been chosen [7]. Broadcasts are organized into 
transmission frames. Each frame is repeated periodically, comprising of two phases, the round robin phase and the prediction 
phase. During the round robin phase the server side broadcasts all the items (of each group) once per time. The clients’ feedbacks 
are collected after each item broadcast. Then, the prediction phase begins and the transmission items are selected according to 
the output of the predictor component. The duration of each phase is equal to N×M broadcasts for fairness reasons. The system 
architecture is depicted in Fig. 1. 
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Fig.1. The system architecture. 
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Fig.2. The Hidden Markov Model structure, defined by 100 individual states. 

3.2 Preliminaries 
 

According to [8], an HMM is a doubly stochastic process with an underlying stochastic process that is not observable (it is 
hidden), but can only be observed through another set of stochastic processes that produce the sequence of observed symbols. A 
process state is defined as a conditional distribution over the future – a measure space of semi-infinite sequences of symbols – 



induced by conditioning on known historical information [9]. In other words, the process states are the possible states of 
knowledge of an observer who wishes to predict the future symbols with high accuracy. 

Focusing on discrete time models, given that t = 1, 2, …, denote time instants and that qt is a random vector (of real values 
or symbols) then the entity {qt} is defined as a stochastic process. Consequently, supposing that qt is a stochastic process taking 
values in S, which is either countable or finite having SN elements, a Markov chain is defined as follows: 

1

0 2 1

[ | ]

[ | , ..., , ]

, , , ,  0 , , , 1

t j t i

t j u t y t i

u y i j

P q S q S

P q S q S q S q S

S S S S S u y i j SN

−

− −

= =

= = = =

∈ ≤ ≤ −

 (3.2.1) 

An HMM consists of a recurrent finite-state Markov Chain, an alphabet of output symbols, and a distribution over that 
alphabet for each transition in the Markov Chain. The states and transitions of the Markov Chain are hidden from observation so 
that only the output symbols are visible. More specifically, the elements of an HMM are: a) a finite number of states, b) a 
transition probability distribution which depends on the previous state and indicates a new state after each clock time t, and c) a 
set of observation probability distributions, which represent random variables or stochastic processes [8]. Formally, the following 
model notations stand for the designed HMM: 

• SN stands for the number of states. For the following analysis an ergodic model is adopted, whereby all states are 
interconnected in such a way that any state can be reached from any other state [9]. 

• S denotes the set of individual states:                      
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• KN stands for the number of observation symbols, i.e., the number of distinct observation symbols per state. The 
observation symbols correspond to the physical output of the designed system. 

• K denotes the set of observation symbols per state: 
 (3.2.3) 20{ , ... , , }K N K NK K K K− −=

• A denotes the state transition probability distribution: 
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Since the designed model is ergodic is holds: 
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• B denotes the observation symbol probability distribution in state j: 
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• π denotes the initial state distribution: 

 (3.2.8) 
1{ } , ( )

0 1
i i i

i

P q S

i S N

S S

π π π= = =

≤ ≤ −

∈

 



3.3  The HMM scheme 
It is well known that HMMs are very important due to the fact that they are able to realize noticeable practical systems –e.g., 

prediction systems, recognition systems, identification systems, stock market forecasting, etc, in a very efficient manner. 
Apparently, the server has no a priori knowledge concerning the dynamic client demands. In this perspective, novel learning 
framework is proposed to make the server capable of taking efficient prediction-based decisions. The proposed framework aims 
at estimating the requests of the connected clients. By having an estimated expectation of the client intentions, the server side is 
able to support more efficient item selections, resulting in decrement of the system response time. 

The introduced system is composed of N groups, where each group member may request one of M possible items. Hence, 
N×M parallel HMMs are utilized, i.e., one machine learning module per group per item. Each one of these modules may be 
described at any time as being in one of a set of SN = 100 distinct states. Extending the Eq. 3.2.2, the set of individual states are 
given as follows: 
 

0 9 8 9 9{ , ... , , }S S S S=   (3.3.1) 
 

Each distinct state denotes an equivalent range of acceptance rate. The meaning of acceptance rate refers to the acceptance 
percentage of each broadcast based on the clients’ feedbacks. 

The server is able to possess an estimate of the number of clients that are under its coverage by sending one control packet 
asking of them to send back a feedback. Each client sends his feedback (vote) as an answer to the server’s control packet. Then, 
the server, using its long-code database [7], decodes the votes possessing an estimation of client population. This procedure can 
be repeated periodically. 

For example, consider a distributed system with 1000 connected clients, as described above. If the server side broadcasts 
item y of group x and the group x sends back 25 votes, the acceptance rate of group x for item y will be 2,5%. 

The 100 acceptance states cover a range from 0-100% of the total client population (of the entire system). For instance, state 
 indicates an acceptance range of 0-1% (0% is included) of the total client population. Similarly, state  indicates the 

acceptance range of 50-51% (50% is included). Lastly, state  represents the acceptance range of 99-100% (both included). 
0S 50S

99S
Consequently, the observation symbols per state are as follows: 
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Each symbol corresponds to each state and indicates the mean value of each acceptance range: 
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The model designed is distributed and the Eq 3.2.1. is extended as follows: 
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Obviously, ,x y

tq  denotes the process state at time t of the HMM corresponding to x group and y item. Hereafter, the state 
transition probability distribution is considered as follows: 
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In this perspective, the state transition coefficients have the properties: 
 

99
,

,
, 0

0,  1x y x y
i j i j

i j
a a

=
> =∑ ,

,   (3.3.5) 

 
The HMM structure is depicted in Fig. 2. For example, transition probability  corresponds to the transition from state 

 to . This transition refers to the acceptance change from range of 15-16% to range of 23-24% of the total client 
population, concerning the third group and second item. In other words, the above transition indicates that the number of 
satisfied connected clients to the third group increased from 15-16% to 23-24%, regarding the broadcast of the second item. 
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The Eq. 3.2.7 is also extended in order to include the distributed nature of the model designed: 
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  (3.3.6) 

 
Finally, the initial state probabilities are the same for all groups and items and are denoted as follows: 
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The learning framework tries to estimate the client requests in order to accommodate the forthcoming broadcasts. The 

introduced model, which is considered as memory-less since only the current and the predecessor state is known, needs a data 
structure to be able to support operations with memory demands. For this purpose, a set of history vectors are applied to store 
and handle the past states for each HMM. The number of entries of each history vector is a system parameter, denoted by V: 
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In this manner, the entry  means that the server has sent the second item and received votes from the third group, 

indicating the transition from state  to , stored 5 entries before within the vector. 
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In essence, the proposed framework composes of a learning phase, during which the history vectors provide the model with 

a memory structure allowing it to know the current state amongst V-1 past states. In practice, these vectors operate as first-in-
first-out queues. The current (actual) state is stored in the first entry, while the value of the last entry is replaced by the 
penultimate one. All other values are shifted one position to the end of the vector. 

History vectors work as follows: the actual clients’ votes represent a state in each model and the number of state is stored in 
the vectors after each broadcast, keeping the model up-to-date. After the learning phase, a prediction phase follows, whereby the 



model predicts the most probable state for each group and item, indicating the most probable acceptance rate for the next 
broadcast. For instance, suppose that after tth broadcast the actual acceptance rate of group x for item y indicates pht state. Also, 
assume that after t’th broadcast the corresponding state for the same group and item is pht’. Then it holds that the active current 
state of group x for item y after tth broadcast is ,

t
x y
t phq S= . Afterwards, the history vector update takes place as follows: 
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Afterwards, the corresponding transition probabilities are updated, according to history vectors: 
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In the above equation, the frequency of j defines the number of times that state j appears in history vector ,

t

x y
phH . 

For example, consider that after broadcast at time t = 120 the actual acceptance rate of group 3, for item 2 indicates the state 40. 
Also assume that after broadcast at time t’ = 125 for the same group and item, the number of clients’ feedbacks indicates state 
51. Furthermore, let the size of the history vectors be equal to 100 entries. First, the update of the history vectors takes place: 

for each h, where 2≤h≤100 and3,2 3,2
40 40( ) ( 1),H h H h= − 3,2

40 (1) 51H = . Next the transition probabilities are changed, according to 

the history data of the vectors: 
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a = , for each j, where 0≤j≤99. 

Finally, the predictor modules choose the most probable transition state for each item and store it to vector Ft, where t is the 
current time, as follows: 
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In fact, vector Ft determines the most probable transition, given the current state for each group and item. As previously 
mentioned, the prediction phase follows the round robin phase. In this way, the former phase is used to fill the history vectors of 
the prediction modules, while the latter one produces the prediction-based schedule based on vector Ft. Therefore, vector Ft is 
activated only during the prediction phase. During this phase and after each broadcast, vector Ft is reformed in order to give the 
most probable transition of each group of each item per group. This fact means that vector Ft indicates the predicted acceptance 
rate of all N×M items (or M items per N groups). The next step is to apply a scheduling algorithm, which is utilized in order to 
construct a schedule of the forthcoming broadcasts based on the predicted acceptance rates. The server’s operation order is 
depicted in Fig. 3. 
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Fig. 3. The server’s operation order. 

 
The scheduling algorithm is defined as follows: 
 
Scheduling Algorithm 
 
//begin the prediction phase. 
1. At time t calculate Ft vector 
//a normalization takes place to schedule N×M (total number of items) broadcasts according to the output of the prediction 
modules 
2. Summarize the Ft vector and set it as . ( ( , ))tSum F x y
//Get the proportional acceptance rate (vector Rt) of each x group and each y item based on Ft vector: 

3. Set 
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for each x, y, where 1 ≤ x ≤ N, 1 ≤ y ≤ M 
//The selection of the forthcoming items takes place. 
4. While ( ) ( ( , )) 0tSum R x y >

5. Find  and select item ymax of group xmax, as the next item to broadcast. max ( max, max) max[ ( , )]tR x y R x y=
6. Broadcast item ymax of group xmax. 
7. Reduce Rt(xmax, ymax) by one. 
//history vectors update 
8. end_while 
//end of schedule algorithm 
 

It is worth mentioning that the proposed scheme does not induce extra computational time. More specifically, the proposed 
scheme as well as the one of [2] runs linearly in sense of the number of groups and items. The complexity of scheme [2] is 
bounded by O(N·M) while the proposed one runs in O(N·M· SN·(V+1)). Since SN and V are constant and predefined, both 
schemes cause the same computational time. 

4. Performance Evaluation 

4.1 Simulation Environment 
The server contains a database of K=N×M equally-sized items, with item length l, being equal to the unit. A population of P 

clients is considered, grouped into N groups. Each group is located at a different region and has different item demands. In order 
to model groups of clients with different group sizes, the size of each group is computed via the Zipf distribution. Thus, the 
number of clients in group x, Size(x), 1 x N≤ ≤ , is:      
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N  and θ is a parameter named group size skew coefficient. Any client belonging to group x is 

interested in the same subset B Bx of server’s data items. All items outside this subset have a zero demand probability at the clients 
of the group. Moreover, [ ]1 2 1, 2  1.. ,  x1 2 , x xB x x NB ∀ ∈ ≠≠ x , which means that there are not any common demands 
between any two clients belonging to different groups. 

In each subset, the client demand probability py for each item in place y in that subset, is computed also via the Zipf 
distribution with θ1 being the item demand skew coefficient. 

As the number of items per subset BBx is considered the same for each subset (equal to M=K/N), a number of NxM parallels 
HMMs are utilized at the server, as they are described in section 3.  



The broadcasts are subject to reception errors, with unrecoverable errors per instance of an item occurring, according to a 
Poisson process with rate λ. The simulation environments are dynamic with either parameter θ (group size skew coefficient) or θ1 
(item demand skew coefficient) altering its value in the interval of [0.0…1.0] and [0.0…1.5], respectively, randomly during the 
simulation. The simulation runs until the server broadcasts BR items. The PPS is compared with the “static push system” of [2] 
in environments with dynamic characteristics. According to “static push system”, the item demand probability vector is 
uniformly distributed, which means that the server assumes that each item is equally desired by the clients. Eventually, this 
vector remains steady during the whole simulation. The comparison of the PPS with the adaptive scheme can not be performed 
as the operational parameters of the learning automaton depend dramatically on the environment nature and differentiate between 
the examined scenarios. These values can not be pre-estimated due to the a priori unknown and dynamic altering characteristics 
of the examined scenarios that appear in the majority of the realistic cases. 

The performance of the compared schemes is measured in terms of mean delay and efficiency. The mean delay is defined as 
the amount of time (measured in number of broadcasts) a client has to wait for the item that he needs, while the system efficiency 
is defined as the efficiency of the broadcast process. More specifically, the system utilization per client is defined as follows: 
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4.2 Simulation Results 
The experiments are performed in a simulator coded in Matlab. The simulation results presented in this Section are obtained 

with the following values to the parameters: 1000P = , 100000BR = , 0.1λ = andV K= . Table 1 summarizes the 
characteristics of the networks that have been simulated. Figures 4-13 depict the simulation results of these networks. The 
number of simulation runs for each dotted data point is equal to 10 and the confidential interval is 95%.  

 
Table1. The characteristics of the network environments. 
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Fig. 4. Mean delay of network N1, where the number of database items varies 
and the item demand skew coefficient changes dynamically during the 
simulation.  
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Fig. 5. The efficiency of network N1, where the number of database items 
varies and the item demand skew coefficient changes dynamically during the 
simulation. 
 

Network N K θ  1θ  

N1 1 50…300 - dynamic 
change 

N2 5 250 0.0 ... 1.0 dynamic 
change 

N3 5 250 dynamic 
change 0.0 ... 1.5 

N4 5 50…500 dynamic 
change 0.8 

N5 1…10 500 dynamic 
change 0.9 



 
 Figures 4 and 5 present the mean delay and the system efficiency respectively versus different values of number of database 
items K. In network, N1, the item demand skew coefficient 1θ  varies dynamically during the simulation, taking values in the 
interval of [0.0…1.5], expressing the client desirability changes in realistic broadcasting environments. For these experiments, 
the client population is considered to belong to a single group (N = 1), while the number of data items changes taking values 
from 50 to 300 with step equal to 25. Figures 4 and 5 confirm that the proposed PPS scheme achieves lower mean delay 
compared to the “static push” one, while the system efficiency of the PPS scheme is higher than the “static push” one for various 
values of the K parameter. The applied HMM component seems to be beneficial to the proposed framework, by supporting 
accurate estimations regarding the most desirable information items. In this manner, the enhanced push system is able to take 
more effective schedule decisions compared to the “static push” one.  It is clear that as the number of data items increases, the 
system mean delay increases too. This behaviour lies in the fact that in a system where the clients have to choose from a small 
pool of options (e.g., K = 50), a single broadcast is able to satisfy a large number of clients, compared to a system where the 
number of the available options is much higher (e.g., K = 300).  In other words, when the number of the available data items 
increases, the differentiation in clients’ desirability is high. Thus, the server needs more time to satisfy the whole client 
population. As an effect, the system mean delay increases and the system efficiency degrades.  
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Fig. 6. Mean delay of network N2, where the group size skew coefficient 
varies and the item demand skew coefficient changes dynamically during the 
simulation.   
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Fig. 7. The efficiency of network N2, where the group size skew coefficient 
varies and the item demand skew coefficient changes dynamically during the 
simulation.  
  
 
 
 

 
 The performance of network N2 is evaluated in figures 6 and 7, as the skew coefficient θ  varies. In this network, the clients 
are separated into five groups (G = 5), the number of data items is stable and equal to 250, while the item demand skew 
coefficient 1θ takes various values in the interval of [0.0…1.5] (dynamic environment). It is obvious that the PPS scheme not 
only exceeds the performance of the “static push scheme” (lower mean delay) but also improves its performance, in terms of 
system efficiency, as the variation between the group sizes increases (the value of θ  increases). The “static push” scheme is 
unable to manipulate the alterations of the items’ desirability (expressed by the value of 1θ ) as well as the variation between the 
group sizes. Thus, it fails to follow the dynamic features of a realistic environment, keeping a stationary performance. On the 
contrary, the PPS scheme is able to take into account not only the alterations of the items’ desirability, but also the variation of 
groups’ size through the presence of the designed prediction-based framework. Thus, the PPS achieves further performance 
improvement in networks with high value of group size skew coefficient θ , as a single broadcast succeeds to satisfy a large 
number of clients.  
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Fig. 8. Mean delay of network N3, where the item demand skew coefficient 
varies and group size skew coefficient changes dynamically during the 
simulation.   
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Fig.9. The efficiency of network N3, where the item demand skew coefficient 
varies and group size skew coefficient changes dynamically during the 
simulation.   

 
In figures 8 and 9, the mean delay and system efficiency of network N3 are depicted respectively concerning the coefficient 

1θ . In this network, the number of groups is set to 5 (G = 5), while the number of data items is set to 250 (K = 250). 

Furthermore, the client demands are formed with the parameter of 1θ , varying from 0.0 to 1.5. For this scenario, a dynamic 

change of group size skew coefficient θ , takes place, reflecting the size of the system groups. Once more, the suggested 
framework reduces the waiting time of the clients compared to the “static push” one. Also, the proposed scheme outperforms the 
static one in terms of system efficiency, presenting efficient and effective behaviour, as the item demand skew coefficient 1θ  
raises. The PPS scheme achieves better performance than the static one, since it is able to predict the client demands of the 
system. Moreover, a high value of the skew coefficient 1θ  causes reduction in the number of the items that are the most popular. 
Thus, the broadcast of one of these highly desirable items is likely to satisfy the majority of the clients. In this way, the system 
experiences lower mean delay and higher system performance.  
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Fig. 10. Mean delay of network N4, where the number of database items varies 
and the group size skew coefficient changes dynamically during the 
simulation.  

50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

number of  data items

sy
st

em
’s

 e
ff

ic
ie

n
cy

 

 

static push system
PPS

 
 
Fig. 11. The efficiency of network N4, where the number of database items 
varies and the group size skew coefficient changes dynamically during the 
simulation.  

 
 
 

The network scenario N4 is evaluated in figures 10 and 11, in terms of mean delay and system efficiency, respectively, 
against the number of database items. The environment consists of five groups (G = 5), while the number of database items 
varies in the interval of [50… 500].  The group size skew coefficient θ  alters dynamically during the simulation, while the item  
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Fig. 12. Mean delay of network N5, where the number of groups varies and the 
group size skew coefficient changes dynamically during the simulation. 
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Fig. 13. The efficiency of network N5, where the number of groups varies and 
the group size skew coefficient changes dynamically during the simulation. 

 
 

demand skew coefficient  1θ  is constant and equal to 0.8. Clearly, the mean delay is almost proportional to the number of the 
items and the efficiency of the corresponding network decreases as the number of items increases. The proposed PPS scheme 
excels in both figures, keeping the mean delay low, while the broadcasts are more effective. 

Figures 12 and 13 confirm the superiority of the proposed scheme, since it is apparent that it excels the “static push” one, in 
terms of mean delay and system efficiency for environments with different number of groups of clients (N=1…10).  

Totally, the following observations can be extracted from the presented simulation results: 
1) The proposed PPS scheme succeeds in predicting client demands and it is clearly superior to the “static push” one, since it 

provides the desired items to the connected clients in shorter time than the “static push” one. In this manner, a client waits less 
amount of time for a desired item, compared to time induced by the “static push” operation. Hence, by utilizing the proposed 
scheme more clients receive the desired items in less time. 

2) The suggested framework reduces significantly the mean delay irrespectively the number of groups and items. The 
prediction module provides the system with the ability to estimate and accommodate the appropriate broadcasts in order to 
service clients in expeditious manner. 

3) The suggested prediction-based enhancement is capable of adjusting its operational attitude in accordance to the dynamic 
changes of a realistic environment. 

Overall, the proposed prediction add-on enables a rigorous client intention handling, offering a more effective exploitation 
of the systems resources. 
 
 
5.  Conclusion 
 

A novel learning framework was presented in this paper for dynamic wireless push systems. The applied scheme involves 
Hidden Markov Models (HMMs) and aims at supporting the system with accurate predictions regarding the selection of the most 
desirable client demands, in order to operate efficiently in dynamic environments. The dynamic alterations of the environment 
characteristics may involve changes of the items’ desirability and variations of the groups’ size that the clients are gathered into. 
The proposed framework estimates the forthcoming clients’ intentions, based on the history data structure of the HMMs. Then, 
the outcome of the HMM framework is used to conduct a schedule of the forthcoming server’s broadcasts that will serve the 
clients in the most efficient way. The simulation results reveal that the proposed scheme presents better performance than the 
“static push” one, resulting in reduced mean delay and higher system’s efficiency. 
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