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Reconstruction of Magnetic Resonance
Images Using One-Dimensional Techniques
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Abstract— Whenever DFT (discrete Fourier transform) pro-
cessing of a multidimensional discrete signal is required, one can
apply either a multidimensional FFT (fast Fourier transform)
algorithm, or a single-dimension FFT algorithm, both using the
same number of points. That is, the dimensions of a “multidimen-
sional” signal, and of its spectrum, are a matter of choice. Every
multidimensional sequence is completely equivalent to a one-
dimensional function in both “time” and “frequency” domains.
This statement applied to MRI (magnetic resonance imaging)
explains why one can reconstruct the slice by using either one-
dimensional or two-dimensional methods, as it is already done in
echo planar methods. In the commonly used spin warp methods,
the image can be also reconstructed by either one- or two-
dimensional processing. However, some artifacts in the images
reconstructed from the original “zig-zag” echo planar trajectory,
are shown to be due to the wrong dimensionality of the FFT
applied.

I. INTRODUCTION

N MANY experiments one has to deal with multidimen-

sional digital signals. For signal processing reasons, the
n-D (n-dimensional) FFT (fast Fourier transform), where n
is the signal’s dimension, is often computed. Also, in many
applications (as in magnetic resonance imaging, computerized
tomography, etc.) one acquires the signal directly in the FT
(Fourier transform) domain of the desired function (image)
and thus the application of the n-D FFT is required. It
may however be shown that as far as DFT (discrete Fourier
transform) processing is concerned, one may replace the
n-dimensional FFT by a 1-D (one-dimensional) FFT [1].
Therefore, from the DFT point of view, all discrete signals
are essentially one-dimensional signals. The condition that
must hold (except that the signal must be in a discrete form)
is that the corresponding 1-D signal must “sprea ” in a
periodical manner onto the n-D domain of the actual signal.
This reduction of the signal’s dimensions may result in a
considerable simplification of the signal processing software.

In magnetic resonance imaging there already exist “work-
ing” examples of this reduction of the signal’s dimensions.
These are the echo planar and related methods [2], [3].
where it is possible to reconstruct the 2-D image by the
application of a 1-D FFT. In the approaches proposed in
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[4]-{10], the nonuniform sampling in the vertical direction
of the original “zig-zag” echo planar trajectory is consid-
ered to be responsible for some reconstruction artifacts and
phase error problems. These are due to the fact that the
reconstruction is done by applying 2-D FFT methods along
the “zig-zag” trajectory. In order to apply a 2-D FFT, one
must sample in a rectangular pattern. Our analysis will clearly
show that one has to apply a 1-D FFT algorithm to the
“zig-zag” trajectory in order to obtain an artifact-free re-
constructed image. We are going to give a new interpreta-
tion of this fact from the point of view of digital signal
processing, and also generalize it to other magnetic res-
onance imaging methods, such as the standard spin warp
method.

~ Echo planar images obtained by both the “zig-zag” and the
blipped echo planar [11], [12] versions bear also other imaging
artifacts, which are not due to the application of the 2-D FFT
but they are due to inherent limitations of these methods.
These limitations stem from the difficulties to implement
the fast switching gradients [13]-[15], from the static field
inhomogeneity, and from the T2 signal decay [9].

In the first part of this paper we describe the equivalence
between the two-dimensional and one-dimensional discrete
functions. In the second part we generalize the above equiva-
lence and in the last part we adjust this property to magnetic
resonance imaging reconstruction methods.

II. THE CONVERSION OF A TWO-DIMENSIONAL
FUNCTION TO A ONE-DIMENSIONAL FUNCTION

Let us suppose that we have a 2-D discrete function with
M x N points. These samples can be arranged in the form of
an M x N array z(m,n). This 2-D sequence can be mapped
to a 1-D sequence by the relation

y(p) = y(Nm + n) = z(m,n) )

where 0 < m < M and 0 < n < N. This mapping is
essentially a transformation, from one set of 2-D data arranged
in a 2-D array according to a double index, into another set
of 1-D data arranged linearly according to a single index. The
vector y(p) is formed by stacking the columns of z(m,n). The
first N elements of y(p) are the elements of the first column
of z(m, n), the next N are the elements of the second column,
and so forth for all the M columns of z(m, n). Taking the 1-D
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Fig. 1. The 1-D FT of y(p) results in N paraliel line segments in the 2-D
plane of X (wy,wn ). The angle 8 is given by tané = 1/N.

FT of the sequence y(p) we have

MN-1
Y = ) ypexp(—jpw)
=0
Mp—l N-1 _
=Y 3 y(Nm+n)exp(—iNmw ~ jnw)
e
= Z Z z(m, n)exp(—jNmw — jnw).

m=0 n=0

(0]

The 2-D FT (two-dimensional Fourier Transform) of the
function z(m,n) is
M-1N-1
X(wm,wn) = Z Z z(m, n)exp(—jmwm ~ jnw,). (3)
m=0 n=0
The function X (wy,,wy) is periodic in both dimensions with
a period of 2x. Comparing (2) and (3), it is obvious that the
1-D FT of y(p) equals the 2-D FT of z(m,n) along the line
wWm = Nwy, in the X (wy,,wy) plane. This line is at an angle
0 = tan~'(1/N) to the wp, axis, and due to the periodicity of
X (wm,wn), it becomes a set of N parallel line segments, as is
shown in Fig. 1. Since z(m,n) can be recovered from y(p),
there must be a corresponding relation between X (Wmywn)
and Y(w). In fact the function Y (w) is a form of sampling of
the function X (wp,,w,) along the w, direction [1].

It is interesting to note that the specific angle 0 =
tan~!(1/N) is the direction from which the M x N discrete
function can be invertably projected [16]. That is, in this
specific projection there is a one-to-one correspondence
between the 2-D function and its 1-D projection. In this
projection there exists enough free space between two
successive m, so that the N points of the corresponding
column can be projected without overlapping. This means
that, as shown in Fig. 2, Amcosf = NAnsinf and for
An = Am,§ = tan~!(1/N). The function y(p) is the
projection of the function z(m,n) from this angle. It is
known [17] (central slice theorem) that the 1-D FT of a
projection is equal to the slice of the 2-D FT of the original
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Fig. 2. The evaluation of the angle for which there is no overlap in the
projection of a 2-D discrete function. Between the projection of two successive
m, there must be enough space so that the N pixels corresponding to each m
can be projected without overlapping. Therefore, Am cosd = NAnsin 8,
and thus 8 = tan(1/N) for Am = An. In the figure M = N = 3.
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Fig. 3. (a) The points in the X (wm,wn ) plane which are evaluated by the
2-D DFT of the function x(m,n) are shown. Notice that these points are
arranged in a rectangular sampling pattern. (b) The points in the X (wmywn)
domain which are evaluated by the 1-D DFT of the function y(p) are shown.
Notice the “rotated,” or more accurately the “skewed,” version of the sampling
pattern as compared to Fig. 3(a). Naturally there are M x N points in
both figures, placed in different locations but completely equivalent from the
information point of view. )

function, in the direction along which the projection has
been taken. Therefore, Y (w) is a slice of X (Wm,wy) in the
§ = arctan(1/N) direction, and due to the periodicity of
X(wm,wn), it is converted into N equally spaced parallel
line segments. The angle 6 = tan~!(1/N) is usually called
the “single projection angle,” since the discrete object can be
uniquely reconstructed from the single projection from this
angle.

The 2-D DFT (two-dimensional discrete Fourier transform)
of z(m,n) is defined as

M 27 2n
X(km,kn) = Z Z z(m,n) exp(—jﬁmkm —jwnkn).
m=0 n=0

C))
The function X (knm, k») is a discrete periodic function with
periods M and N in the k,, and k, directions respectively,
and is a set of M x N, equally spaced independent samples of
X(wm,wn), arranged in a rectangular pattern, as it is shown
in Fig. 3(a).
The 1-D DFT of y(p) results in M x N equally spaced
samples of the 1-D FT of y(p) and therefore of the 2-D FT of
z(m, n). These samples are along the N parallel line segments




o0

of ¥ig. 1. There are M equally spaced samples per line,
as shown in Fig. 3(b). Although these samples are different
from those of X(km,kn), they are completely equivalent to
them, since they can be used to reconstruct y(p) and therefore
r(m.n). These two sets of different samples have the same
intormation content: their difference is due to a different choice
of the 2-D sampling pattern [18). In fact the sampling pattern
used by Y (k) is a “rotated,” or more accurately a “skewed,”
version of that used by X(km,k,) which was the simple
rectungular sampling pattern.

The mapping of (1) can be equivalently done using the
function

z(p) = z(m + Mn) = z(m,n). &)

The vector z(p) is formed by stacking the rows of z(m,n),
where the first M elements are the first row of z(m, n), etc.
The 1-D FT of z(p) is

MN-1

2w =Y =plexp(=ipw)
p=0
M-1¥-1
= 2 Z y(m + Mn)exp(—jmw — jMnw)

m=0 n=0
M~1N=-1

= Z Z z(m, n)exp(—jmw — jMnw)

m=0 n=0

©

and it corresponds to the line wp, = (1/M)w, in the
X{w'wwn) plane. Due to the periodicity of the X(wm,wn)
planc, this line becomes a set of M parallel line segments.

Nutice that the functions y(p) and z(p) are not the only
functions one could choose for an invertable (in both spaces)
mapping. For example we can use the functions f(kNm +
n) = x(m,n) and g(m + AMn) = z(m,n) where « and A
are any integers. Choosing one of these functions results into
appending £N(AM) zeros to each column (row) of z(m,n)
and changing the angle “6” in the Fourier domain [1]. From
the puint of view of the number of points required, it is clear
that the functions y(p) and z(p) are optimal, since they have
in doth domains the same number of points as the original
rwoudimensional function had.

Tierefore, from the DFT point of view, there is no point in

ing of a two-dimensional discrete sequence or of a dis-

crete tunction’s dimensions. Every two-dimensional discrete
function is in both “time” and “frequency” domains completely
equivalent to a 1-D function, with the same number of points.
The two-dimensional discrete function can thus be recovered
from the corresponding 1-D function. These results can be
obvivusly generalized to more than two dimensions.

. THE OPTIMAL TRAJECTORIES
FOR THE DIMENSIONAL REDUCTION

There are manyv sampling patterns one can choose for the
aoqueition of a 2-D signal [18]. This can be done either
by chenging the spatial locations of the sensors (as in the
cawe of geophysical signals) or by changing the experimental
ocomavtions during the acquisition period (as in the magnetic
resonsnce imaging case). We show that the 1-D signal derived
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Fig. 4. 'The four optimal instances of recording the signal as a 1-D signal (left
column) and the corresponding points in the 2-D FT domain (right column)
that are calculated by applying the 1-D DFT to these particular signals. The
arrows denote the sampling direction while the dashed lines denote the “jump”
to the next point desired. It must be clear that these lines correspond to sets
of samples and that they are not continuous lines.

from “column” (1) or “row-row” (5) mappings, leads directly
to the possibility of applying 1-D FT processing. Due to the
duality properties of the FT, one can choose the trajectory
shown in Fig. 1 and obtain, through 1-D FT processing, the
samples in the other domain arranged in a “column by column”
pattern. Generally one can choose any of the sampling patterns
shown in Fig. 4, acquire the signal as a 1-D signal, and
using a 1-D FT obtain the information in the corresponding
FT domain. The arrows in the figure denote the sampling
direction, both in “time” and “frequency” domains.

Notice that for the application of a usual 2-D FFT, one must
have the samples in a rectangular pattern, and the 2-D FFT also
results in a rectangular pattern in the other domain. Although
we can apply either a 1-D or a 2-D FFT in the rectangular
pattern, and obtain a different set of samples every time, this
is not the case for any of the “skewed” sampling patterns.
That is, in the “skewed” pattern one has to apply a 1-D FFT.
The alternate 1-D FFT (instead of 2-D) when applied to the
rectangular pattern, results in a “skewed” version of the final
samples in the FT domain. The four trajectories of Fig. 4 are
the best that may be chosen, from the point of view of the
number of points needed for 1-D processing of a 2-D signal.
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IV. APPLICATIONS TO MAGNETIC
RESONANCE IMAGING METHODS

In MRI (magnetic resonance imaging) the signal is a slice
in the 2-D Fourier plane of the distribution, or (central slice
theorem) the 1-D FT of the projection of the distribution. By
appropriately sampling the 2-D signal domain, that is, the 2-D
FT domain of the image which is named K-space [19], [20],
the image can be reconstructed using inverse FT methods.

In echo-planar methods, one acquires a single FID, along
a k-space direction similar to that in Fig. 4(c) (as it will be
shown), and the reconstruction must be done using a 1-D FFT
algorithm, which is somewhat unexpected. However, we are
going to show that it is nothing more than a mapping similar
to that in (1). Echo planar methods are a “working” example
of signal dimensionality reduction.

In the first version of echo planar methods [2] the proposed
trajectory is the “zig-zag” trajectory of Fig. 5. The desired
trajectory is obtained by using a constant gradient Gy and
an alternating gradient Gz. For a M x N image the relation
between the intensities of the gradients is G, = NG,.
Therefore the angle @ is given by arctan(1/N), because, in
the first period, kz(t) = Gyt = NGyt and K,(t) = Gt
This is the same angle #, which results from the application

of (1). However the trajectory of Fig. 5 is a little bit different

from that of Fig. 1 (and of Fig. 4(c)). In Fig. 1 we show
the first period of the periodical FT domain, and therefore the
second half-period, corresponds to the negative frequencies. If
we assume the usual convention in the FFT literature, that is if
we fold the spectrum, we obtain the trajectory of Fig. 6. Notice
that centering the signal results to a linear phase shift in the
other domain and does not affect the amplitude of FFT after
the quadrature demodulation. The difference between Figs. 5
and 6 is in every other line segment. More specifically, the
even numbered (and of course the odd ones, too) lines in
Fig. 6 are in the 6 = arctan(l/N) direction, whereas in
Fig. 5 the even lines are in the (7 — §) direction. Notice,
however, that in the case of discrete objects, the projection
from the 6 angle is the same as the projection from the (7 —8)
angle. This is the case of echo planar methods, since in these

" methods the imposed periodicity in the time domain may be
considered as an approximation of a discretization of the object
being reconstructed [3]. In order to make the two trajectories
absolutely identical, the points of every other line in Fig. 5
must be taken in reverse order. However this operation is
commonly performed before applying the FFT algorithm to
the “zig-zag” data. Therefore we conclude that the “zig-zag”
trajectory of Fig. 5 is in fact completely equivalent to that of
Fig. 1 and of Fig. 4(c), and therefore the echo planar method
is an application of the mapping of a 2-D function to a 1-D
function, according to (1).

Since the first version of echo planar imaging, there have
been many methods based on the same idea of periodicity
in the time (signal) domain. Every method uses a different
trajectory in the k-space domain. Apparently, the “single
projection angle” § = arctan(1/N) does not appear in these
trajectories. For instance, in the blipped echo planar single
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Fig. 5. The “zig-zag” trajectory of the original echo planar method. Notice
that the angle, as determined from the gradients used, is the same as the
“single projection angle,” which results from the application of (1).

VA
A

Fig. 6. The trajectory of Fig. 1 is unfolded (the negative half-period is after
the positive one). By folding it, one obtains the trajectory of the above figure.
Compare it with the one of Fig. 5.

pulse technique (BEPI) {11], [12], the trajectory is similar to
that of the classical spin warp method [19], as it is shown in
Fig. 7. In fact the only difference is that in blipped echo planar,
the scanning trajectory direction alternates between odd and
even lines, whereas in spin warp the scanning direction does
not change. Consequently, a mere time reversal of half the data
acquired will be adequate for the two scanning trajectories to
become totally identical.

The observation of the similarity between these two scan-
ning trajectories naturally leads to the following conclusion:
If one can acquire the signal of the blipped echo planar
as a 1-D signal, the same must be also true for the spin
warp signal, since the two trajectories are in fact identi-
cal.
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Fig. 7. The trajectories in the 2-D K-space of the (a) spin warp and (b)
blipped echo planar single pulse technique. Notice the similarity between
these two versions of k-space scanning trajectories. It is more than obvious
that if one method is able to reconstruct the image by 1-D FT processing, the
same must be also true of the other.

The first, original version of the echo planar method re-
constructs the image as a 1-D function, column by column,
and samples the k-space signal along the directions 6 =
arctan(1/N) (Fig. 4(c)). Blipped echo planar samples the k-
space signal line by line, along parallel lines in the direction
6 = 0 (as spin warp does) and reconstructs the image by a
1-D FFT along parallel lines in the direction 6 = arctan(M)
(Fig. 4b). If a 2-D FFT algorithm is used, then the pattern in
the image domain will also be rectangular. The above analysis
constitutes a formal explanation of the observations reported
in [12] concerning the number of dimensions of the FFT.

It must be noted that one can also acquire the spin warp
signal as a 1-D signal and reconstruct (using a 1-D FFT) M x
N equally spaced samples in a form similar to that of Fig. 4(b).
Therefore it is a matter of choice whether one reconstructs the
image acquired by the spin warp method by 1-D or by 2-D
FFT algorithms, as it is already done in the blipped echo planar
method. The only difference between the two algorithms is the
“skewed” sampling pattern in the domain of the reconstructed
image. The relations among the signals in the original “zig-
zag” echo planar method, in the blipped echo planar method,
and in the spin warp method are shown in Fig. 8.

The above analysis can be obviously generalized by apply-
ing 1-D processing to 3-D MRI methods.

BEST S-W EPI

acquisition

eq.(1)

Y(k') X(Kx,Ky) Y(k)

K-space domain

1D-FFT 2D-FFT 1D-FFT

Image domain eq.(1)

x(m,n) y(p)

y(p')

D/A

eq.(1)

Real
Continuous
Image

D/A

x(m',n’)

Fig. 8. The relations among the acquired signal and the reconstructed image
in the original echo planar (EPI), the blipped echo planar (BEPI), and the
spin warp (SW) methods. Notice that although the samples reconstructed are
different, they are equivalent since the same continuous image is obtained
after a D/A conversion.

V. CONCLUSION

In this paper we have used the fact that any M x N 2-
D discrete function is completely equivalent, in both “time”
and “frequency” domains, to a 1-D function. We proposed
a general interpretation of echo planar methods from the
point of view of digital signal processing. We generalized
the above analysis and proposed four optimal (from the point
of view of the number of points required) trajectories for 1-
D MRI acquisition and processing. One is the well known
“zig-zag” echo planar and one of the others is the standard
spin warp method. It is clear that the application of 1-D
or 2-D reconstruction methods is, in the standard spin warp
method, a matter of choice. One has only to interpret correctly
the geometric locations of the points of the reconstructed
image. However, there exist no such equivalence when using
the “zig-zag” trajectory of the original planar method. The
above analysis shows that various artifacts present in the
reconstructed image, are the result of the application of the
2-D FFT in the “zig-zag” trajectory. We have shown that a
1-D FFT must be applied in this specific trajectory, and we
have generalized the concept of the 1-D processing of a 2-D
signal to other MRI methods.
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