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Abstract 
  
In this paper a Hidden Markov Model (HMM) is applied at the broadcast server in order to 
provide accurate decisions for a wireless push system environment with unknown client 
demands. Clients are organized into groups and may request a set of items. The server side 
sends an item per time and then clients respond with a feedback, if the transmitted item is 
the desirable one. The novel model tries to adapt quickly and precisely to the dynamic 
changes of the clients’ demands. Initially, the suggested scheme learns the intentions of the 
connected clients for a specific number of broadcasts and then begins to predict the clients’ 
requests. Finally, the server side follows the results of the prediction procedure, by sending 
the appropriate items. Concurrently, the prediction module keeps a request history, which 
is updated by the clients’ feedbacks. The presented scheme is compared with a learning 
automata-based scheme and the simulation results indicate that the novel scheme induces 
an improvement, in terms of mean response time. 
 
 

1. Introduction 
 

In the field of data broadcasting (e.g. traffic information), push systems [1-3] have 
appeared to be the main approach that is able to provide high scalability and client 
hardware simplicity. The “pure” push systems [1] are considered to have an a-priori 
estimation of the clients’ demands and make broadcasts according to these estimations. 
Thus, they seem unable to operate efficiently in environments with unknown, dynamic 
client demands. In such environments, a mechanism able to adapt to the clients’ demands or 
predict them would achieve an increased performance of the system. The adaptive push 
systems of [2] and [3] achieve adaptivity and, thus, significant improvement of the 
performance in applications characterized by a-priori unknown and dynamic client 
demands using a Learning Automaton [4] at the broadcast server that is able to adapt to the 
altering clients’ needs. After each item broadcast, every satisfied client sends back to the 
server a feedback (e.g. one bit), using Code Division Multiple Access (CDMA). In this 
work a set of HMMs is proposed in order to provide a transmission schedule, predicting the 
most possible (most desirable to the clients) items. HMMs have widely used for prediction 
or pattern recognition [5-7]. 

 



2. The Prediction-based scheme 
 

Broadcasts are organized into transmission frames. Each frame comprises of two 
phases, the round robin phase and the prediction phase. During the round robin phase the 
server side broadcasts all the items (of each group) once per time. Then the prediction 
phase begins and the transmission items are selected according to the output of the 
predictor component (Fig. 1). It has been found empirically that the peak system 
performance is reached when the length of the prediction phase is three times larger than 
the one of the round robin phase. In other words, the transmission frame is divided into two 
parts, the first 25% of broadcasts belongs to the round robin phase and the rest 75% is 
dedicated to the prediction phase. 
 

 
Figure 1. The transmission frame structure. 
 
The purpose of the prediction module is to adapt to the clients’ requests as accurately as 
possible. If we assume that the system comprises of N groups with M possible items per 
group then NxM parallels HMMs are utilized, i.e., one predictor module per group per 
item. For each predictor module a set of 20 distinct states are considered, which denote 
intervals of acceptance: 
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The actual population of each group is unknown, hence estimation about the group 
population is assumed. If the total population of the connected clients is P then the 
theoretical proportion is P/N, i.e., P/N clients belong to each group. So, the 20 acceptance 
intervals cover a range from 0% to 200% of P/N, with equal amount of 10% for each 
interval. For example, state  refers to the second item of the third group and represents 
an acceptance percentage (satisfied clients) between 0% and 10% of the P/N (theoretical) 
population of the third group. In the same manner, state  represents the acceptance 
percentage between 10% and 20% of the P/N (theoretical) population and so on. Also, the 
state transition probability distribution is considered, as follows: 
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denotes the current broadcast and t’ denoted the next broadcast that the j item of the i group 
will be transmitted. The HMM structure is depicted in Fig. 2. 
 



 
Figure 2. The Hidden Markov Model structure, defined by 20 individual states. 
 
For example, transition probability  refers to the transition from state  to . 
Practically, this transition means that item 2 of group 3 has accepted a number of feedbacks 
equal to 40-50% of the P/N theoretical population of group 3 after the tth broadcast, while 
the same item has accepted a number of feedbacks equal to 10-20% of P/N after broadcast 
t’. The output of each predictor is the most probable transition, i.e., the transition with the 
greatest probability. In order to determine the most probable transition, a set of history 
vectors are considered for each distinct state to store the past acceptance rates with size 
equal to V entries: 
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where 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ h ≤ V, for each z, where 0 ≤ z ≤ 19. 
 
For example, entry  means that item 2, of group 3, received feedbacks that 
indicate the transition from state to , 9 entries before. History vectors operate like 
first in first out queues. 
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History vectors in conjunction with the actual clients’ feedbacks define the 
predicted request for the following prediction phase. After broadcast t, let the actual 
acceptance rate of item j (group i) to indicate pht state. Also, consider that the actual 
acceptance rate of the same item after broadcast t’ is pht’. Then it holds that the active 
current state of item j of group i after broadcast t is ,

t
i j
phS . The next step is the history vector 

update. History vectors regarding group i and item j are updated as follows: 
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Then the corresponding transition probabilities are updated, according to history vectors: 
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for each y, where 0 ≤ y ≤ 19. 
For example, consider that after broadcast 120th the actual acceptance rate for group 

3, item 2 equals to the state 4 and after broadcast 125 th  the same item accepts feedbacks 
that indicate state 1. Furthermore, let the size of the history vectors be equal to100 entries. 
History records are updated, hence  for each h, where 2 ≤ h ≤ 100 and 

. Next, the transition probabilities are changed. 
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Finally, the predictor modules choose the most probable transition state for each 

item and store it to vector F, as follows: 
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At the beginning of the prediction phase vector F is filled with the most probable transition 
for each group, for each item. This fact means that vector F indicates the estimated 
feedback rate of each item. The next step is to apply a schedule algorithm, which is utilized 
in order to construct a schedule of the forthcoming broadcasts. The algorithm is defined as 
follows: 
 
//begin the prediction phase 
 
Calculate F vector 
 
//a normalization takes place to schedule the 75% of the total broadcasts 

Set 
N
RxFxF jiji •= )()( ,, , for each i, j, x, where 1 ≤ i ≤ N, 1 ≤ j ≤ M, 0 ≤ x ≤ 19 

Summarize the F vector and set it to  )( , jiFSum

Set M
xFSum

xFxF ji

ji
ji

4
3

))((
)()( ,

,
, •=  

 
//the selection of the forthcoming items takes place 
Step1 
Find  and select x, as the next item to broadcast )]([maxarg)max( ,
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Broadcast item x 
Update the history 
Reduce max(x) by one 
If the broadcast reached the ¾ of the total broadcasts the algorithm ends, otherwise return 
to Step1 
 
//end of schedule algorithm 



3. The Simulation Environment 
 

We consider a client population of P. Clients are grouped into N groups each one of 
which is located at a different location. In order to model groups with different group sizes, 
we compute the size of each group via the Zipf distribution. 
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where 1 ≤ i ≤ N, θ  is a parameter named access skew coefficient. 
Any client belonging to group i is interested in the same subset  of server’s data items. 

All items outside this subset have a zero demand probability at the clients of the group. 
Moreover, 
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. ],..1[ ,  , liNliDD li ≠∈∀≠  Each one of the  subsets comprises of M items 
and the client’s demand probability is computed via the above mentioned Zipf distribution. 
The item length, le, is considered to be the same for each item and equal to the unit, le = 1. 
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The simulation runs until each server broadcasts B items. The simulation results 
presented in this section are obtained with the following values to the parameters: P = 1000, 
B = 100000, and V = M. 

Table 1 shows the different simulation environments. Fig. 3, Fig. 4, and Fig. 5 depict the 
mean response time versus the number of groups for , , and  networks 
respectively. 

1N 2N 3N

 
Network N M θ  
N1 

 

[5...20]∈  5 0.9 
N2 10 [5...20]∈  0.9 
N3 20 5 [0.0 ... 1.0]∈

 
Table 1. The characteristics of the different 
simulation environments. 
  

Fig.3. The mean response time versus   
number of groups for network N1.          
  



 
Fig.4. The mean response time versus   
number of data items for network N2.      

Fig.5. The mean response time versus   
group size skew coefficient θ  for network 
N3.  

 

Conclusion 
 
In this work a prediction-based scheme was presented for wireless push-based systems. The 
suggested model was designed to provide accurate adaptation regarding the requests of the 
connected clients. Probability states were designed in order to realize the successful rates of 
the server’s broadcasts. Simulation results were presented that reveal the superior 
performance of the proposed scheme in environments with a priori unknown, dynamic 
client demands.    
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