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Abstract— Recent decade research activity has focused on 

the reduction of the global building sector energy consumption 

since its contribution to the global primary energy consumption 

has been made known. Progress towards the optimal provision 

of heating load to buildings has been achieved with the 

implementation of district heating networks (DHN). The DHN 

flexibility is considered as a crucial factor to the evolution of 

thermal networks, as well as their decarbonization. This work 

investigates prospects on how thermal comfort intertwines with 

building parameters, such as thermal mass category and end-

user heating power. The substation is exposed to different 

controlling strategies and peak-shaving scenarios. The 

simulations have uncovered a non-linear correlation between 

maximum peak-shaving potential of a substation and the 

discomfort of the end-user. Future work involves a more specific 

approach in peak-shaving potential identification and 

implementation of predictive controlling strategies and building 

surrogate model. 
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I. INTRODUCTION 

Nowadays, there is a growing need for reduction of the 
consumed energy globally. The aspect of building energy 
consumption has been proven to play a major role in EU [1]. 
More specifically, it is stated that heating and cooling in 
building and industry sector accounts for half of the annual 
energy consumption [2]. Since the building sector has 
attracted research interest, actions have been taken to manage 
its energy consumption in a more efficient way, with the 
implementation of District Heating Network (DHN) systems. 
A DHN features a layout that enables the mass energy 
production and distribution to end-users (consumers). 
Throughout past decades, multiple generations of DHNs have 
been implemented, as they provide numerous advantages over 
local heating and cooling production, both in economic, as 
well as in an environmental manner [3-5]. Modern 
advancements in the thermal network sector include the 
promotion of the 4th generation [6, 7], as well as the 5th 
generation of DHN [6, 8]. One of the major benefits the 4th 
generation and 5th generation DHN offer, when compared to 
their predecessor (3rd generation) is the potential for 
Renewable Energy Sources (RES) implementation, as well as 
an operation temperature reduction that leads to lesser heat 
losses. Moreover the addition of RES enables the network 
energy production to be decentralized and distributed along 
the network. In other words, the 4th generation DHN 

development is an essential step towards decarbonization of 
energy systems [9]. 

However, DHN operation optimization comes along with 
certain issues that are to be coped with. Issues arise regarding 
proper DHN dimensioning while maintaining prospects for 
further expansion and addition of new users to the network 
[10]. Another matter is the existence of thermal capacity 
throughout the network and in the buildings. The thermal mass 
contained in the network can slow down the heat propagation 
in the network. This way, temperature changes in the network 
are associated with time intervals comparable to the change of 
heat load demand [11]. That means that a required heating 
load must be provided some time before the demand itself 
takes place. In other words, a means of heat load demand 
prediction is necessary and thus, demand-side management 
becomes a major subject that is being examined by the 
scientific community [12, 13]. 

A DHN feature that is characterized of great significance 
is the DHN flexibility. Research states that there are multiple 
approaches to the definition and quantification of a system 
flexibility [14 - 16] in the form of Performance Indicators (PI). 
Generally, in thermal systems it can be described as the ability 
of a system to change its operational load injection/ extraction 
speed by exploiting the variable thermal system power and 
adaptability speed [17], as well as thermal capacity of 
buildings/network/storages [18]. Regarding the variable 
thermal system power, it can either be referring to a single heat 
load producer (centralized co-generation power plants) that 
alters its provided heat load, or a set of multiple producers 
(decentralized multi-energy systems) that are coordinated to 
provide the heat demands. Since next-gen DHNs enable the 
use of multi-energy systems, efforts are focused on the latter, 
namely the effective multi-energy system optimization [19 – 
22]. On the other hand, as stated before, the thermal mass in a 
DHN slows down heat propagation. At the same time, it also 
reduces temperature fluctuation due to various disturbances, 
such as heat load variation. Thermal mass also enables the 
storage of thermal energy, so that it can be utilized for heating 
at a later time, which in turn allows HVAC system controlling 
as another way enhancing DHN flexibility [23]. It is also 
stated that not only thermal mass, but insulation levels affect 
building potential as well [24]. This provides opportunities for 
heat load rescheduling [25]. Rescheduling heat production can 
be achieved in two ways: peak-shaving, as well as heat load 
shifting due to variable energy cost. There have been attempts 
to quantify the flexibility of a system in terms of heat load 
shifting [26]. Lastly, it should be stated that in some cases 
when the flexibility of a system is exploited, it also decreases 
and requires a time period to be recovered [27]. 
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While it is evident that a DHN system has an inherent 
maximum amount of flexibility, due to the existence of 
variable load and thermal capacity, it can also be enhanced 
with the use of controlling strategies [16, 18, 23]. In literature, 

controlling strategies are divided into two main categories: 
reactive and predictive. Reactive (traditional) controlling 
strategies refer mostly to the conventional controlling 
systems. They usually control a system, through the current 
component measurements and react to the observed thermal 
system state and are characterized by simplicity of setup and 
operation. An example could be conventionally tuned PID 
controllers. Conversely, predictive (advanced) control 
strategies use component measurements in order to predict a 
future state of the system. Controllers using those strategies 
are able to predetermine the optimal control strategy to be 
implemented [28]. Numerous works [29-33] indicate MPC 
methods as an effective controlling strategy for DHNs, while 
certain works provide Genetic Algorithms (GA) [34] or Mixed 
Integer Linear Programming (MILP) [35, 36] methods for the 
same purpose. Despite the benefits predictive controllers may 
offer, there are also difficulties that accompany them, that 
mostly derive from the necessity of a reliable model of the 
existing system (be it a single consumer or a network of 
multiple consumers). There are multiple approaches to 
validating a thermal system model [11, 37], though it is 
referred that in some cases the occupant behavior and building 
related accuracy prediction is not considered in the models 
[38]. 

From the above, it is summarized that optimized DHN 
operation includes the implementation of advanced predictive 
controlling strategies to fully utilize its flexibility. Despite 
that, the literature focuses on thermal mass, that is considered 
a fixed characteristic in hourly operation of the system. It 
should be noted that an important factor that defines the 
flexibility potential is also occupant thermal comfort [39], that 
is subjective and dynamic. Thermal comfort is considered by 
the occupants to be the most important aspect of comfort [40]. 
Despite that, the value of thermal comfort for the flexibility 
identification of a building is not stressed enough in the 
literature. 

The purpose of this work is to examine a DHN substation 
flexibility, when exposed to potential peak shaving scenarios. 
Moreover, a parametric simulation of a 24-hour building 
operation will be performed, examining how each parameter 
affects the system flexibility. Furthermore, prospects about a 

correlation between building flexibility potential and occupant 
thermal comfort will be examined. 

II. MATERIALS AND METHODS 

The main idea behind the parametric simulation that is 
performed is to expose different weight categories of 
buildings to various peak shaving scenarios and determine the 
ability of the system to maintain thermal comfort using the 
building thermal mass, the available heat load and its 
controlling strategy. 

The system consists of a heating substation, along with a 
single-zone office that acts as a consumer. In the following 
figures a scheme of the DHN substation, along with the 
building-consumer, is presented (Fig. 1). The substation 
contains a heat exchanger that is responsible for transferring 
heat loads from the primary network (left side) to the 
secondary network (right side). Then the end-user radiator 
inside the building provides the heat loads to the building, 
ultimately heating the occupant zone. Table I displays all the 
system characteristics that are fixed over the scenarios, while 
Table II displays the scenario parameters. 

TABLE I.  SUBSTATION CHARACTERISTICS AND PARAMETERS 

Fixed parameters 

Symbol Description Value Unit 

Tin,pr 
Heat exchanger, primary side inlet 

temperature 
95 oC 

T
out,sec,set 

 Heat Exchanger, secondary side 
outlet temperature setpoint 

90 oC 

U
m

 
Building average heat loss 

coefficient 
0.7 W/(m2·K) 

A
side

  Building total side area 344 m2 

T
indoor,set 

 
Building indoor temperature 

setpoint 
20 oC 

ε
hx

 Heat exchanger efficiency 0.9 - 

TABLE II.  SUBSTATION CHARACTERISTICS AND PARAMETERS 

Scenario parameters 

Symbol Description Value Unit 

m
pr,max

 Maximum primary loop 
mass supply 

0.03, 0.05 kg/s 

m
sec 

 Secondary loop mass supply 0.03, 0.05 kg/s 

 
Fig.1 Schematic representation of the substation and the building - consumer 



 

 

C
m 

 Building heat capacity 
80000 (Very light) 
165000 (Medium) 

360000 (Very heavy) 
J/K 

Q
60 

 
Radiator nominal operation 

heating power @60 oC 
active temperature 

2000, 4000 W 

 

Regarding the simulation models, the substation 
components operate using physical equations according to 
respective component models of TRNSYS [41]. The 
simulation of the substation is node-based, with its 
components essentially being linked to each other and 
transferring information about mass supply and temperature 
during each time step. On the other hand, the building model 
is constructed according to the EN ISO 13790 – simple hourly 
method [42]. Furthermore, the building model has been edited 
with linear interpolation equations that allows it to run in 
timesteps lower than one hour, as originally intended about the 
method. Thermal comfort is evaluated in discomfort degree 
hours, as previous work has shown that it provides more 
detailed results, when compared to the conventional binary 
comfort evaluation [43]. 

The building is exposed to environmental conditions that 
correspond to those of Kozani, Greece, during January. The 
occupancy period resembles that of a typical office building 
(09:00 – 17:00). Furthermore, the building indoor temperature 
setpoint is 20 oC, while occupants are at thermal comfort when 
indoor temperature is above 19 oC. The parametric simulation 
lasts for 24 hours in each scenario, with a time step of 1 
minute. A time step of this scale ensures that the substation 
reacts quickly to indoor temperature changes. Moreover, it is 
necessary that a short time step be used, as building 
temperature changes also affect the operation of the 
substation.  

The scenarios that will take place are presented below: 

• Conventional heating schedule 

• 30% peak shaving schedule 

• 60% peak shaving schedule 

• 90% peak shaving schedule 

• Preheat schedule 

• Preheat schedule with 30% peak shaving 

• Preheat schedule with 60% peak shaving 

• Preheat schedule with 90% peak shaving 

Regarding the control strategies, as far as the conventional 
schedule is concerned, the substation operates only during the 
occupancy period and prevents the indoor temperature to fall 
below thermal comfort levels. The preheat control strategy 
differs only at the fact that the substation will attempt to 
operate some time before the occupancy periods, so that 
thermal comfort is achieved from the start of the occupancy 

time period. The controller simulates turning itself on earlier 
and repeats this process until it finds the ideal time to turn on 
the substation operation. This way, no thermal energy is 
wasted by excessively preheating the indoor air. The presented 
preheating strategy has been used in previous work [44] and 
focuses on occupant comfort optimization. 

Finally, the scenarios will be repeated for two radiator 
nominal operation heating power levels, as indicated in Table 
II, for each building weight category. It is noted that maximum 
primary loop mass supply is set according to the radiator 
power. Namely, for nominal radiator power of 2 kW, the 
maximum primary mass supply is set to 0.03 kg/s, while for 
the case of 4 kW, 0.05 kg/s maximum power supply is used. 
The secondary mass supply does not vary during the 
simulation and has the same value as the maximum primary 
mass supply. 

III. RESULTS 

Results from the methodology are displayed in this 
section. To begin with, for indicative purposes, Fig. 2 presents 
the dynamic daily simulation of the substation and the 
building, using the preheat strategy. The substation is exposed 
to different peak shaving scenarios and attempts to satisfy the 
thermal comfort in the building, by shifting the heating 
schedule earlier in the day and essentially preheating the 
indoor air. 

As observed from Fig.2a, when no peak shaving is applied, 
the controller uses the preheat strategy to achieve thermal 
comfort at 09:00 and thus, turns on the heating at 07:30. When 
applying 60% peak shaving (reducing maximum primary 
mass supply to 0.02 kg/s), the controller decides to turn the 
heating on even earlier, at about 06:00. As a result, thermal 
comfort is still attained at 09:00. On the contrary, in the case 
of 90% peak shaving, despite the efforts of the controller to 
preheat the building from the start of the simulation, thermal 
comfort is attained at 11:00. That means occupants are 
exposed to 2 hours of discomfort. It can be inferred that the 
maximum peak shaving capability for the specific building is 
between 60% and 90%, when user comfort requirements for 
the indoor air are above 19 oC. By applying different peak 

  

(a) (b) (c) 

Fig.2 Daily substation and building operation for: a) 0% peak shaving, b) 60% peak shaving, c) 90% peak shaving. 



 

 

shaving scenarios, an exact peak shaving capability may be 
determined. 

In the next part of the section graph containing the energy 
consumption and thermal discomfort results, during each of 
the scenario runs, is presented (Fig. 3), for the 2 kW radiator 
case. It can be deduced that comfort levels are more easily 
maintained in the case of a very heavy building, when 
compared to the very light or medium case. This is because by 
increasing thermal mass, temperature variation is reduced and  
can be maintained at a higher level, and thus closer to the 
comfort zone. Moreover, in the conventional schedule 
scenarios, peak shaving is expectedly reducing thermal 
comfort levels. A very interesting note is that while applying 
progressively a stricter limit on primary thermal mass supply 
via peak shaving (in steps of 30% of the original maximum 
primary thermal mass supply) the thermal discomfort increase 
follows a non-linear pattern. Regarding the preheat scenarios, 
it is evident that the preheat controlling strategy by itself has 
decreased thermal discomfort levels in all building categories. 
Moreover, it allows for a larger peak-shaving strategy, as 
comfort does not deteriorate as much. Namely, preheat 
strategy with 90% peak shaving provided with discomfort 
ratings similar to those of the conventional strategy with 60% 
peak shaving. That means a simple preheat allows for a 30% 
increase in peak-shaving actions. 

As far as energy consumption is concerned, peak shaving 
tends to lead to slightly lower consumptions in the 
conventional case. However, no linear or non-linear 
correlation can be distinguished about this effect, so further 
examination should take place. The energy consumption in the 
preheat case does not follow a standard reduction trend, as 
well. Despite that, extreme peak shaving (reduction in 
maximum mass supply by 90%) tends to lower energy 
consumption by a notable margin, which is increased per 
building category. 

By examining the case of operation using 4 kW radiator 
(Fig. 4), it is initially observed that thermal discomfort is at 

lower levels, especially for the very light and medium building 
categories. In addition, there is not a clear sign about the 
energy consumption change. What is also intriguing is that the 
while consumption appears to have increased overall, when 
compared to the case of the 2 kW radiator, there is an 
exception in the very heavy building case, which provides 
opposite results in low peak shaving scenarios. The non-linear 
correlation between the peak-shaving intensity and thermal 
discomfort remains, despite having a smoother curve. 

IV. CONCLUSIONS 

In this paper, the peak-shaving prospects of a single-zoned 
office building are examined, when acting as a consumer of a 
DHN. The results indicate that the flexibility of a building is 
analogous to the building weight category. Moreover, each 
building has a distinct potential to withstand peak-shaving 
strategies implemented by the DHN, beyond which the 
occupant comfort levels are compromised. In the case of this 
work, buildings could maintain comfortable temperature 
conditions for peak shaving levels ranging up to 
approximately 60%. That being said, this flexibility potential 
can be further improved, up to a certain degree, by 
implementing preheat controlling strategies. Case results 
showed a simple preheat is able to increase peak shaving 
potential of a building by 25% without reducing comfort 
levels below those of the conventional heating strategy. 
Maximum flexibility potential is a valuable information for 
calculating the minimum heat demand of a district network, in 
case of a heat load energy production reduction. This will also 
be a great tool for optimally providing heat loads that are 
produced by RES, making their unpredictability in heat load 
production more manageable. That will help DHNs to be 
decarbonized in a more decisive manner. 

Fig.3 Energy consumption and thermal discomfort for buildings with 2 kW radiator 
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Fig.4 Energy consumption and thermal discomfort for buildings with 4 kW radiator 
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Currently, there are some limitations in this work. First of 
all, the creation of a building model used in this work cannot 
be used in a real controller due to its complexity and 
computational power requirements, that BES controllers may 
not possess. Furthermore, the simulation took place using a 
single consumer, which does not correspond in the real, multi-
consumer networks. Moreover, a flexibility PI needs to be 
implemented in the present case, that could describe the peak 
shaving limits that each building is able to withstand, 
correlating it with occupant comfort requirements. In addition, 
no definite answers have derived from the energy 
consumption results of each case. That means that the 
implemented preheating strategy does not opt for minimized 
energy consumption. An interesting subject would be a 
redesigning of the system components to maximize the peak-
shaving capabilities. Lastly, peak-shaving optimization could 
be performed by a predictive controlling algorithm. 
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