
DIAS: An Adaptive Push System, based on Distributed
Learning Automata

V. Kakali, P. Sarigiannidis, G. I. Papadimitriou, Senior Member IEEE, and A. S. Pomportsis

Department of Informatics, Aristotle University of Thessaloniki
Box 888, 54124 Thessaloniki, Greece

e-mail: vicky198@csd.auth.gr

Abstract
In the field of data broadcasting and delivery information, push systems have appeared
able to provide high scalability and client hardware simplicity in wireless environments.
Moreover, learning automata may aim in providing adaptive decisions for an environment
with unknown client demands. The proposed scheme is composed of distributed learning
automata, which provide online estimations regarding the client demands. Clients are
organized in groups and may request a set of items. The server side has to choose one item
per broadcast. A learning automaton is applied on each group, trying to estimate the
clients’ demands for each group. In this way, the server side forms a view of the demands
of each group and broadcasts items according to the estimated clients’ demands.
Simulation results show that the novel technique presents lower mean response time than a
previous automata-based scheme, meaning that each client is satisfied more regularly.

1. Introduction

Data broadcasting is an efficient way of delivering information over wireless networks
(e.g. weather information and news distribution) with pull [1], push [2,3,4] and hybrid [5]
being the major approaches of designing broadcast schedules [6]. Moreover, most
applications are characterized by locality of demand. Locality of demand means that clients
are gathered into groups, each one located at a different region and members of each group
have similar demands for information items, different from the demands of clients at other
groups (e.g. traffic information).In this paper, the push approach is selected as the main
schedule environment. In “pure” push systems (e.g. [2]), the server is assumed to have an a-
priori estimate of the demand per information item and broadcasts according to these
estimates. Moreover, the adaptive push system of [3] extends the applicability of the push
approach to environments characterized by a-priori unknown and dynamic client demands
using a learning automaton [7] at the broadcast server in order to provide adaptivity. The
adaptive approach presents results that reveal efficient operation in such environments.

The proposed scheme alters the operation of designing the broadcast schedules by
applying a distributed learning-automata scheme instead of a centralised one. Moreover, the
broadcasts are organised in three phases, named the learning phase, the calculation phase
and the schedule phase. The DIstributed Automata Scheme (DIAS) framework targets on
accurate estimations regarding the clients’ demands. In this manner, it takes into account
the locality of item demand per group. This means that the server side tries to determine the

clients demand per group by applying a learning automaton on each group of clients,
contrary to a unique centralized learning automaton for the whole system.

 The remainder of the paper is organised as follows: Section 2 presents the proposed
scheme and simulation results are presented in Section 3. Finally, Section 4 concludes the
paper.

2. The DIstributed Automata Scheme (DIAS)

A. The Learning phase

Each Learning Automaton contains the server’s estimate ,i gp′ of the demand
probability ,i gp for each item i among the set of the items that the server broadcasts for

the specific group .Thus, for each group , it holds g g
1

,'
Num

i
i gp

=

1=∑ , where is the

number of items that refers to each group.

Num

During the learning phase, the broadcast follows a round robin manner sending each
item once.

After the transmission of item i of group , each satisfied client transmits a feedback
(e.g. one bit), using Code Division Multiple Access (CDMA).

g

After the reception and decoding of the feedbacks, the server updates the distributed
demand probability vector gp′ according to the probability updating scheme that is
described below.

When there are satisfied clients, the probability of the transmitted item is increased
while the probabilities of all the rest items are decreased. Considering that the server’s
transmission is item i of group , the probability vector

i
thk

g gp′ is updated according to
equation (1):

' ' '
, , ,

' ' '
, , ,

(1) () (1 ()) (()), j

(1) () (1 ()) (())

g

g
i j

j g j g j g

i g i g j g

p k p k L k p k a

p k p k L k p k a

β

β
≠

+ = − − − ∀ ≠

+ = + − −∑

i
 (1)

where []'
, () (,1), 1, ...,i gp k a i Num∈ ∀ ∈ , , (0,1)L a∈ , () 1

 g k

number of satisfied clients of g
number of clients of g

β = −
 .

The server is aware of the population of each group using the following mechanism: The
server, which has a priori knowledge of the geographic locations (co-ordinates) where his
services are offered, sends one control packet for each one of these locations, asking of the
clients that belong to this location to send back a feedback. Considering clients equipped
with GPS receivers (e.g. PDAs), the client’s GPS receiver detects its co-ordinates and the
client sends its feedback as an answer to the control packet that refers to its area.

g

L is a
parameter that governs the speed of the automaton convergence and parameter prevents a

the probabilities of unpopular items from taking values around zero. A value of that
equals one represents the case where no client feedback is received.

()g kβ

At the end of the learning phase, the value of the mean number of feedbacks per group is
stored in a vector in order to be used for the calculation phase. F

B. The calculation phase

The broadcasts of the next phase are formed based on the formula below:

1

g
g G

g
i

F
S G

F
=

= ⋅ ⋅

∑
Num ,where gS is the number of the future broadcasts dedicated to each

group , is the number of system’s groups and is the number of items that refers to
each group .

G Num

C. The schedule phase

According to vector, a number of broadcasts are scheduled equal to as follows: S ()sum S

while (sum(S)>0)
 maximum = max(S)
 selected group = the index of maximum in vector S
 broadcast to the “selected group”, the item i that maximizes the cost function
 presented below
 update selected groupp′

 S(selected group) = S(selected group) – 1
 end while

The server selects to broadcast to the “selected group” the item that maximizes the cost
function [2]

i
()CF i

2 ,'
() (()) , 1 i

(1 ())
(1 ())

i

i

i g

i

p
CF i T R i Num

l
E l
E l

= − ≤ ≤
+
−

 (2)

where is the current time, is the time when item i was last broadcast, is the
server’s estimated demand probability for item i , is the item’s length, is the
probability than an item of length is received with an unrecoverable error and is
the number of the data items of group . For items that have not been previously broadcast

 is initialized to .

T ()R i '
,i gp

il ()iE l

il Num
g

()R i 1−

3. The Simulation Environment
A client population of is considered. Clients are gathered into groups each one

of which is located at a different location. In order to model groups with different group
sizes, we compute the size of each group via the Zipf distribution.

NumCl G

[1 1
where , 1..

1
,

k

c c k
g

k

θ]G
θ

= ∈
⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎝ ⎠

∑
 (3)

where 1 g G≤ ≤ , θ is a parameter named access skew coefficient. For 0θ = , the Zipf
distribution reduces to a uniform distribution of group sizes. For large values of θ , the Zipf
distribution produces increasingly skewed patterns.

Any client belonging to group g is interested in the same subset gD of server’s data
items. All items outside this subset have a zero demand probability at the clients of the
group. Moreover, [], 1.. , , i j i j G i jD D ∀ ∈ ≠≠ . Each one of the gD subsets comprises of

 items and the client’s demand probability Num ,i gp for each item in place i in that subset
is computed via the above mentioned Zipf distribution. The item length, , is considered to
be the same for each item and equal to the unit,

l
1l = .

Also, a server equipped with one omni-directional antenna and a number of G (one for
each of the groups) learning automata are assumed. Each learning automaton contains its
probability estimate of the equally-sized items that concern each group (geographic
location). Finally,

Num
 1E e λ−= − is the probability that an item is received with an

unrecoverable error (Poisson process).
The simulation runs until each server broadcasts items. The overhead due to the

duration of the feedback pulses and the signal propagation delay is defined via the
parameter . The simulation results presented in this section are obtained with the
following values to the parameters:

N

Ouh
1000NumCl = , 100000N = , 310Ouh −= , 0.1λ = , , and

.
0.15L =

410α −=
Network G Num θ

N1 [5...20]∈ 5 0.9
N2 10 [5...20]∈ 0.9
N3 20 5 [0.0 ... 1.0]∈

Table 1. The characteristics of the different
simulation environments.

Fig.1. The mean response time versus
number of groups for network N1.

Fig.2. The mean response time versus
number of data items per group for network
N2.

Fig.3. The mean response time versus
group size skew coefficient θ for network
N3.

Figures 1-3 display the mean response time of the networks N1, N2 , N3, versus different
number of groups, different number of items per group and different values of size skew
coefficient θ , respectively. In each of the figures, we compare the proposed DIAS scheme
to the centralized one. Fig.1, depicts clearly the increased performance that the proposed
distributed system achieves against the centralized one as the number of groups of the
clients is increased. Due to the large number of groups, the system of the centralized
automaton is unable to adapt efficiently to the many unlike demands compared to the DIAS
where each automaton is dedicated to the specific demands of its group. Fig. 2 confirms the
superiority of the proposed DIAS for various numbers of items per group. Fig. 3 reveals the
performance that DIAS achieves against the centralized system as the population of the
groups of clients is getting more unequal (the group size skew coefficient θ is increased).
This is presumed as the unique centralized automaton is unable to make accurate
estimations and thus to adapt efficiently in a such unequal environment (large values of θ).
On the other hand, the DIAS framework achieves accurate estimations regarding the
clients’ demands using a dedicated automaton for each group that is updated separately by
taking into account the locality of item demand per group.

4. Conclusion

A novel push system was presented that adopts a distributed learning automaton

operation. The core idea is based on distributed automata, which operate separately for each

group of clients. The distributed broadcast scheduling manner serves more efficiently, in
terms of mean response time, than the centralized scheduling system. This improvement
leads to more satisfied clients for the same number of broadcasts than the centralized one.

References

[1] D.Aksou and M.Frankin, “RxW: A Schedualing Approach for Large-Scale On-Demand Data
Broadcast”, ACM/IEEE Transactions on Networking vol.7, no.6, pp.846-860, December 1999.
[2] N.H.Vaidya and S.Hameed, “Scheduling Data Broadcast In Asymmetric Communication
Environments”, Wireless Networks, vol.2, no.3, pp.171-182, May 1999.
[3] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “ Using Learning Automata for
Adaptive Push - Based Data Broadcasting in Asymmetric Wireless Environments ”, IEEE
Transactions on Vehicular Technology, vol.51, no.6, pp.1652-1660, November 2002.
[4] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, ”Multiple Antenna Data Broadcasting for
Environments with Locality of Demand”, IEEE Transactions on Vehicular Technology, vol.56, no.5,
pp.2807-2816, September 2007.
[5] K. Stathatos, N. Roussopoulos and J. S. Baras, “Adaptive Broadcasts in Hybrid Networks”, In
Proceeding of VLDB 1997, pp.326-335.
[6] Shyam Kapadia, Bhaskar Krishnamachari, “Distributed Computing in Sensor Systems”, chapter title
“Comparative Analysis of Push-Pull Query Strategies for
Wireless Sensor Networks”, pp. 185-201, Springer Berlin / Heidelberg, 2006.
[7] M. A. L. Thathachar, P. S. Sastry, “NETWORKS OF LEARNING AUTOMATA, Techniques
for Online Stochastic Optimization”, Kluwer Academic Publishers, 2004.

	The Simulation Environment

