A Parallel Implementation of the Revised
Simplex Algorithm Using OpenMP: Some
Preliminary Results

Ploskas Nikolaos®, Samaras Nikolaos!, and Margaritis Konstantinos®

Department of Applied Informatics, University of Macedonia, 156 Egnatia Str.,
54006 Thessaloniki, Greece { ploskasQuom.gr, samaras@uom.gr, kmarg@uom.gr}

Summary. Linear Programming (LP) is a significant research area in the field of
operations research. The simplex algorithm is the most widely used method for
solving Linear Programming problems (LPs). The aim of this paper is to present
a parallel implementation of the revised simplex algorithm. Our parallel implemen-
tation focuses on the reduction of the time taken to perform the basis inverse, due
to the fact that the total computational effort of an iteration of simplex type algo-
rithms is dominated by this computation. This inverse does not have to be computed
from scratch at any iteration. In this paper, we compute the basis inverse with two
well-known updating schemes: (i) The Product Form of the Inverse (PFI) and (ii)
A Modification of the Product Form of the Inverse (MPFI); and incorporate them
with revised simplex algorithm. Apart from the parallel implementation, this pa-
per presents a computational study that shows the speedup among the serial and
the parallel implementations in large-scale LPs. Computational results with a set of
benchmark problems from Netlib, including some infeasible ones, are also presented.
The parallelism is achieved using OpenMP in a shared memory multiprocessor ar-
chitecture.

Key words: Linear Programming, Revised Simplex Method, Basis Inverse, Parallel
Computing, OpenMP.

1 Introduction

Linear Programming (LP) is the process of minimizing or maximizing a linear
objective function z = Z?:l ¢; - x; subject to a number of linear equality and
inequality constraints. Several methods are available for solving LPs, among
which the simplex algorithm is the most widely used. We assume that the
problem is in its general form. Formulating the linear problem, we can describe
it as shown in (LP1).

2 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

min T
subjectto Ax =b (LP1)
z>0

where A € R™*", (¢,x) € R™, b€ R™, and T denotes transposition. Without
loss of generality we assume that A has full rank, rank(A) = m, where (m <
n). The simplex method searches for an optimal solution by moving from one
feasible solution to another, along the edges of the feasible region. The dual
problem associated with the linear problem in (LP1) is shown in (DP).

min bTw
subjectto ATw+s=c (DP)
s>0

where w € R™ and s € R". As in the solution of any large scale mathematical
system, the computational time for large LPs is a major concern. Parallel pro-
gramming is a good practice for solving computationally intensive problems
in operations research. The application of parallel processing for LP has been
introduced in the early 1970s. However, only since the beginning of the 1980s
attempts have been made to develop parallel implementations. A lot of archi-
tectural features have been used in practice. Preliminary parallel approaches
were developed for network optimization, direct search methods and global
optimization. A growing number of optimization problems demand parallel
computing capabilities. Any performance improvement in the parallelization
of the revised simplex would be of great interest.

One of the earliest parallel tableau simplex methods on a small-scale dis-
tributed memory Multiple-Instruction Multiple-Data (MIMD) machines is
the one introduced by [Fin87]. Stunkel [Stu88] implemented both the tableau
and the revised simplex method on a 16-processor Intel hypercube computer,
achieving a speedup of between 8 and 12 for small problems from the Netlib
set [Gay85]. Helgason, Kennington and Zaki [HKZ88| proposed an algorithm
to implement the revised simplex using sparse matrices methods on shared
memory MIMD computer. Furthermore, Shu and Wu [SW93] and Shu [Shu95]
parallelized the explicit inverse and the LU decomposition of the basis sim-
plex algorithms. Hall and McKinnon [HM96] [HM98] have implemented two
parallel schemes for the revised simplex method. The first of Hall and McK-
innon’s parallel revised simplex implementations was ASYNPLEX [HM96].
In this implementation one processor is devoted to the basis inversion and
the remaining processors perform simplex iterations. ASYNPLEX was imple-
mented on a Cray T3D, achieving a speedup of between 2.5 and 4.8 for four
modest Netlib problems. The second of Hall and McKinnon’s parallel revised
simplex implementations was PARSMI [HM98]. PARSMI was tested on mod-
est problems from the Netlib set, resulting in a speedup of between 1.7 and

Parallel Revised Simplex using OpenMP 3

1.9. Hall [Hal05] implemented a variant of PARSMI on a 8-processor shared
memory Sun Fire E15k, leading in a speedup of between 1.8 and 3.

Simplex algorithms for general LPs on Single Instruction Multiple Data
(SIMD) have been reported by [ABK89]. Luo and Reijns [LR92] presented an
implementation of the revised simplex method, achieving a speedup of more
than 12, when solving modest Netlib problems on 16 transputers. Eckstein et
al [EBPG95] implemented a parallelization of standard and revised simplex
method in a CM2 machine. Lentini et al [LRTG95] worked on the standard
simplex method with the tableau stored as a sparse matrix, resulting in a
speedup of between 0.5 and 2.7, when solving medium sized Netlib problems
on four transputers. Thomadakis and Liu [TL96] worked on the standard
simplex method on MasPar MP-1 and MP-2 machines, achieving a speedup
of up to three, when solving large randomly-generated problems. Badr et al
[BMPSS06] implemented a dense standard simplex method on eight com-
puters, leading in a speedup of five when solving small random dense LPs.
Previous attempts to develop simplex implementations with the aim of ex-
ploiting high performance computing architectures are reviewed by [Hall0].
Finally, computational results for parallelizing the network simplex method
are reported in [CEFMS88] [BH94] [Pet90].

The use of GPUs for general purpose computations is a quite recent topic,
which was applied to linear programming. Greeff [Gre04] implemented the
revised simplex method on a GPU using OpenGL and Cg and was able to
achieve a speedup of up to 11.4 over an identical CPU implementation. Jung
and O’Leary [JOO08] and Owens et al [OHLGS08] also presented an imple-
mentation using Cg and OpenGL. Spampinato and Elster [SE93] proposed
a GPU implementation of the revised simplex method, based on the CUDA
architecture and achieved a speedup of up to 2.5. Recently, Bieling, Peschlow
and Martini [BPM10] also presented an implementation of the revised simplex
algorithm and achieved a speedup of up to 10.

This paper presents a parallelization of the revised simplex algorithm on a
shared memory multiprocessor architecture. The focus of this parallelization
is on the basis inverse. The structure of the paper is as follows. In Section 2,
the revised simplex algorithm is described and presented. In Section 3, two
methods that have been widely used for basis inversion are analyzed. Section
4 presents the parallel revised simplex algorithm and Sect. 5 gives the com-
putational results. Finally, the conclusions of this paper are outlined in Sect.
6.

4 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

2 Revised Simplex Algorithm

The linear problem in (LP1) can be written as shown in (LP2).

min ckrp+cLan
subject to Apzp + Ayzny = b (LPQ)
B, TN >0

In (LP2), Ap is a m x m non-singular sub-matrix of A, called basic matrix or
basis. The columns of A which belong to subset B are called basic and those
which belong to N are called non basic. The solution zp = (Ag) " *b,zny =0
is called a basic solution. A solution x = (zp,xy) is feasible iff z > 0. Oth-
erwise, (LP2) is infeasible. The solution of (DP) is computed by the relation
s =c— ATw, where w = (cg)" (Ap)~! are the simplex multipliers and s are
the dual slack variables. The basis Ap is dual feasible iff s > 0.

In each iteration, simplex algorithm interchanges a column of matrix Ag with
a column of matrix Ay and constructs a new basis Az. Any iteration of sim-
plex type algorithms is relatively expensive. The total work of an iteration of
simplex type algorithms is dominated by the determination of the basis in-
verse. This inverse however, does not have to be computed from scratch during
each iteration. Simplex type algorithms maintain a factorization of basis and
update this factorization in each iteration. There are several schemes for up-
dating basis inverse. Two well-known schemes are (i) the Product Form of
the Inverse (PFI) and (ii) a Modification of the Product Form of the Inverse,
developed by Benhamadou [Ben02]. These methods, in order to compute the
new basis, use only information about the entering and leaving variables along
with the current basis. A formal description of the revised simplex algorithm
is given in Table 1.

3 Methods Used for Basis Inversion

The revised simplex algorithm differs from the original method. The former
uses the same recursion relations to transform only the inverse of the basis
in each iteration. It has been implemented to reduce the computation time of
the basis inversion and is particularly effective for sparse linear problems. In
this section, we will review two methods that have been widely used for basis
inversion: (i) the Product Form of the Inverse and (ii) a Modification of the
Product Form of the Inverse.

Parallel Revised Simplex using OpenMP 5

Table 1. Revised Simplex Algorithm

Step 0. (Initialization).
Start with a feasible partition (Ap, Ax). Compute (AB)f1 and vectors g, w and sy.
Step 1. (Test of optimality).
if sy > 0 then STOP. The linear problem is optimal.
else
Choose the index 1 of the entering variable using a pivoting rule.
Variable x; enters the basis.
Step 2. (Minimum ratio test).
Compute the pivot column h; = (AB)_lAl.
if h;y <0 then STOP. The linear problem is unbounded.
else
Choose the leaving variable zp[,; = x using the following relation:

xT r . xT i
TR = Fi[z] = mm{—,i[l] thy < 0}

Step 3. (Pivoting).
Swap indices k and [. Update the new basis inverse (Ag)fl, using PFI or MPFI.
Go to Step 1.

3.1 Product Form of the Inverse

The PFI scheme, in order to compute the new basis, uses information only
about the entering and leaving variables along with the current basis. The
new basis inverse can be updated at any iteration using the (1).

(A5) ' = (4pE) = B (4p)”" (1)
where E~! is the inverse of the eta-matrix and can be computed by (2).
1 —hy
~1 1 T - :
FE :I—h—l(hl—el)el = 1/h»,-l (2)
_hml/hrl 1

If the current basis inverse is computed using regular multiplication, then the
complexity of the PFI is © (m?).

3.2 A Modification of Product Form of the Inverse

MPFT updating scheme has been presented by Benhamadou [Ben02]. The key
idea is that the current basis inverse (Ag)~! can be computed from the pre-
vious inverse (Ap)~! using a simple outer product of two vectors and one
matrix addition, as shown in (3).

(A4p) " = (45) +v® (4p,) " (3)

6 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

The updating scheme of the inverse is shown in (4).

(Ag)~': |b7‘1 by e

h
b11 te bim _;Tii

.1
(AE) =10 0 0 |+ R
]:Lm
bml bmm — h'r‘ll

(4)
The outer product requires m? multiplications and the addition of two matri-
ces requires m? additions. The total cost of the above method is 2m? opera-
tions (multiplications and additions). Hence, the complexity is ©(m?).

4 Parallel Revised Simplex Algorithm

The parallelization of all the individual steps of the revised simplex algorithm
is limited and very hard to achieve. However, it is also essential for any algo-
rithm to perform basis inverse in parallel with simplex iterations, otherwise
basis inverse will become the dominant step and limit the possible speedup.
Our parallel implementation focuses on the reduction of the time taken to
perform the basis inverse. The basis inversion is done with the Product Form
of the Inverse and a Modification of the Product Form of the Inverse, as de-
scribed in the previous section.

Both methods take as input the previous basis inverse (Ag)~!, the pivot
column (h;), the index of the leaving variable (k) and the number of the con-
straints (m).

The most time-consuming step of PFI scheme is the matrix multiplication
of (1). Our parallel algorithm uses the block matrix multiplication algorithm
for this step. This algorithm suggests a recursive divide-and-conquer solution,
as described in [Hak93] [HZ83]. This method has significant potential for par-
allel implementations, especially on shared memory implementations.

Let us assume that we have p processors. Table 2 shows the steps that we
used to compute the new basis inverse (Az) ! with the PFI scheme. Table 3
shows the steps that we used to compute the new basis inverse (Az)~! with
the MPFI scheme.

brm }

Parallel Revised Simplex using OpenMP 7

Table 2. Parallel PFI

Step O.
Compute the column vector:
hi1i 1 hmi T
T
Each processor computes in parallel m/p elements of v.
Step 1.

Replace the 7" column of an identity matrix with the column vector v.
Each processor assigns in parallel m/p elements to the identity matrix. This
matrix is the inverse of the Eta-matrix.

Step 2.

Compute the new basis inverse using (1) with block matrix multiplication.
Each processor will compute m/p rows of the new basis.

Table 3. Parallel MPFI

Step O.
Compute the column vector:

T
v= =P .o L b
hop Ry o8]

Each processor computes in parallel m/p elements of v.
Step 1. (The following steps are computed in parallel)

Step 1.1. Compute the outer product v ® (Ap,) "
multiplication.

Step 1.2. Copy matrix (Ag)~' to matrix (Az5)~'. Set the r*" row of
(A%)~! equal to zero. Each processor computes in parallel m/p rows of
(Ag) "

Step 2.
Compute the new basis inverse using relation (3). Each processor computes
in parallel m/p rows of the new basis.

with block matrix

5 Computational Experiments

In this section we report the computational results of running our imple-
mentations on a set of LPs available through Netlib. The three most usual
approaches to analyzing algorithms are i) worst-case analysis, ii) average-
case analysis and iii) experimental analysis. Computational studies have been
proven useful tools in order to examine the practical efficiency of an algorithm
or even compare algorithms by using the same problem sets. The computa-
tional comparison has been performed on a quad-processor Intel Xeon 3.2
GHz with 2 Gbyte of main memory running under Ubuntu 10.10 64-bit and
performed on GCC 4.5.2. In the following computational results all reported
CPU times were measured in seconds. The algorithms have been implemented
using C++ and OpenMP. In all LPs from the Netlib collection, the parallel
versions of the simplex algorithm converge to the same solution.

8 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos
5.1 Problem Instances

The test set used in our experiments were the Netlib set of LPs. The Netlib
library is a well known suite containing many real world LPs. Ordénez and
Freund [OF03] have shown that 71% of the Netlib LPs are ill-conditioned.
Below there are some useful information about the data set, which was used
in the computational study. The first column of Table 4 includes the name
of the problem, the second the number of constraints, the third the number
of variables, the fourth the non-zero elements of matrix A and the fifth the
density of the coefficient matrix A. Let nnz(A) denote the number of non-
zeros in the matrix A. The density of matrix A is defined as the ratio of the
nnz(A) to the total number of its elements.

All LPs have been presolved. The purpose of the presolve analysis is to improve
linear problem’s numerical properties and computational characteristics. The
last row of each table shows the average value of each column.

5.2 Computational Results

The algorithms described in Sect. 4 have been experimentally implemented.
Table 5 presents the results from the execution of the serial and parallel im-
plementations of the above mentioned updating schemes. For each implemen-
tation, the table shows the CPU time for the basis inverse and the total CPU
time.

Parallel Revised Simplex using OpenMP 9

Table 4. Statistics of the Benchmarks

Problem Constraints Variables Non-Zeros A Sparcity A
agg 488 163 2410 3.03%
agg2 516 302 4284 2.75%
agg3 516 302 4300 2.76%
bandm 305 472 2494 1.73%
brandy 220 249 2148 3.92%
€226 223 282 2578 4.10%
fFff800 524 854 6227 1.39%
israel 174 142 2269 9.18%
lotfi 153 308 1078 2.29%
sc105 105 103 280 2.59%
sc205 205 203 551 1.32%
scfxm1 330 457 2589 1.72%
scfxm2 660 914 5183 0.86%
scfxm3 990 1371 7T 0.57%
scrs8 490 1169 3182 0.56%
sharelb 117 225 1151 4.37%
share2b 96 79 694 9.15%
ship04l1 402 2118 6332 0.74%
ship04s 402 1458 4352 0.74%
ship08l 778 4283 12802 0.38%
ship08s 778 2387 7114 0.38%
ship12l 1151 5427 16170 0.26%
ship12s 1151 2763 8178 0.26%
stocforl 117 111 447 3.44%
klein2 477 54 4585 17.80%
klein3 994 88 12107 13.84%
Total 12362 26284 121282

Average 474.96 1044.84 4754.88

10 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

Table 5. Basis Inverse and Total Time of the Serial and Parallel Implementations

Serial implementations Parallel implementations

PFI MPFI PFI MPFI
Problem Time ?f Total Time (?f Total Time (?f Total Time ?f Total

basis . basis . basis . basis .
. time . time . time . time
inverse inverse inverse inverse

agg 2.83 4.58 2.28 4.05 1.52 3.32 1.13 2.95
agg2 3.54 5.65 2.78 4.97 1.81 3.96 1.52 3.69
agg3 3.28 5.61 2.62 5.03 1.85 4.05 1.48 3.78
bandm 1.01 1.62 0.74 1.41 0.84 1.52 0.61 1.29
brandy 1.30 2.76 1.06 2.55 1.04 2.48 0.76 2.22
€226 1.66 3.34 1.38 3.09 1.22 2.82 0.85 2.50
fHfFf800 6.10 12.77 4.86 11.64 5.18 11.58 4.31 10.89
israel 0.82 1.73 0.63 1.65 0.53 1.48 0.45 1.31
lotfi 0.33 0.85 0.29 0.80 0.25 0.78 0.21 0.68
sc105 0.08 0.09 0.03 0.07 0.01 0.07 0.02 0.06
sc205 0.55 0.91 0.51 0.85 0.40 0.74 0.20 0.56
scfxm1 3.72 7.11 2.96 6.38 3.17 6.31 2.49 5.80
scfxm?2 30.76 62.34 24.26 56.40 26.34 58.56 21.22 52.54
scfxm3 109.06 244.48 83.97 219.22 91.67 224.76 72.93 209.23
scrs8 11.17 22.20 8.69 19.81 9.56 20.20 7.34 17.90
sharelb 0.15 0.29 0.09 0.26 0.11 0.25 0.08 0.23
share2b 0.05 0.11 0.04 0.10 0.01 0.10 0.03 0.09
ship041 5.20 14.53 4.18 13.65 4.43 13.65 3.56 12.90
ship04s 1.76 4.55 1.52 4.31 1.54 4.22 1.21 4.10
ship081 33.78 94.70 26.30 86.45 30.02 91.90 22.10 82.50
ship08s 7.43 19.07 5.99 17.49 6.50 18.09 5.01 16.95
ship121 120.21 335.98 89.94 305.95 100.05 317.80 75.64 292.00
ship12s 17.20 43.52 13.45 39.16 12.99 42.84 10.77 36.60
stocforl 0.04 0.06 0.03 0.05 0.02 0.06 0.02 0.04
klein2 17.36 33.01 13.53 28.80 9.85 25.30 7.55 22.74
klein3 192.50 413.33 148.69 368.50 106.92 326.70 75.30 295.01
Total 571.89 1335.19 440.82 1202.64 417.83 1183.54 316.79 1078.56

Average 22.00 51.35 16.95 46.26 16.07 45.52 12.18 41.48

Parallel Revised Simplex using OpenMP 11

In order to show more clearly the superiority of parallel implementations
over the serial ones, we provide the Table 6. Table 6 presents the speedup
obtained by the parallel implementations regarding the CPU time for the basis
inverse and the total CPU time, for both PFI and MPFI schemes. We now
plot the ratios taken from Table 6 in Fig. 1. The total time is in logarithmic
scale.

Table 6. Basis Inverse and Total Time of the Serial and Parallel Implementations

Speedup

Problem PFI MPFI
Basis inverse Total Basis inverse Total
agg 1.86 1.38 2.02 1.37
agg2 1.96 1.43 1.83 1.35
agg3 1.77 1.39 1.77 1.33
bandm 1.20 1.07 1.21 1.09
brandy 1.25 1.11 1.39 1.15
226 1.36 1.18 1.62 1.24
Tf800 1.18 1.10 1.13 1.07
israel 1.55 1.17 1.40 1.26
lotfi 1.32 1.09 1.38 1.18
scl105 8.00 1.29 1.50 1.17
sc205 1.38 1.23 2.55 1.52
scfxm1 1.17 1.13 1.19 1.10
scfxm?2 1.17 1.06 1.14 1.07
scfxm3 1.19 1.09 1.15 1.05
scrs8 1.17 1.10 1.18 1.11
sharelb 1.36 1.16 1.13 1.13
share2b 5.00 1.10 1.33 1.11
ship041 1.17 1.06 1.17 1.06
ship04s 1.14 1.08 1.26 1.05
ship081 1.13 1.03 1.19 1.05
ship08s 1.14 1.05 1.20 1.03
ship121 1.20 1.06 1.19 1.05
ship12s 1.32 1.02 1.25 1.07
stocforl 2.00 1.00 1.50 1.25
klein2 1.76 1.30 1.79 1.27
klein3 1.80 1.27 1.97 1.25
Total 46.55 29.95 37.44 30.38
Average 1.79 1.15 1.44 1.17

From the above results, we observe: (i) the MPFI scheme is in most problems
faster than PFI both in serial and in parallel implementation, (ii) using PFI
scheme, the speedup gained from the parallelization is of average 1.79 for the

12 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

M Speedup PFI Basis inverse
M Speedup PFl Total

w Speedup MPFI Basis inverse
M Speedup MPFI Total

Fig. 1. Basis Inverse and Total Time of the Serial and Parallel Implementations

time of basis inverse and 1.15 for total time, and (iii) using MPFI scheme, the
speedup is of average 1.44 for the time of basis inverse and 1.17 for total time.

6 Conclusions

A parallel implementation for the revised simplex algorithm has been de-
scribed in this paper. Some preliminary computational results on Netlib prob-
lems have reported a speedup of average 1.79 and 1.44 regarding the basis
inverse procedure, using PFI and MPFI updating schemes respectively. These
results could be further improved by performance optimization. In future
work, we plan to implement our parallel algorithm combining the Message
Passing Interface (MPI) and OpenMP programming models to exploit paral-
lelism beyond a single level. Furthermore, we intend to port our algorithm to
a GPU implementation based on the CUDA architecture.

References

[ABKS89] Agrawal, A., Blelloch, G.E., Krawitz, R.L., Phillips, C.A.: Four vector-
matrix primitives. Proceedings ACM Symposium on Parallel Algorithms and Ar-
chitectures, 292-302 (1989)

Parallel Revised Simplex using OpenMP 13

[BMPSS06] Badr, E.S., Moussa, M., Papparrizos, K., Samaras, N., Sifaleras, A.:
Some computational results on MPI parallel implementations of dense simplex
method. Transactions on Engineering, Computing and Technology, 17, 228231
(2006)

[BH94] Barr, R.S., Hickman, B.L.: Parallel Simplex for Large Pure Network Prob-
lems: Computational Testing and Sources of Speedup. Operations Research,
42(1), 65-80 (1994)

[Ben02] Benhamadou, M.: On the simplex algorithm ’revised form’. Advances in
Engineering Software, 33, 769-777 (2002)

[BPM10] Bieling, J., Peschlow, P., Martini, P.: An efficient GPU implementation of
the revised simplex method. Proceedings of IPDPS Workshops, 1-8 (2010)

[CEFMS88] Chang, M.D., Engquist, M., Finkel, R., Meyer, R.R.: A Parallel Algo-
rithm for Generalized Networks. Annals of Operations Research, 14(1-4), 125-145
(1988)

[EBPGY95] Eckstein, J., Boduroglu, I., Polymenakos, L., Goldfarb, D.: Data-Parallel
Implementations of Dense Simplex Methods on the Connection Machine CM-2.
ORSA Journal on Computing, 7(4), 402-416 (1995)

[Fin87] Finkel, R.A.: Large-Grain Parallelism: Three Case Studies. In: Jamieson, H.
(ed) Proceedings of Characteristics of Parallel Algorithms. The MIT Press (1987)

[Gay85] Gay, D.M.: Electronic mail distribution of linear programming test prob-
lems. Mathematical Programming Society COAL Newsletter, 13, 10-12 (1985)

[Gre04] Greeff, G.: The revised simplex method on a GPU. Stellenbosch University,
South Africa, Honours Year Project (2004)

[HM96] Hall, J.A.J., McKinnon, K.I.LM.: PARSMI, a parallel revised simplex al-
gorithm incorporating minor iterations and Devex pricing. In: Wasniewski, J.,
Dongarra, J., Madsen, K., Olesen, D. (ed) Applied Parallel Computing. volume
1184 of Lecture Notes in Computer Science, Springer (1996)

[HM98] Hall, J.A.J., McKinnon, K.I.M.: ASYNPLEX an asynchronous parallel re-
vised simplex algorithm. Annals of Operations Research, 81(0), 27-50 (1998)

[Hal05] Hall, J.A.J.: SYNPLEX: a task-parallel scheme for the revised simplex
method. In Contributed talk at the second international workshop on combinato-
rial scientific computing (2005)

[Hall0] Hall, J.A.J.: Towards a practical parallelisation of the simplex method.
Computational Management Science, 7, 139-170 (2010)

[Hak93] Hake, J.F.: Parallel Algorithms for Matrix Operations and Their Perfor-
mance in Multiprocessor Systems. In: Kronsjo, L., Shumsheruddin, D. (ed) Ad-
vances in Parallel Algorithms. Halsted Press, New York (1993)

[HKZ88] Helgason, R.V., Kennington, J.L., Zaki, H.A.: A parallelization of the sim-
plex method. Annals of Operations Research, 14(1-4), 17-40 (1988)

[HZ83] Horowitz, E., Zorat, A.: Divide-and-Conquer for Parallel Processing. IEEE
Trans. Comput., C-32(6), 582-585 (1983)

[JOO08] Jung, J.H., O’Leary, D.P.: Implementing an interior point method for linear
programs on a CPU-GPU system. Electronic Transaction on Numerical Analysis,
28, 174-189 (2008)

[LRTG95] Lentini, M., Reinoza, A., Teruel, A., Guillen, A.: SIMPAR: a parallel
sparse simplex. Computational and Applied Mathematics, 14(1), 49-58 (1995)
[LR92] Luo, J., Reijns, G.L.: Linear programming on transputers. In: van Leeuwen,
J. (ed) Algorithms, software, architecture. IFIP transactions A (computer science

and technology). Elsevier, Amsterdam, (1992)

14 Ploskas Nikolaos, Samaras Nikolaos, and Margaritis Konstantinos

[OHLGSO08] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E.: GPU
Computing. Proceedings of the IEEE, 96(5), 879-899 (2008)

[OF03] Ordéiiez, F., Freund, R.: Computational experience and the explanatory
value of condition measures for linear optimization. SIAM J. on Optimization,
14(2), 307-333 (2003)

[Pet90] Peters, J.: The Network Simplex Method on a Multiprocessor. Networks,
20('7), 845-859 (1990)

[Shu95] Shu, W.: Parallel implementation of a sparse simplex algorithm on MIMD
distributed memory computers. Journal of Parallel and Distributed Computing,
31(1), 25-40 (1995)

[SW93] Shu, W., Wu, M.: Sparse Implementation of Revised Simplex Algorithms on
Parallel Computers. Proceedings of Sixth STAM Conference on Parallel Processing
for Scientific Computing, Norfolk (1993)

[SE93] Spampinato, D.G., Elster, A.C.: Linear optimization on modern GPUs. Pro-
ceedings of the 2009 IEEE International Symposium on Parallel and Distributed
Processing (2009)

[Stu88] Stunkel, C.B.: Linear optimization via message-based parallel processing.
Proceedings of International Conference on Parallel Processing, 3, 264271 (1988)

[TL96] Thomadakis, M.E., Liu, J.C.: An Efficient Steepest-Edge Simplex Algo-
rithm for SIMD Computers. Proceedings of the International conference on Super-
Computing (1996)

