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Abstract 

Carotid atherosclerosis is the main cause of fatal cerebral ischemic events, thereby posing a major burden for public health and 

state economies. We propose a web-based platform named CAROTID to address the need for optimal management of patients with 

carotid atherosclerosis in a twofold sense: (a) objective selection of patients who need carotid-revascularization (i.e. patients with 

vulnerable atherosclerotic lesions), using a multifaceted description of the disease consisting of imaging, biochemical and clinical 

markers, and (b) effective storage and retrieval of patient data to facilitate frequent follow-ups and direct comparisons with related 

cases. These two services are achieved by two interconnected modules, namely the computer-aided diagnosis (CAD) tool and the 

intelligent archival system, in a unified, remotely-accessible system. We present the design of the platform and we describe three 

main usage scenarios to demonstrate the CAROTID utilization in clinical practice. Additionally, we evaluate the platform by 

performing a trial use in a real clinical environment. The CAROTID evaluation provided encouraging results in terms of CAD 

performance (96% accuracy in discriminating vulnerable atherosclerotic lesions), computational efficiency (0.5 s retrieval query 

time, 5 min CAD decision), and ease-of-use by vascular physicians. Large datasets and future evaluation sessions in multiple 

medical institutions are still necessary to reveal with confidence the full potential of the platform.  
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1. Introduction 

Atherosclerosis constitutes a chronic degenerative 

disease, which may affect all arterial beds (cardiac, 

cerebrovascular, etc.) and it is predominantly characterized 

by acellular products deposition (e.g. cholesterol and 

extracellular matrix) and cellular infiltration (e.g. 

inflammatory and smooth muscle cells) of the arterial wall. 

The gradual development of atherosclerotic lesions leads to 

arterial lumen encroachment with detrimental impact on 

blood supply. The prevalence of a carotid atherosclerotic 

stenosis increases with age and can be found in 6.9 % of 

the elderly population (>65 years) [1]. It is well established 

that carotid atherosclerotic lesions (plaques) highly 

predispose to cerebral ischemic events, with the majority of 

stroke events being provoked due to the disease [1]. 

Stroke is one of the leading causes of morbidity, 

disability and mortality worldwide. Recent reports indicate 

that, annually, around one in every twelve men and one in 

ten women die from stroke in the European Union [2], 

while stroke accounts for 6% of all deaths in the United 

States [3]. If secular trends continue, 6.5 and 7.8 million 



stroke deaths globally are estimated by 2015 and 2030, 

respectively [4]. Stroke consequences, measured in 

disability-adjusted life years (DALYs), are also expected to 

rise to 53.8 and 63.8 million DALYs in 2015 and 2030, 

respectively [4]. These measures of both morbidity and 

mortality reveal the major economic and social burden 

posed by stroke, and hence, the need for optimal 

management of patients with carotid atherosclerosis. 

Optimal management of established carotid 

atherosclerosis is a twofold concept consisting of (a) 

objective selection of patients who need carotid-

revascularization (endarterectomy or carotid artery 

stenting) to prevent future cerebrovascular events and (b) 

effective storage and retrieval of patient data, which 

facilitates frequent follow-ups with the patient and assists 

diagnosis through easy comparisons with related cases. 

Up to now, the therapeutic modality for carotid 

atherosclerosis is driven by the degree of lumen stenosis 

and the history of symptoms (i.e. disease-induced 

neurological disorders) reported by the patient or diagnosed 

with computerized tomography (CT) or magnetic resonance 

imaging (MRI) of the brain [5]. However, there is evidence 

that this clinical practice does not assure valid identification 

of vulnerable atherosclerotic lesions [6]. The reason is that 

not all symptoms are always known, because they may not 

be realized by the patient, while CT/MRI scans are 

performed in limited cases that stroke or transient ischemic 

attack is suspected. Moreover, studies have suggested that 

factors other than stenosis are associated with plaque 

vulnerability [7] and that features such as the underlying 

plaque composition [8] and dynamic phenomena occurring 

within the arterial wall [9] should be also taken into 

consideration in treatment planning.  

Therefore, during the last decade, research has been 

shifted toward investigating novel biochemical [10], [11] 

and image-analysis-based [12] markers, which, when 

incorporated in computer-aided diagnosis (CAD) systems, 

can aid vascular physicians to decide with higher 

confidence on plaque vulnerability. Given the high socio-

economic burden of carotid atherosclerosis, the use of 

affordable imaging techniques has become particularly 

important. Hence, upgrading the role of ultrasound image 

analysis in this research field is considered a grand 

challenge by the scientific community [13]. 

Regarding the second aspect of optimal management of 

a patient, most hospitals and medical centers use 

information systems to organize medical data. However, in 

such systems data retrieval is achieved by querying by 

attributes (patient name, age or gender) stored either in 

medical records or in DICOM headers of images. Given 

that these attributes do not contain any (patho) 

physiological information, content-based queries to retrieve 

relevant patient cases remain a challenging task. The 

solution seems to be located in content-based data 

annotation [14]. In particular, ontologies and terminologies, 

and their incarnation with semantic web technologies, 

constitute a promising approach [15]. 

We propose a web-based platform named CAROTID as 

an integrated approach addressing both aspects of optimal 

management of patients with carotid atherosclerosis. 

CAROTID relies on a multifaceted phenotype of the 

atherosclerotic plaque, consisting of ultrasound-image-

analysis-based, biochemical and clinical markers, to assist 

the therapeutic decision by providing objective and 

personalized clinical assessment. In addition, the embedded 

intelligent archival module incorporates semantically-aided 

annotation of imaging data, thereby allowing structured 

data storage and content-based queries. The 

implementation of CAROTID as a web-based system 

provides numerous benefits including overcoming 

interoperability issues, enabling all-time access to the 

system functionalities, and promoting telematic 

collaboration in an attempt to reduce medical errors and 

increase patient safety. 

2.  Background 

2.1. Project background 

During the last decade, a major part of the authors’ 

research work has been focused on investigating the 

potential of ultrasound image analysis in studying the 

(patho) physiology of the carotid arterial wall [16]–[25]. As 

a first step forward, they have applied ANALYSIS, which 

is an in-house personal-computer (PC)-based software for 

medical image interpretation, to ultrasound images of the 

carotid artery and they have demonstrated the applicability 

and usefulness of image-guided diagnosis for carotid 

atherosclerosis [16]. However, analyzing ultrasound images 

of the atherosclerotic vessels is a particularly challenging 

task due to the low quality, often encountered in ultrasound 

imaging, and the fuzzy appearance of atherosclerotic 

plaques [13]. This poses a need for image processing and 

analysis tools specialized at this clinical application.  

Therefore, advanced methodologies have since been 

developed for quantifying texture and motion properties of 

the arterial wall from ultrasound image data, thereby 

providing valuable insights in (a) the allocation of 

echogenic (fibrous and calcified tissue) and anechoic 

(blood, lipids, inflammation) regions within the plaque 

[17], [18], (b) strains and local deformations that occur 

within the arterial wall [19], [20], (c) variations in motion 

activities between different plaque materials [21], (d) 

mechanical interactions of atherosclerotic plaque 

components [21], and (e) the ability of the collected 

information in discriminating vulnerable plaques [17], [18], 

[20] and evaluating their response to therapy [22].  

Particular emphasis has been given on assuring the 

validity of image analysis results. Therefore, the authors 

have thoroughly investigated the effects of scanner settings 

[19], [23], noise presence [19], [20] and image 

normalization [23] on texture and motion analysis, and 

appropriate optimization procedures have been performed 

toward maximizing the algorithms’ accuracy and 

robustness. Furthermore, automated, i.e. user-independent, 

methodologies have been developed to segment the arterial 



wall in ultrasound images [24], [25], which allows more 

accurate measurements. 

Significant steps have been also made by the authors to 

address the explosive growth in the storage of medical 

imaging data collected by radiologists [26], [27]. Effective 

and efficient data management has been achieved through 

web-based approaches that offer semantically-aided data 

annotation and retrieval.  

CAROTID was embedded in a joint project of academic 

and clinical institutions and a commercial clinical software 

manufacturer. The goal was the conception and 

development of a system which incorporates the gained 

experience and research results of the involved partners on 

both CAD and data management to assist the clinical 

practice for carotid atherosclerosis. 

2.2. Related work 

Significant attempts have been made toward designing 

smart CAD tools for carotid atherosclerosis [13]. In all 

cases, the underlying idea was computer-assisted 

discrimination of “high-risk” atherosclerotic lesions from 

“low-risk” ones, through supervised training of 

sophisticated classifiers using ultrasound-image-analysis-

based features of symptomatic and asymptomatic cases. It 

was concluded that support vector machines (SVM) are the 

most popular classification tool in this area. Moreover, it 

was noted that although motion characteristics are able to 

provide valuable functional information, they have been 

considered in limited classification attempts. The same 

stands for clinical and biochemical markers, for which 

studies have suggested that they may have a positive 

impact on the classification performance [8], [10], [11].  

Although major efforts have been made toward the 

computerization of diagnosis for the disease, only a few 

integrated systems have been developed in the field. 

Specifically, the “Plaque Texture Analysis” software has 

been presented for image-intensity normalization and 

texture measurements in ultrasound images of the carotid 

artery [28]. Furthermore, the recently developed 

“Atheromatic” estimates textural plaque features from 

carotid ultrasound images, feeds them to an offline-trained 

SVM and provides a CAD response [29]. Both systems are 

PC-based software packages with promising performances. 

However, studies in different research areas have 

demonstrated the numerous advantages offered by web-

based CAD systems [30]–[32], especially when 

cooperating with advanced archival modules [31].  

CAROTID incorporates the valuable lessons which are 

provided by the related work and moves a step forward in 

integrated CAD systems for carotid atherosclerosis by (a) 

including motion-based features in ultrasound image 

analysis, (b) adding biochemical and clinical markers in 

CAD, (c) combining CAD with an intelligent archival tool 

in a unified system, (d) considering continuous re-

optimization of the CAD tool as the data repository is 

enriched, and (e) being implemented as a web-based 

platform.  

3. Design considerations 

CAROTID allows access via internet or intranet. The 

architecture of the platform is based on LAMP, which is a 

broadly open-source software bundle (Linux, Apache, 

MySql, PHP) for web applications. The two aspects of 

optimal management of patients with carotid 

atherosclerosis are addressed by two interconnected 

components, namely the CAD module and the intelligent 

archival system (Fig. 1). Both components are connected to 

the data repository, where multi-source patient data are 

stored.  

In design specifications, emphasis has been given on 

developing user-friendly interfaces, which is particularly 

important for the incorporation of CAD systems in the 

clinical routine. For the same reason, the platform offers 

bilingual (English and Greek) user-interfaces. 

 

 

Fig. 1. High-level design of the CAROTID platform. 

4. Description of the platform 

4.1. Architecture 

The CAD module includes the data-driven diagnosis 

component (Fig. 2) which processes the available patient 

data, estimates a number of features representing the 

disease phenotype, and generates a diagnostic decision on 

plaque vulnerability. More details on the data-driven 

diagnosis module are presented in section 5. The generated 

diagnostic information is stored at the data repository and is 

available upon request to the user via a modal dialog. The 

algorithms that form the CAD module have been developed 

in Matlab and ported into C++ libraries using the Matlab 

compiler deployment tool.  

The intelligent archival system offers two basic 

functionalities, namely data input and retrieval, served by 

the data entry and querying interfaces, respectively (Fig. 3). 

Through the data entry interface, imaging data are 

annotated with semantic features and, together with 

biochemical markers and clinical information, are uploaded 

to the platform. Image annotation consists in specifying the 

imaged region of the carotid artery, i.e. the anatomic 

position of the atherosclerotic plaque, and the imaging 

modality. This task is performed using the FMA ontology 

[33], which describes the anatomy of human body, and the 

RadLex terminology [34], which describes imaging 

modalities. Both FMA and RadLex are available via web 



service through the NCBO bioportal 

(http://bioportal.bioontology.org/).  

 

 

Fig. 2. Design of the computer-aided risk diagnosis module. 

The querying interface is used to retrieve medical data 

based on criteria which are specified by the user. The 

platform offers conventional patient-based queries (name, 

age, gender, etc.), as well as more complex queries (arterial 

region, plaque features, high-risk/low-risk cases, etc.). As a 

result, the user can easily retrieve related, in terms of 

anatomic position of the atherosclerotic plaque, disease 

phenotype, and/or plaque vulnerability, cases. Data 

annotation with imaging modality also allows selective (ex. 

only B-mode) imaging data retrieval for the related cases. 

 

 

Fig. 3. Design of the intelligent archival system. 

4.2. Usage Scenarios 

CAROTID utilization by potential final users (mostly 

vascular physicians) is enlightened through three usage 

scenarios, including clinical decision support, development 

of a rich data repository which can be used to design future 

studies, and educational services. 

The typical usage scenario involves CAROTID as a 

support tool of clinical decision which advices on treatment 

modality. Once logged on to the platform, the user enters 

patient’s medical data through the data-entry interface. 

Subsequently, the user is offered the possibility to consult 

the “opinion” of the CAD module characterizing the 

atherosclerotic plaque as “high-risk” or “low-risk” and, 

accordingly, decide if either carotid-revascularization or 

conservative therapy is required. Furthermore, the user is 

urged to retrieve similar past cases, so that the diagnosis at 

hand is more easily taken by comparison. This service 

enhances the trust of the user in the platform, because it 

provides him with case-based evidence, thereby acting as a 

physician with accumulated empirical knowledge.   

Since CAROTID is a web-based platform, input and 

retrieval processes are available both locally, i.e. at the 

hospital where the medical examination takes place, and 

remotely. As a result, the physician is offered an all-time 

access both to the diagnostic services and the stored data of 

patients, and can collaborate with other remote experts. 

Another interesting CAROTID usage scenario is the 

collection of data and findings regarding carotid 

atherosclerosis worldwide. This continuously growing 

repository of imaging, biochemical and clinical data is 

accessible by collaborating clinicians and researchers. 

Given the lack of large databases of patients with carotid 

atherosclerosis and the difficulties in carrying out 

prospective cohort studies, this repository is expected to 

facilitate the design and implementation of future studies 

investigating causative factors and risk markers for the 

disease. Moreover, the use of the same dataset by different 

research groups allows direct and unbiased comparisons 

and associations, which enhances coherence in related 

studies and eventually leads to more valid and accurate 

conclusions.  

Finally, CAROTID serves two educational scenarios: (a) 

CAROTID users share the accumulated knowledge for 

carotid atherosclerosis, which offers a multi-scientific view 

of the disease, and (b) by retrieving stored cases, vascular 

physicians are trained in identifying the phenotype of 

severe atherosclerotic lesions. 

4.3. Legal and ethical issues 

CAROTID is designed with respect to the state laws and 

the privacy of the patients. Patient data are managed 

according to the personal data protection laws of the Greek 

state (DL 2472/1997, DL 2479/1997), which are 

harmonized with the EU regulations. All patients included 

in the platform give their informed consent to the scientific 

use of the data.  

Additionally, data security and integrity is ensured 

through data anonymization and encryption, SSL data 

exchange, monitoring of the users’ actions, and granting 

different administrative and view rights according the user 

and the usage. 



5. Data-driven diagnosis 

This section gives a detailed description of the tasks 

composing the CAD functionality of CAROTID (Fig. 4). 

The CAD module has two functionality modes. The online 

mode is activated when medical data for a new patient are 

uploaded to the platform and the user asks for a diagnostic 

decision. A number of image-based measurements are then 

estimated and, combined with biochemical markers and the 

clinical profile of the patient, are fed to the classifier. 

Subsequently, the offline-trained classifier responds on the 

severity of the atherosclerotic lesion.  

The offline mode is activated when the user enters both 

medical data for a new patient and sufficient information 

about plaque characterization as symptomatic or 

asymptomatic. Sufficiency lies in validated presence or 

absence of disease-induced disorders. In this case, the 

estimated image-based, biochemical and clinical indices are 

used to improve the performance of the classifier. 

 

Fig. 4. Workflow for computer-aided data-driven diagnosis. 

5.1. Image-guided analysis 

Image-based measurements are estimated with a series of 

image processing and analysis procedures, which are 

applied to a temporal sequence (video) of digitized B-mode 

ultrasound images of a longitudinal section of the carotid 

artery (Fig. 5 (a)). B-mode ultrasound is a two-dimensional 

presentation of echo-producing interfaces. In B-mode 

ultrasound images of a longitudinal section of the artery, 

the three different layers of the wall (intima, media, and 

adventitia) are recognized as three echo zones. Moreover, 

dynamic B-mode ultrasound imaging of longitudinal 

sections of the arterial wall allows the estimation of tissue 

motion in two dimensions, namely longitudinal, i.e. along 

the vessel axis, and radial, i.e. along the vessel radius, and 

perpendicular to the longitudinal one. 

Firstly, in order to assure comparable measurements in 

case of images obtained by different operators or using 

different equipments, image intensities ([0: black, 255: 

white]) are linearly adjusted so that the median gray level 

value of the blood is 0, and the median gray level value of 

the adventitia is 190 [21]. 

Afterwards, four regions of interest (ROIs), namely the 

posterior (PWL) and anterior wall-lumen (AWL) interfaces 

and the plaque top (PTS) and bottom surfaces (PBS), are 

semi-automatically defined in the first image of the 

sequence (Fig. 5 (b)); PTS and PBS correspond to the 

region of the plaque, while PWL and AWL are healthy 

parts of the arterial wall. The segmentation step consists of 

three main stages. The first stage is the automatic selection 

of the image area containing the carotid artery [24]. This 

stage is important because it reduces the computational cost 

of subsequent image-analysis tasks. At the second stage, 

PWL and AWL are automatically identified using an 

active-contour-based algorithm previously presented in 

[25]. Briefly, using an initial contour approximation, a 

Hough Transform methodology [24] generates initial active 

contours, which are then processed and deformed by 

minimizing an energy function, which consists of external 

forces, internal forces and user-defined constraints [25]. At 

the third stage, the user manually traces PTS and PBS via a 

modal window and is also allowed to refine the identified 

PWL and AWL.  

 

  
(a) (b) 

Fig. 5. (a) B-mode ultrasound image of a longitudinal section of a carotid 

artery with an atherosclerotic plaque on the posterior (farthest from the 
probe) wall. (b) Defined regions of interest for the same case. 

For the purpose of motion analysis, all pixels composing 

the four identified ROIs, as well as the whole plaque region 

(i.e. the region contoured by PTS and PBS), are selected as 

motion targets and the OFLK(WLS) algorithm [20] is used to 

estimate their radial and longitudinal positions across time. 

From the produced waveforms, pixel-wise indices 

representing radial, longitudinal, and total motion 

amplitudes, velocities, and diastole-to-systole 

displacements are estimated [21]. Moreover, the relative 

movements between (a) PTS and PBS, (b) PWL and AWL, 

(c) PTS and PWL, and (d) PBS and PWL, are expressed in 

strain indices by repeating the methodologies described in 

[19], [20] for multiple pairs of pixels of the selected ROIs. 

A number of descriptive statistical measures (minimum, 

maximum, mean, median, standard deviation, skewness, 

kurtosis, entropy) of the estimated kinematic and strain 

indices are used as the final motion-based measurements.   

The last step in image-guided analysis is the estimation 

of textural features of the plaque. Plaque texture is 

measured using first and second-order statistical properties 

[21], as well as multiresolution features [17] of image 

intensities corresponding to the region of the plaque. These 



features are estimated for specific instants of the cardiac 

cycle, namely, systole and diastole, which are identified as 

the time points corresponding to the maximum and 

minimum radial distance, respectively, between PWL and 

AWL. 

5.2. Biochemical markers and clinical data 

The biochemical markers which are recorded for each 

patient are blood-derived agents, some of which have been 

associated with plaque stability and risk stratification [35]: 

red/white-blood-cells indices, hemoglobin, hematocrit, 

lymphocyte surface markers, platelet indices, urea, 

creatinine, transaminases, fasting total cholesterol, high 

density lipoprotein  cholesterol, low density lipoprotein 

cholesterol, triglycerides, glucose, C-reactive protein, 

fibrinogen, matrix metalloproteinases (MMP-1, MMP-2, 

MMP-7, MMP-9), tissue inhibitors of metalloproteinases 

(TIMP-1, TIMP-2), cytokines (IL-1β, IL-6, TNF-a), and 

insulin resistance (HOMA-IR). 

In CAROTID, the clinical profile of the patient consists 

of the following data: age, gender, personal and family 

medical history, body mass index, waist circumference, fat 

mass, ankle-brachial index, cardiac hemodynamic 

parameters (heart rate, systolic and diastolic arterial 

pressures), and habits (smoking, diet, and physical 

exercise). Body mass index, waist circumference, fat mass, 

and ankle-brachial index form the set of candidate clinical 

markers for patient characterization as “high-risk” or “low-

risk”. 

5.3. Classification tool 

The classification tool is an implementation of SVM, 

which, compared to other classification methods, is less 

affected by the so-called “curse of dimensionality” and, 

therefore, is suitable for large sets of features [36]. SVM 

are learning machines based on intuitive geometric 

principles, aiming to the definition of an optimal hyper 

plane which separates the training data so that a minimum 

expected risk is achieved [37]. The training method is 

based on a nonlinear mapping of the dataset, using kernels 

that have to satisfy Mercer’s theorem. In this study, a 

Gaussian radial basis function (RBF) kernel was used. In 

this case, the SVM training algorithm is affected by the 

parameter s, a scaling factor of the Gaussian kernel, which 

has to be appropriately adjusted to optimize the 

performance of the classifier.  

In the offline mode, the SVM is re-optimized and re-

trained using all the stored cases for which, at that time 

point, there is sufficient information on disease-induced 

disorders. The first step of the re-optimization process is 

feature selection, in which an optimal subset of the whole 

feature representation is selected. Specifically, considering 

the extracted features for the patients, the Wilcoxon 

ranksum test is applied on each feature vector and the p-

value is used as a measure of how effective the feature is at 

separating “symptomatic” and “asymptomatic” groups. 

Features having strong discrimination power (i.e. p-values 

≤ 0.05) are selected and principal component analysis is 

then used to identify and remove correlations among them. 

In the second step, the set of selected features is used to 

parameterize, in terms of s, the SVM using leave-one-out 

cross validation. Specifically, classification performance is 

measured in terms of accuracy (degree of veracity of the 

diagnostic decision) for different values of s in the range of 

[0.1 10], and the value that gives the highest classification 

performance is selected. In leave-one-out, a single 

observation (patient) is used as the testing sample, and the 

remaining observations compose the training dataset; this is 

repeated such that each observation is used once as the 

training sample.  Leave-one-out is a popular re-sampling 

technique for performance evaluation for classification 

schemes, because it preserves unbiased results for small-

sized samples [38]. After re-optimization, the SVM is re-

trained using the selected feature subset and value of s. It is 

noted that in re-training, patients are not separated in 

training and testing datasets. 

In the online mode, the offline optimized and trained 

SVM is fed with the collected features (image-based 

measurements, biochemical indices and clinical markers) 

for a new patient, separates the indicated, by the 

optimization process, subset of features, and classifies the 

case as “high-risk” or “low-risk”.  

6. Status report 

The development of both the intelligent archival system 

and the computer-aided risk stratification tool has been 

completed following the design specifications, while the 

authors’ ongoing work focuses on the inter-connection of 

the different modules. CAROTID was used by vascular 

physicians at the “Attikon” university hospital of Greece 

and complete sets of imaging, biochemical, and clinical 

data for 42 patients (aged 50-80 years) with established 

carotid atherosclerosis (diagnosed carotid stenosis >50%) 

were successfully imported in the platform. Among those 

patients, 14 had experienced an ischemic cerebrovascular 

event (stroke or transient ischemic attack) associated with 

the carotid stenosis (“symptomatic” group), while 28 had 

no neurological symptoms (“asymptomatic” group) within 

a 6-month time period from the time of examination. In all 

cases, the presence or absence of symptoms was validated 

with CT/MRI scans of the brain. No statistically significant 

difference was found in the degrees of stenosis (Wilcoxon 

ranksum test p-value=0.72), nor in the ages between the 

two groups (Wilcoxon ranksum test p-value=0.65).  

The classification tool was optimized and trained, using 

the estimated features for the 42 stored cases, as described 

in section 5. The step of feature selection generated an 

optimal subset of features, consisting of 25 motion-based, 

12 textural, and 4 biochemical indices (Table 1). The 

feature subset does not include any clinical data, because 

no statistically significant differences in clinical markers 

were found between the two groups of patients. Using this 

subset of features for the 42 patients and the leave-one-out 

cross-validation process, SVM was parameterized with 



s=5.7. At this point, the SVM classification accuracy was 

96%, which was very satisfying, considering that related 

attempts have reached 73.1% - 99.1% accuracy values [13]. 

Classification performance in terms of sensitivity and 

specificity were also measured and found equal to 90% and 

100%, respectively.    

Fig. 6 depicts snapshots of CAROTID usage. 

Specifically, Fig. 6 (a) corresponds to data entry for a new 

patient at the stage of importing and annotating ultrasound 

image data. The offline optimized and trained SVM 

assessed the patient as “low-risk”. Subsequently, the 

physician successfully retrieved imaging data for similar 

stored cases, i.e. patients with asymptomatic atherosclerotic 

lesions in the left common carotid artery (Fig. 6 (b)). 

In terms of computational efficiency, the elapsed time 

between the upload of patient data and the generation of the 

diagnostic decision depends on the time duration of the B-

mode ultrasound video; for a 4 s video, the average elapsed 

time was 5 min. The average query time for retrieving 

stored cases was estimated 0.5 s. 

 
Table 1. List of selected features which are used in patient characterization as “high-risk” or “low-risk” in the current version of the platform. 

motion-based 
(N=25) 

over PWL: MVrad [21] skewness over PBS: MVlong [21] kurtosis 

over PWL: MVlong [21] skewness over PBS: RMA [21] kurtosis 

over PWL: LMA [21] skewness over PBS: LMA [21] kurtosis 

over whole plaque region: min of MVA [21]  over PTS/PWL pairs of pixels: max of LSI [20] 

over whole plaque region: MVA [21] entropy over PTS/PWL pairs of pixels: mean of LSI [20] 

over whole plaque region: min of AmA [21] over PTS/PWL pairs of pixels: std of LSI [20] 

over whole plaque region: AmA [21] entropy over PTS/PWL pairs of pixels: LSI [20] skewness 

over PTS: median of MVA [20] over PTS/PWL pairs of pixels: LSI [20] kurtosis 

over PTS: MDrad [21] skewness over PTB/PWL pairs of pixels: mean of LSI [20] 

over PBS: median of MVA [21] over PTB/PWL pairs of pixels: median of LSI [20] 

over PBS: MVrad [21] skewness over PBS/PWL pairs of pixels: LSI [20] skewness 

over PBS: MVlong [21] skewness over PBS/PWL pairs of pixels: LSI [20] kurtosis 

over PBS: MVrad [21] kurtosis  

textural 
(N=12) 

systolic images: energy, θ=0ο [21] diastolic images: energy, θ=0ο [21] 

systolic images: energy, θ=45ο [21] diastolic images: energy, θ=45ο [21] 

systolic images: energy, θ=90ο [21] diastolic images: energy, θ=90ο [21] 

systolic images: energy, θ=135ο [21] diastolic images: energy, θ=135ο [21] 

systolic images: mean of Dh3Dh2Dh1 [17] diastolic images: homogeneity, θ=0ο [21] 

systolic images: std of Dh2A1 [17] diastolic images: mean of Dh3A2A1 [17] 

biochemical 

(N=4) 

fibrinogen platelet count 

white-blood-cells count plateletcrit 

7. Lessons learned 

The design and implementation of the CAROTID 

platform constitute an attempt to address the challenge of 

optimal management of atherosclerotic patients and assist 

the clinical practice for carotid atherosclerosis by serving 

both as a diagnostic advice system and as a tool to 

effectively store and retrieve patient data. This twofold 

functionality is a significant advantage of CAROTID in 

comparison with other integrated CAD systems for carotid 

atherosclerosis [28], [29] which offer only a classification 

response.  

In terms of CAD functionalities, CAROTID assists the 

diagnostic process by additionally encouraging the retrieval 

of similar past cases, which enhances the trust of the 

physician in the generated diagnostic decision. Moreover, 

the CAROTID diagnostic decision is based on a 

multifaceted description of the disease which includes 

image-based, biochemical and clinical features. Regarding 

image-based features, CAROTID also first considers 

dynamic phenomena occurring within the arterial wall, 

expressed in terms of kinematic and strain features, in the 

classification scheme. 

However, the major strength of CAROTID lies in its 

web-oriented implementation, which allows the use of the 

platform by multiple health-care providers. This offers a 

number of privileges which are summarized to the 

following. Firstly, given that multi-centre data collection is 

facilitated and the data repository is enriched with large 

volumes of multi-origin data, the continuously re-optimized 

classification tool can achieve its full potential. Secondly, 

CAROTID allows the physician to gain access to and 

consult more data than a single health care provider 

possesses in his local setting. Furthermore, collaborative 

clinical decisions are promoted, which is of particular 

significance for both the patient safety and the support of 

less-experienced physicians.  

The preliminary evaluation results (section 6), together 

with the positive comments which were provided by 

vascular physicians regarding the platform ease-of-use, 

form an encouraging feedback on the expectations posed by 

CAROTID design. However, large datasets and extensive 

assessment tests on the platform are still necessary to 

demonstrate its potential with adequate confidence and 

make valid comparisons with other CAD tools. Moreover, 

technical issues need to be addressed to (a) provide fully-

automated segmentation of ROIs and (b) reduce the 

required time for generating the CAD decision. 

8. Mode of availability of the platform 

CAROTID platform in its current status is available at 

carotid.vidavo.eu. Access rights are granted upon request. 



9. Future plans 

Future steps include the beta release of CAROTID to be 

used by multiple vascular physicians in international 

medical institutions. Remarks and recommendations that 

will be gathered at the end of the trial period will form a 

valuable feedback for future versions of the platform. 

Moreover, the collection of large volumes of patient data is 

expected to reveal the full potential of the classification 

tool and enhance the capability of the platform to provide 

trustful CAD services for carotid atherosclerosis. 

Moreover, a number of future actions will further 

enhance the efficiency, interoperability, feasibility, and 

functionalities of CAROTID. Firstly, automatic 

methodologies for segmenting the region of the plaque will 

be developed and incorporated in the platform. 

Furthermore, algorithms will be transferred into new web 

technologies, such as HTML5 and WebGL, which is 

expected to make (a) the data processing algorithms lighter 

and faster and (b) CAROTID functionalities compatible 

with future technical progress in browsers and portable 

devices.  

Finally, inspired by a similar attempt on CAD for 

coronary artery diseases [40], the derived conclusions on 

risk markers for carotid atherosclerosis will be described 

with the use of semantic web. All risk factors will be 

expressed as classes and properties of a medical ontology 

specially designed for the disease. This ontology will 

facilitate the re-use and discovering of new knowledge and 

will also achieve clarity, unambiguity, proof tracing, and 

interoperability among institutions. 
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(a) (b) 

Fig. 6. Snapshots of CAROTID usage at the stage of (a) importing ultrasound imaging data for a new patient, completing the examination date, degree of stenosis, 

and type of the plaque [39], and annotating the position of the atherosclerotic plaque using FMA ontology, and (b) retrieving imaging data for similar stored cases. 
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