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Abstract 
In the field of data broadcasting and delivery information, push systems have appeared 
able to provide high scalability and client hardware simplicity in wireless environments. 
Moreover, learning automata may aim in providing adaptive decisions for an environment 
with unknown client demands. The proposed scheme is composed of distributed learning 
automata, which provide online estimations regarding the client demands. Clients are 
organized in groups and may request a set of items. The server side has to choose one item 
per broadcast. A learning automaton is applied on each group, trying to estimate the 
clients’ demands for each group. In this way, the server side forms a view of the demands 
of each group and broadcasts items according to the estimated clients’ demands. 
Simulation results show that the novel technique presents lower mean response time than a 
previous automata-based scheme, meaning that each client is satisfied more regularly.  
 
 
 

1. Introduction 
 

Data broadcasting is an efficient way of delivering information over wireless networks 
(e.g. weather information and news distribution) with pull [1], push [2,3,4] and hybrid [5] 
being the major approaches of designing broadcast schedules [6]. Moreover, most 
applications are characterized by locality of demand. Locality of demand means that clients 
are gathered into groups, each one located at a different region and members of each group 
have similar demands for information items, different from the demands of clients at other 
groups (e.g. traffic information).In this paper, the push approach is selected as the main 
schedule environment. In “pure” push systems (e.g. [2]), the server is assumed to have an a-
priori estimate of the demand per information item and broadcasts according to these 
estimates. Moreover, the adaptive push system of [3] extends the applicability of the push 
approach to environments characterized by a-priori unknown and dynamic client demands 
using a learning automaton [7] at the broadcast server in order to provide adaptivity. The 
adaptive approach presents results that reveal efficient operation in such environments.  

The proposed scheme alters the operation of designing the broadcast schedules by 
applying a distributed learning-automata scheme instead of a centralised one. Moreover, the 
broadcasts are organised in three phases, named the learning phase, the calculation phase 
and the schedule phase. The DIstributed Automata Scheme (DIAS) framework targets on 
accurate estimations regarding the clients’ demands. In this manner, it takes into account 
the locality of item demand per group. This means that the server side tries to determine the 



clients demand per group by applying a learning automaton on each group of clients, 
contrary to a unique centralized learning automaton for the whole system. 

 The remainder of the paper is organised as follows: Section 2 presents the proposed 
scheme and simulation results are presented in Section 3. Finally, Section 4 concludes the 
paper.    

 
 

2. The DIstributed Automata Scheme (DIAS) 
 
A. The Learning phase 
 

Each Learning Automaton contains the server’s estimate ,i gp′  of the demand 
probability ,i gp  for each item i  among the set of the items that the server broadcasts for 

the specific group .Thus, for each group , it holds g g
1

,'
Num

i
i gp

=

1=∑ , where  is the 

number of items that refers to each group. 
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During the learning phase, the broadcast follows a round robin manner sending each 
item once. 

After the transmission of item i  of group , each satisfied client transmits a feedback 
(e.g. one bit), using Code Division Multiple Access (CDMA).  

g

After the reception and decoding of the feedbacks, the server updates the distributed 
demand probability vector gp′  according to the probability updating scheme that is 
described below.  

When there are satisfied clients, the probability of the transmitted item  is increased 
while the probabilities of all the rest items are decreased. Considering that the server’s  
transmission is item i  of group , the probability vector

i
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g gp′  is updated according to 
equation (1): 
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The server is aware of the population of each group  using the following mechanism: The 
server, which has a priori knowledge of the geographic locations (co-ordinates) where his 
services are offered, sends one control packet for each one of these locations, asking of the 
clients that belong to this location to send back a feedback. Considering clients equipped 
with GPS receivers (e.g. PDAs), the client’s GPS receiver detects its co-ordinates and the 
client sends its feedback as an answer to the control packet that refers to its area.  

g

L  is a 
parameter that governs the speed of the automaton convergence and parameter  prevents a



the probabilities of unpopular items from taking values around zero. A value of   that 
equals one represents the case where no client feedback is received.  

( )g kβ

At the end of the learning phase, the value of the mean number of feedbacks per group is 
stored in a vector in order to be used for the calculation phase. F
 

B. The calculation phase 
 
The broadcasts of the next phase are formed based on the formula below: 
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Num       ,where gS is the number of the future broadcasts dedicated to each 

group ,  is the number of system’s groups and is the number of items that refers to 
each group .  
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C. The schedule phase  
 

According to vector, a number of broadcasts are scheduled equal to  as follows:  S ( )sum S
 
while (sum(S)>0) 
 maximum = max(S) 
 selected group = the index of maximum in vector S 
 broadcast to the “selected group”, the item i that maximizes the cost function     
            presented below 
 update  selected groupp′   

 S(selected group) = S(selected group) – 1 
 end while 
 

The server selects to broadcast to the “selected group” the item  that maximizes the cost 
function [2]  
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where  is the current time, is the time when item i  was last broadcast,  is the 
server’s estimated  demand probability for item  i ,  is the item’s length,   is the 
probability than an item of length  is received with an unrecoverable error and  is 
the number of the data items of group . For items that have not been previously broadcast 

 is initialized to . 
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3. The Simulation Environment 
A client population of  is considered. Clients are gathered into  groups each one 

of which is located at a different location. In order to model groups with different group 
sizes, we compute the size of each group via the Zipf distribution. 
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where 1 g G≤ ≤ , θ  is a parameter named access skew coefficient. For 0θ = , the Zipf 
distribution reduces to a uniform distribution of group sizes. For large values of θ , the Zipf 
distribution produces increasingly skewed patterns. 

Any client belonging to group g  is interested in the same subset  gD  of server’s data 
items. All items outside this subset have a zero demand probability at the clients of the 
group. Moreover, [ ],   1.. ,   , i j i j G i jD D ∀ ∈ ≠≠ . Each one of the gD  subsets comprises of 

 items and the client’s demand probability Num ,i gp  for each item in place i  in that subset 
is computed via the above mentioned Zipf distribution. The item length, , is considered to 
be the same for each item and equal to the unit, 

l
1l = .  

Also, a server equipped with one omni-directional antenna and a number of  G  (one for 
each of the groups) learning automata are assumed. Each learning automaton contains its 
probability estimate of the  equally-sized items that concern each group (geographic 
location). Finally, 

Num
 1E e λ−= −   is the probability that an item is received with an 

unrecoverable error (Poisson process). 
The simulation runs until each server broadcasts  items. The overhead due to the 

duration of the feedback pulses and the signal propagation delay is defined via the 
parameter . The simulation results presented in this section are obtained with the 
following values to the parameters:

N
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.
0.15L =

410α −=
Network G Num θ  

N1 [5...20]∈  5 0.9 
N2 10 [5...20]∈  0.9 
N3 20 5 [0.0 ... 1.0]∈

 
Table 1. The characteristics of the different 
simulation environments. 

 
Fig.1. The mean response time versus   
number of groups for network N1.          



 
Fig.2. The mean response time versus   
number of data items per group for network 
N2.      
 
 
 

Fig.3. The mean response time versus   
group size skew coefficient θ  for network 
N3.

Figures 1-3 display the mean response time of the networks N1, N2 , N3, versus different 
number  of groups, different number  of items per group and different values of size skew 
coefficient θ , respectively. In each of the figures, we compare the proposed DIAS scheme 
to the centralized one. Fig.1, depicts clearly the increased performance that the proposed 
distributed system achieves against the centralized one as the number of groups of the 
clients is increased. Due to the large number of groups, the system of the centralized 
automaton is unable to adapt efficiently to the many unlike demands compared to the DIAS 
where each automaton is dedicated to the specific demands of its group. Fig. 2 confirms the 
superiority of the proposed DIAS for various numbers of items per group. Fig. 3 reveals the 
performance that DIAS achieves against the centralized system as the population of the 
groups of clients is getting more unequal (the group size skew coefficient θ  is increased). 
This is presumed as the unique centralized automaton is unable to make accurate 
estimations and thus to adapt efficiently in a such unequal environment (large values of θ ). 
On the other hand, the DIAS framework achieves accurate estimations regarding the 
clients’ demands using a dedicated automaton for each group that is updated separately by 
taking into account the locality of item demand per group.             
 

 
4. Conclusion 

 
A novel push system was presented that adopts a distributed learning automaton 

operation. The core idea is based on distributed automata, which operate separately for each 



group of clients. The distributed broadcast scheduling manner serves more efficiently, in 
terms of mean response time, than the centralized scheduling system. This improvement 
leads to more satisfied clients for the same number of broadcasts than the centralized one. 
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