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Abstract
Disease detection in agricultural crops plays a pivotal role in ensuring food security and sustainable farming practices. Deep
learning models, known for their ability in image analysis, often demand extensive image datasets and annotations to achieve
high accuracy. However, in the case of bean crops, the absence of a publicly available dataset has posed a significant challenge
for applying deep learning algorithms to accurately predict diseases. Additionally, the manual annotation of images demands
substantial time and resources. This paper introduces an innovative approach to tackle these issues. We introduce a solution
for real-time disease detection on bean leaves, despite the lack of bean-specific image data. Initially, we generate a small
dataset from real images and annotate them. Then, we utilize images from the existing dataset PlantDoc (Singh et al. in:
Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, Association for Computing Machinery, pp 249–253, 2020)
from leaves of other plant species. Moreover, to compensate for the limitations of a small image dataset, we employ advanced
data augmentation techniques, enriching the training data and enhancing the model’s ability to generalize. Our experimental
study shows that data augmentation techniques can improve the accuracy of deep learning methods by up to 37%.

Keywords Disease detection · CNN · Bean crop · Data augmentation · Deep learning

1 Introduction

In modern agriculture, early detection and accurate predic-
tion of crop diseases have become crucial to ensure food
security, sustainable agricultural practices, and optimal crop
yields. One of the innovative approaches applied for early
detection of plant diseases is the use of remote sensing tech-
nologies, such as Unmanned Aerial Vehicles (UAVs) and
UnmannedGroundVehicles (UGVs), combinedwithConvo-
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lutional Neural Network (CNN)-based algorithms for object
detection. This combination not only improves the accuracy
of disease detection but also reduces the time and resources
required for crop monitoring.

Disease detection in crops holds pivotal importance in
modern agriculture for several reasons (Alguliyev et al.
2021). Firstly, it directly impacts crop yield and quality.
Detecting diseases early helps farmers take steps to prevent
them, reducing crop losses. Secondly, it helps in the opti-
mization of resource utilization. By detecting areas affected
by diseases, farmers can efficiently allocate water, fertiliz-
ers, and pesticides, reducing unnecessary expenditures and
environmental impact. Furthermore, early disease detection
contributes to the sustainability of agriculture by reducing
the need for excessive chemical treatments, which can harm
the environment and human health.

In recent years, CNN-based algorithms have emerged
as one of the best solutions for object detection in vari-
ous domains, including agriculture. Their capability to learn
complex patterns and features from images has greatly
transformed the field of computer vision, enabling the devel-
opment of highly accurate and efficient disease detection
systems. These algorithms can process large amounts of
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image data and provide real-time information about the
health of crops, making them essential tools for modern pre-
cision agriculture.

While CNN-based algorithms have demonstrated their
value in disease detection, their effectiveness is heavily based
on the availability of extensive and diverse training datasets.
Publicly available datasets play a pivotal role in training these
algorithms and ensuring their robustness. However, no pub-
lic data exists for images in specific areas. Especially, when
it comes to bean crops, a significant gap exists in the avail-
ability of such datasets. Despite the economic importance
of beans as a basic food crop, there is a notable scarcity of
comprehensive datasets for disease detection and prediction
in bean plants.

This lack of bean-specific datasets poses a considerable
challenge, as deep learning algorithms, including CNNs,
require substantial images and annotations to predict diseases
accurately. Taking these images is not only time-consuming
but also a resource-intensive process. To utilize a valuable set
of data, not only the collection of images, which is a costly
process by itself but also the annotation of the classes in the
images, which is a time-consuming process that experts in
the field of agriculture must do. This paper addresses this
limitation by proposing a novel data augmentation approach
specifically tailored to under-represented crops like beans.
Our ultimate goal is to utilize a relatively small image dataset
specific to beans and complement it with existing datasets
from the leaves of other plants. By applying advanced data
augmentation techniques, we aim to bridge the gap between
the scarcity of bean-specific data and the requirements of
deep learning algorithms, thus facilitating more accurate and
efficient disease detection and prediction for bean crops in
the Prespa Lakes region of Northern Greece.

The structure of the paper is as follows. Section2 reviews
the field of real-time disease detection using small image
datasets and how researchers have adeptly leveraged data
augmentation. In Sect. 3, we present the proposed method
of disease and pest detection system and the data aug-
mentation techniques. Section4 presents the computational
experiments and an extensive discussion based on the results
of the experiments. Finally, Sect. 5 summarizes the work of
this paper.

2 Literature review

Disease detection, particularly in the domain of agriculture,
represents a challenge that has garnered significant attention
over the past fewdecades. The consequences of undetected or
late-detected plant diseases can be vast, leading to diminished
yields and economic losses. As such, it remains a well-
studied problem across the disciplines of plant pathology,
computer vision, and artificial intelligence. Several meth-

ods have been proposed to address this concern. Traditional
machine learningmethods, such as Support VectorMachines
and Random Forests, have been employed with notable suc-
cess (Das et al. 2020; Ramesh et al. 2018; Singh et al.
2022; Govardhan and Veena 2019; Saha and Ahsan 2021).
In recent years, deep learning techniques, especially CNNs,
have emerged as a dominant force to detect diseases in plants
(Ferentinos 2018; Boulent et al. 2019; Shrestha et al. 2020).
Furthermore, hybrid models combining features extracted
from both traditional and deep learning models have been
introduced, adding another dimension to the solutions avail-
able (Bedi and Gole 2021).

However, one of the major challenges in employing these
sophisticated models is the requirement of large, labeled
datasets. In many real-world scenarios, acquiring a substan-
tial dataset is a difficult task, both in terms of time and
resources. In such cases where data is sparse, data augmen-
tation techniques come into play (Chug et al. 2023). These
techniques artificially expand the dataset by applying a range
of transformations, such as rotations, scaling, and cropping,
thereby providing themodel with amore diverse set of exam-
ples to learn from.

In this paper, our focus narrows down to exploring novel
methods in real-time disease detection using small image
datasets. Specifically, we delve deep into how researchers
have leveraged data augmentation in tandemwith deep learn-
ing techniques to improve the accuracy and efficiency of their
models in such constrained data environments.

2.1 Disease detection

Jiang et al. (2019) proposed a deep learning method with
CNNs for the real-time detection of apple leaf diseases. They
used data augmentation and image annotation technologies
to construct a comprehensive dataset, attaining 78.80%mAP
(mean Average Precision). Islam et al. (2023) introduced
a method for predicting crop diseases using deep learn-
ing. They created a web tool, DeepCrop, to aid farmers in
identifying plant diseases. During their tests, they assessed
multiple deep learning architectures such as CNN, VGG-
16 (Simonyan and Zisserman 2014), VGG-19 (Simonyan
and Zisserman 2014), and ResNet50 (He et al. 2016) on the
PlantVillage (Kaggle 2018) image dataset to identify crop
diseases. The ResNet50 model emerged as the best, boast-
ing 98.98% accuracy. Mahum et al. (2023) developed a new
framework for detecting potato leaf diseases using a refined
deep-learning model. Their method classifies potato leaves
into five categories, utilizing the PlantVillage dataset. To
overcome data imbalance, they applied a reweighted cross-
entropy loss function and integrated the Efficient DenseNet
model from DenseNet-201 (Huang et al. 2017), alongside
regularization techniques, for efficient disease classification.
Their framework reached a 97.2% accuracy.
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In the subsequent section, we will focus on existing works
that use data augmentation techniques in conjunction with
deep learning for effective disease detection, especiallywhen
constrained by the dataset size.

2.2 Data augmentation

Data augmentation is a techniquewidely adopted in the realm
of machine learning and deep learning to mitigate the chal-
lenges posed by limited data. By artificially expanding the
dataset through a series of transformations, data augmenta-
tion not only addresses the problem of overfitting but also
aids in enhancing the model’s capability to generalize across
diverse scenarios. Several studies have corroborated the effi-
cacy of data augmentation in improving disease detection
rates. Still, many studies do not mention the influence of data
augmentations on their outcomes even though they use such
techniques, as observed in prior research, e.g., Enkvetchakul
and Surinta (2022),Abayomi-Alli et al. (2021),Kaushik et al.
(2020), Dai et al. (2023) and Li et al. (2023). In this sec-
tion, we exclusively examine research works that explicitly
discuss the effects of data augmentation on their detection
results.

Zhang et al. (2023) introduced a high-quality image aug-
mentation method for enhancing the quality of rice leaf
disease samples using a dual GAN framework. By process-
ing the generated pseudo-data through an Optimized-Real-
ESRGAN, they achieved high-quality images for disease
classification. Their method boosted recognition accuracy by
4.57% on ResNet18 (He et al. 2016) and 4.1% on VGG11
(Simonyan and Zisserman 2014) compared to the original
dataset. Compared to solely using WGAN-GP for augmen-
tation, they observed increases of 3.08% for ResNet18 and
3.55% forVGG11. Theirmethod proves especially beneficial
for situations with limited training datasets.

Haruna et al. (2023) proposed a synthetic data aug-
mentation method using Style-Generative Adversarial Net-
work Adaptive Discriminator Augmentation (SG2-ADA) to
address the challenge of limited and uneven rice leaf disease
datasets. By using the variance of the Laplacian filter, they
enhanced the performance of Faster-RCNN (Ren et al. 2015)
and SSD (Liu et al. 2016) models. After training SG2-ADA
for 250 epochs and filtering out low-quality images, they aug-
mented these models for disease detection, achieving a mAP
of 93% for Faster-RCNN and 91% for SSD.

Cap et al. (2022) introduced LeafGAN, a system designed
to enhance data augmentation in plant disease diagnosis by
transforming healthy images into diseased ones, focusing
on relevant image areas with its attention mechanism. This
made the training data more diverse. In tests on a five-class
cucumber disease classification, while CycleGAN (Zhu et al.
2017) improved diagnostic performance by only 0.7% from
the baseline, LeafGAN boosted it by a significant 7.4%.

Zeng et al. (2020) delved into the application of deep
learning models for detecting the severity of Huanglongbing
citrus infections. Using a dataset of 5, 406 HLB-infected cit-
rus leaf images, the InceptionV3 (Szegedy et al. 2016) model
emerged as the most efficient, achieving a detection accuracy
of 74.38%. Notably, when the team employed deep convolu-
tional generative adversarial networks for data augmentation,
doubling the original dataset, the accuracy of the InceptionV3
model significantly increased to 92.60%. This significant
improvement underscores the pivotal role of GANs-based
data augmentation in enhancing model performance.

Diana Andrushia et al. (2023) used a convolutional cap-
sulet network for detecting diseases on grape leaves. They
used an original dataset of 11300 images, where 4000 were
images from healthy leaves, while the rest were images with
diseased leaves. They used data augmentation techniques,
such as rotation, scaling, gamma correction, flipping, and
color augmentation to enhance the dataset, reaching a total
of 28,000 images. The validation accuracy for the augmented
datawas 99.12%compared to 92.13%for the original dataset.

In the face of limited data, data augmentation emerges as
an indispensable tool, bridging the gap between scarcity and
the need for diversity, and propelling models to achieve high
accuracy and robustness in disease detection. In this work,
we utilize a small dataset of bean crops, data augmentation
techniques to enhance the number and diversity of training
images, and datasets on other plant species to improve the
accuracy of CNN-based disease detection models.

3 Proposedmethodology

In Fig. 1, we present a visual representation of the disease and
pest detection system utilized within bean cultivation. This
system is connected to three distinct subsystems UAV sub-
system, the UGV subsystem, and the pest damage detection
engine subsystem.

The disease and pest detection system serves as a piv-
otal tool for data analysis and model management, aiming at
the early detection of potential diseases in plants. The pro-
cess initiates with the activation of the UAV subsystem to
gather aerial images. Subsequently, these images are relayed
to the pest damage detection engine subsystem, where the
best CNN model is chosen to anticipate the diseases that
may affect the crops. Figure2 visually illustrates an instance
where the UAV subsystem provides an image to the pest
damage detection engine, depicting a scenario marked by
the presence of a disease in the field.

The system then evaluates the likelihood of disease occur-
rence by assessing the confidence level associated with each
classified disease. A disease is predicted to be present when
the confidence level for any identified disease on any leaf
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Fig. 1 Flow chart of the
proposed methodology

Fig. 2 Real UAV image of the crop

exceeds 60%. Figure3 shows the image after the model pre-
diction, where it is obvious that diseases are present.

Conversely, if no disease is detected or if the confidence
level falls below 60%, the disease detection system signals
the presence of healthy plants in the image, bringing the pro-
cess to a halt. This scenario is illustrated in Figs. 4 and 5,
featuring an actual UAV image of a healthy portion of the
field alongside the model’s annotations.

In cases where diseases are detected in the UAV images,
the UGV subsystem is called by providing it with the coordi-

Fig. 3 Model disease predictions on UAV images

nates of the detected disease. The UGV then proceeds to the
specified location, capturing images from a closer vantage
point. These images have greater sharpness and detail, offer-
ing more detailed information about the disease. Figure6
shows an image of a UGV containing plant leaf diseases.

The new images obtained by the UGV serve the purpose
of updating the disease detectionmodel, providing additional
data to refine the model’s capabilities. This update helps
improve the accuracy and performance of the model, allow-
ing it to make more accurate and reliable predictions of plant
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Fig. 4 Real UAV image of a healthy crop

Fig. 5 Model healthy predictions on UAV images

Fig. 6 Real image of UGV with crop diseases

diseases. In this way, the cooperation between the UAV and
UGV subsystems allows more accurate data to be collected,
the model to be updated and the ability to detect and pre-
dict plant diseases to be improved. This process continues
as analyses and predictions are repeated, allowing for con-
tinuous improvement of the pest damage detection engine
subsystem.

Figure 7 exhibits an image from the UGV with disease
annotations by the agronomist, while Fig. 8 presents the
predicted diseases. As clearly depicted in Fig. 8, leaves are
identified as diseasedwith a confidence level exceeding 60%,
prompting a notification of disease presence to the user.

In contrast, Fig. 9 showcases an image from a UGV mis-
sion devoid of plant leaf diseases, while Fig. 10 reveals the
UGV-captured image featuring agronomist-verified healthy

Fig. 7 Image with agronomist annotations of diseases

Fig. 8 Image with model predictions of diseases

Fig. 9 Real image of healthy plants

leaves. Figure11 displays the corresponding predictions,
showing that no diseased leaves are detected with a confi-
dence level exceeding 60%, affirming the absence of diseases
in the crop, as conveyed to the user.

This work places particular emphasis on the pivotal role
of images obtained from the UGV and the subsequent pre-
dictions derived from these UGV-captured images. To train
the model to make accurate predictions, we employed a two-
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Fig. 10 Image with agronomist annotations of healthy plants

Fig. 11 Image with model predictions of healthy plants

fold strategy. Firstly, we harnessed the power of CNN-based
algorithms, pre-trained on richer datasets, to further enhance
the accuracy of our predictions. Secondly, we utilized some
of the UGV images in which disease and healthy plants were
labeled in detail. Moreover, significant emphasis is placed
on the outcomes achieved through the application of data
augmentation techniques, even when working with only a
limited number of crop images.

3.1 Data augmentation techniques

In this subsection, we will briefly describe the data augmen-
tation techniques we experimented with (interested readers
may refer to Kaur et al. (2021), Chlap et al. (2021) and
Shorten and Khoshgoftaar (2019) (for more details on these
techniques):

• Laplacian filtering: Laplacian filtering enhances edges in
an image, making them more prominent. It is often used
for edge detection and feature extraction.

• Sobel operator: TheSobel operator is used for edge detec-
tion by convolving the image with a pair of 3× 3 kernels
to calculate the gradient of the image in the x and y direc-
tions.

• Grayscale: Conversion to grayscale reduces the image
to a single channel, simplifying further processing and
analysis by removing color information.

• HSV: Hue, Saturation, and Value color space separates
color information from intensity, making it easier towork
with color-based features in an image.

• LAB: LAB color space represents an image in terms of
lightness (L), green-red color (A), and blue-yellow color
(B), which can be useful for color-based segmentation
and analysis.

• Canny edge detection: Canny edge detection is a multi-
stage algorithm that detects edges in an image by finding
areas of rapid intensity change. It’s widely used for edge
extraction.

• Thresholding: Thresholding converts an image into a
binary format, where pixels above a certain threshold are
set to one value, and those below are set to another. It is
used for image segmentation.

• Translation: Translation shifts an image’s position hori-
zontally and vertically, which can be useful for alignment
or data augmentation.

• Scale: Scaling changes the size of an image, making it
larger or smaller. It’s often used for resizing images to a
standard size.

• Rotation: Image rotation involves rotating the image by a
specified angle. It’s used for correcting image orientation
or creating variations for training data.

• Resize: Resizing adjusts the dimensions of an image
while maintaining its aspect ratio. It is commonly used to
prepare images for specific input sizes in machine learn-
ing models.

• Crop: Cropping removes a portion of an image, isolating
a specific region of interest. It is useful for focusing on
specific details or reducing image size.

• Gaussian blur: Gaussian blur applies a blur filter to an
image, smoothing out noise and reducing fine details. It
is used to reduce noise and prepare images for further
processing.

• Median blur: Median blur replaces each pixel’s value
with the median value of the pixels in its neighborhood.
It is effective at reducing salt-and-pepper noise.

• Bilateral blur: Bilateral blur is a filtering technique that
smooths an image while preserving edges. It is useful for
noise reductionwhile retaining important image features.
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Fig. 12 Sample of PlantDoc
dataset

4 Computational experiments

In this section, we detail the computational experiments car-
ried out to assess the effectiveness of the YOLOv5 (Jocher
2022) model coupled with data augmentation techniques in
detecting diseases on bean leaves.

4.1 Datasets

We trained our models using two distinct datasets. The first
dataset is thewidely recognized PlantDoc (Singh et al. 2020),
which contains a substantial collection of plant images.
The PlantDoc dataset holds significant importance in the
realm of plant disease identification and diagnosis, leverag-
ing machine learning and image processing techniques. The
second dataset is a customone thatwe generated from images
of bean crops in the Prespa Lakes region in Northern Greece.

In Fig. 12, we provide a sample of the PlantDoc dataset.
This valuable collection of images within the PlantDoc
dataset showcases various plant species exposed to diverse
factors affecting plant health, including diseases, pest attacks,
and other influencing parameters. Comprising 2,569 images,
this dataset encompasses 13 distinct plant species and 30

classes, covering both diseased and healthy states. It serves
as a crucial resource for tasks such as image classifica-
tion and object detection. Data for the PlantDoc dataset is
sourced frommultiple environments, including fields, farms,
nurseries, and greenhouses, capturing images in different
seasons and conditions, thereby ensuring its diversity and
realism. The PlantDoc dataset includesmultiple plant species
including trees, shrubs, flowers, vegetables, and more. For
each plant species, the dataset includes different diseases
and pathogens that can affect them. For example, it can
include images of plants that have been affected by fungi,
bacteria, viruses, and more. Each image in the PlantDoc
dataset is accompanied by detailed labels describing the plant
species, the specific disease or pest attack observed, and other
important information. These labels are critical for training
machine learning models. Applications include automatic
plant disease detection, real-time plant health monitoring,
and increasing productivity in agriculture.

Our initial model training utilized the PlantDoc dataset
to establish the initial weights of its variables. While this
initial training allowed the model to grasp general struc-
tures and patterns related to plant diseases, it fell short of
achieving high accuracy in real-world disease detection sce-
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Fig. 13 Sample of custom dataset with annotations

narios. To enhance the model’s performance, we created our
own dataset. This dataset comprises 75 new plant images
captured exclusively by a UGV, characterized by a diverse
set of attributes, along with approximately 4000 annotations.
From the 75 images, we kept 15 for validation and the other
60 to train the model. Since the images are taken from a
real field, each image contains a lot of information about the
bean leaves. Note here that the PlantDoc dataset has about
three with four annotations per image while ours has about
53 annotations per image. We used the real dataset to focus
on a wider range of bean pathologies. Our objective was
to fine-tune the model, augmenting its sensitivity to intri-
cate details and substantially elevating its disease detection
accuracy. This process, involving validation and trainingwith
our custom dataset, markedly improved the model’s capac-
ity to accurately and reliably detect diseases in various plant
species. In Fig. 13, we offer a snapshot as a sample of the
dataset, captured by the UGV and meticulously annotated.
More specifically, the dataset includes 75 UGV images of
bean crops, four different classes (rust, spot leaf, both dis-
eases, and healthy), and 4000 annotations (1806 for the rust
class, 686 for the spot leaf class, 779 for both diseases, and
1215 for the healthy class).

4.2 Data augmentation

By augmenting the data, the model is trained on a more
diverse set of examples, which helps in improving the gen-
eralization of the model, making it more robust to variations
in the input data. This is particularly beneficial in plant dis-
ease detection, where the appearance of symptoms can vary
greatly depending on a variety of factors including the stage
of the disease, lighting conditions, and the angle of the image
capture.

In our study, we leveraged data augmentation to artifi-
cially expand our dataset, thereby enabling ourmodel to learn
more diverse features and be better prepared for real-world
deployment. After an extensive computational study of data

augmentation techniques, we identified the top 10 methods
that yielded themost substantial increase in themodel’s accu-
racy. The selected techniques are as follows:

• rotation 180 degrees
• rotation 90 degrees left
• rotation 90 degrees right
• grayscale
• HSV
• LAB
• translation
• resize
• random crop
• Gaussian blur

For every one of the 60 original images, we generated one
additional image, for each of the 10 aforementioned tech-
niques. This multiplied the initial set of 60 images into a total
of 600 images. By incorporating these 600 newly generated
images, we significantly augmented the depth of informa-
tion available during the model training process, resulting in
a substantial boost to its overall accuracy. Data augmenta-
tion techniques in the context of bean leaf disease detection
proved critical to improving model accuracy since original
image data alone was not sufficient. In Fig. 14 we present
the original image as an initial reference point, followed by
a sequence demonstrating the image’s transformation after
each applied technique.

4.3 CNN-based object detectionmodels

In recent years, various CNN-based object detection models
have been developed and utilized in different fields includ-
ing agriculture, healthcare, and autonomous vehicles, among
others. In our study, we opted to use the YOLOv5 model for
disease detection on bean leaves from a small image dataset
leveraging data augmentation. This choice was influenced by
the superior performance of YOLOv5 in our computational
study on previous works (Karantoumanis et al. 2022; Bal-
afas et al. 2023), as well as its good performance reported in
various studies (Zhao et al. 2018; Li et al. 2022). YOLOv5,
the fifth iteration of the YOLO series, stands as a state-of-
the-art, real-time object detection system. The architecture
of YOLOv5 is built upon several innovative components
that work synergistically to enhance its performance. The
backbone of the architecture is CSPDarknet53, a variant of
the Darknet architecture, which is known for its efficiency
and speed. This backbone is coupled with PANet, a fea-
ture pyramid network that enhances information flow, and
SAMblock, a spatial attentionmodule that helps the network
focus on the most informative regions of the input image.
YOLOv5 employs a multi-scale prediction strategy, where
it makes predictions at three different scales, allowing it to
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Fig. 14 Visualization of the
original image and the modified
one after each applied technique

detect objects of various sizes effectively. This is particu-
larly beneficial in plant disease detection where symptoms
can vary significantly in size. The network utilizes anchor
boxes optimized for the dataset, improving detection accu-
racy for objects with different aspect ratios. The YOLOv5
model offers improved performance in terms of both speed
and accuracy compared to earlier versions. It is capable
of detecting objects with high precision and is optimized
to function in real-time, making it suitable for applica-
tions necessitating instantaneous responses. Designed with
user-friendliness in mind, YOLOv5 facilitates easy training
and inference procedures. It supports automatic optimiza-
tion of hyperparameters, simplifying the training process.
Unlike its predecessors which were implemented in Darknet,
YOLOv5 is implemented in PyTorch, enhancing its accessi-
bility and ease of integration with other deep learning tools
and libraries. The model maintains the YOLO tradition of
making predictions at multiple scales, effectively detecting
objects of various sizes.

4.4 Model training and validation

Utilizing the PyTorch framework, we trained the YOLOv5
model on the augmented dataset. The training process
involved optimizing the model’s hyperparameters to achieve
the best performance. We used YOLOv5’s default hyperpa-
rameters to fine-tune themodel.Wevalidated themodel using
a separate set of unseen data to ensure its robustness and reli-
ability in disease detection. In Fig. 15, we present the training
results of the two-class disease detection system.The training
losses are represented by train/box_loss, train/obj_loss, and
train/cls_loss, which measure the bounding box predictions,
objectness confidence, and classification accuracy, respec-
tively. The metrics include metrics/precision, metrics/recall,
metrics/mAP_0.5, and metrics/mAP_0.5:0.95, which pro-
vide insights into the model’s predictive performance and
robustness across various Intersection over Union thresh-
olds. Additionally, the validation losses are captured by
val/box_loss, val/obj_loss, and val/cls_loss. The learning
rates for different parts of the model are represented by x/lr0,
x/lr1, and x/lr2, which seem to be decreasing over epochs, a
typical strategy in deep learning to ensure convergence.
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Fig. 15 Training results of the two-class disease detection system

4.5 Results and discussion

The YOLOv5 algorithm and the dataset PlantDoc, our cus-
tom dataset, and the combination of these two were used
for the experimental procedure. First, we used the PlantDoc
dataset to do a first training of the model to generate the
basic weights of the variables. This first training helped the
model understand the general structures and patterns associ-
ated with plant diseases. We then kept a sample of 15 images
out of 75 in the custom dataset to evaluate the performance of
the models.We divided the experiments into two general cat-
egories, two-class and four-class experiments. In two-class
experiments, the algorithm’s prediction is limited to only a
healthy plant or a diseased plant. In contrast, in the four-
class experiments, the algorithm’s prediction includes the
leaf spot disease, rust, the probability that both leaf spot and
rust have appeared on a leaf together, and healthy plants.
Three sets of datasets were used for both classes of experi-
ments. From the first dataset, we extracted the healthy plant
images from PlantDoc and plant images with all the diseases
it contained. Themodelswere evaluated on the 15 real images
of the custom dataset. The second dataset contained 60 real
images of beans and their diseases from the custom dataset,
and the evaluation of the models was done on its remaining
15 images. Finally, because we noticed a lack of data in the
images of healthy plants since the rates were quite low, we
added images from the custom dataset along with an extra
316 images of healthy plants from the PlantDoc dataset.

To evaluate the performance of the model we used the
metric mAP. The mAP metric is a popular way to evaluate
the performance of an object recognition model in terms of
its prediction accuracy. The mAP is calculated based on the
prediction results produced by an object recognition model.

First, the category and context are predicted for each object
in an image. The predictions are then evaluated against the
actual state of the objects in the images. mAP is an average
of accuracies calculated for each object class. This means
taking into account the accuracy for each class separately
and then averaging those accuracies.

Table 1 shows the performance of the system with two
classes. The classes predicted by themodel are healthy plants
and diseased plants. More specifically, the results of the
PlantDoc dataset show that it achieves the best results with
78% prediction accuracy in the general set, 81% accuracy
in diseased plants, and 76% accuracy in healthy plants. On
the other hand, the custom dataset has an accuracy of 47%
in the general category but has a weakness in healthy plants
with an accuracy of 25%. However, this accuracy improves
significantly with the addition of the PlantDoc dataset and
reaches 64%. However, it does not outperform the results of
the PlantDoc dataset. The improvement in results presented
by the PlantDoc dataset is due to the fact that it containsmany
more images of both healthy and diseased plants. This allows
it to better predict whether a leaf is healthy or not.

Table 2 shows the performance of the system with four
classes. The classes predicted by themodel are spot leaf, rust,
spot leaf, and rust together on one leaf and healthy plants.
This time in the PlantDoc dataset the healthy plant images
and only the rust classes are used since this particular dataset
does not contain any images of beans or of the four leaf spot
diseases. In particular, we notice that the results of the Plant-
Doc dataset are very low, with the best accuracy achieved in
cases where this class is present with a percentage of only
24% and in the general set 16%. The custom dataset has an
accuracy of 46% on rust and 27% on the overall set and with
the addition of the healthy plants from PlantDoc the accu-
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Table 1 Results with two
classes

PlantDoc Custom dataset PlantDoc + custom dataset

All categories 0.788 0.447 0.711

Diseased 0.810 0.687 0.768

Healthy 0.765 0.253 0.645

Table 2 Results with four
classes

PlantDoc Custom dataset PlantDoc + custom dataset

All categories 0.162 0.277 0.474

Spot leaf 0.133 0.25 0.359

Rust 0.243 0.467 0.649

Both diseases 0.165 0.150 0.284

Healthy 0.105 0.242 0.605

racy rises to 47% on the overall set, 60% on healthy leaves,
and 64% on the rust. In the custom dataset, the spot leaf was
not seen as much so the percentage for its prediction is lower
since a large percentage of the annotations in the imageswere
from rust.

The PlantDoc dataset alone cannot correctly predict the
classes, so the combined use of the two datasets is necessary.
The information added by the PlantDoc dataset offers more
knowledge about plants and their characteristics. This allows
the model to more accurately predict the plant class under
consideration. Combining the two datasets also allows the
model to become familiar with a greater variety of plants
and develop a more comprehensive understanding of their
characteristics. This can lead to improved model accuracy
and performance in classifying plants into multiple classes.

Tables 1 and 2 present the results without the use of data
augmentation techniques. In order to achieve greater accu-
racy in the results, we performed four more experiments. Of
these, two experiments involved the two-class category and
the other two experiments involved the four-class category.
In this case, we used the mentioned techniques on the cus-
tom dataset with the aim of achieving more accuracy in the
results.

In Table 3 we present the performance of the system with
two classes and data augmentation techniques on the custom
dataset. For the category with the two classes, the percent-
age of the custom dataset with the additional images rises
by 34.2% and reaches 78%. By adding the healthy images
from the PlantDoc dataset as well, the percentage increases
to 79.2%, thus providing accurate predictions. Adding these
images to the dataset significantly improved the performance
of our model and enhanced the reliability of our predictions.
In fact, the percentage of diseased plants reaches 82.9%.

In Table 4 we present the performance of the system with
four classes and data augmentation techniques on the custom
dataset. Regarding the four-class category, the percentage of
predictions in the custom dataset increases by 25.1%, reach-

Table 3 Results with two classes and data augmentation techniques

Custom dataset PlantDoc + custom dataset

All categories 0.789 0.792

Diseased 0.826 0.829

Healthy 0.744 0.757

Table 4 Results with four classes and data augmentation techniques

Custom dataset PlantDoc + custom dataset

All categories 0.528 0.592

Spot leaf 0.334 0.509

Rust 0.698 0.704

Both diseases 0.353 0.412

Healthy 0.72 0.751

ing 52.8%. The proposed model performs much better than
the model that used the PlantDoc dataset (36.6% increase).
By inserting the healthy images from the PlantDoc dataset,
the prediction rate increases to 59.2%, which is an encourag-
ing increase in accuracy, especially for the four classes. The
addition of these images to the dataset significantly improved
the performance of ourmodel, enhancing the reliability of our
bean crop and disease predictions.

Our experiments demonstrated that the YOLOv5 model,
complementedbydata augmentation techniques, could effec-
tively identify diseases on bean leaves with high precision.
The model exhibited a remarkable ability to focus on the
most informative regions of the input images, a feature that
proved invaluable in detecting subtle and localized symp-
toms of plant diseases. However, it is crucial to emphasize
that the significance of these results was greatly enhanced
through the incorporation of a specialized dataset tailored to
the unique characteristics of bean leaf diseases. This under-
scores the importance of using domain-specific datasets to
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train machine learning models effectively. Furthermore, the
multi-scale prediction strategy of YOLOv5 allowed it to
detect symptoms of various sizes effectively, showcasing
its versatility and applicability in real-world scenarios. The
real-time detection capability of the model facilitated swift
responses, a critical factor in agriculture where timely inter-
vention can prevent widespread damage.

5 Conclusions

In conclusion, this study presents an innovative approach to
tackle the challenge of accurately predicting diseases in bean
crops despite the absence of a publicly available dataset. By
leveraging the PlantDoc dataset with images from leaves of
other plant species and incorporating new real-world images
captured by aUGV from the bean crop, wewere able to prop-
erly train the model with the YOLOv5 algorithm to adapt to
the unique characteristics of the specific crop. In this way,
we were able to achieve real-time disease detection on bean
leaves with greater accuracy than state-of-the-art CNNmod-
els. Our approach demonstrates the potential of deep learning
methods to overcome the limitations of small image datasets
and achieve accurate disease detection in real time.

We conducted disease prediction experiments in two cat-
egories, encompassing two and four classes, both with and
without the application of data augmentation techniques.
Additionally, we employed the PlantDoc dataset, a cus-
tom dataset, and a combination of both datasets in separate
trials. Our computational experiments yielded particularly
promising outcomes, especially when utilizing the combined
dataset. Specifically, for the 2-class category, we achieved
an accuracy rate of 79%, while for the 4-class category, it
reached 59%,with the application of data augmentation tech-
niques. In contrast, without the use of data augmentation
techniques, the accuracy was 71% for the 2-class category
and 47% for the 4-class category.

Hence, we conclude that the most effective approach for
achieving high accuracy in scenarios where public datasets
lack sufficient images in certain categories involves twomain
features: utilizing an existing dataset to establish the model’s
initial features and incorporating new imagery into the final
dataset, as well as the addition of a small expanded dataset
from real images using data augmentation techniques to fur-
ther specialize the model.
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