
The Impact of Solution Diversity on Passive Constraint
Acquisition

Vasileios Balafas

v.balafas@uowm.gr

Department of Electrical and Computer Engineering,

University of Western Macedonia

Kozani, Greece

Dimosthenis C. Tsouros

dimos.tsouros@kuleuven.be

Department of Computer Science, KU Leuven

Leuven, Belgium

Nikolaos Ploskas

nploskas@uowm.gr

Department of Electrical and Computer Engineering,

University of Western Macedonia

Kozani, Greece

Kostas Stergiou

kstergiou@uowm.gr

Department of Electrical and Computer Engineering,

University of Western Macedonia

Kozani, Greece

Abstract
Constraint programming provides a powerful framework for model-

ing and solving combinatorial problems. However, manually defin-

ing the required constraints can be a challenging task that requires

a high level of expertise. Constraint acquisition (CA) techniques

aim to semi-automate this process by learning constraints from

examples of solutions and non-solutions. One important factor that

can impact the effectiveness of CA is the diversity of the example

solutions provided. This paper investigates how solution diversity

influences passive learning approaches for CA across three distinct

problems and various diversity metrics. Our results demonstrate

that solution diversity significantly influences the quality of learned

constraints, highlighting the importance of diverse solution sets.

In addition, we show how we can predict whether a given set of

solutions will enable accurate constraint learning using a machine

learning (ML) model. Our experimental evaluation shows that the

ML model can accurately predict the recall of the CA system based

on the solution set’s diversity metrics and the number of solutions.

CCS Concepts
• Theory of computation→ Constraint and logic program-
ming.

Keywords
Constraint Programming, Constraint Acquisition, Diversity of So-

lutions, Machine Learning

ACM Reference Format:
Vasileios Balafas, Dimosthenis C. Tsouros, Nikolaos Ploskas, and Kostas

Stergiou. 2024. The Impact of Solution Diversity on Passive Constraint

Acquisition. In 13th Conference on Artificial Intelligence (SETN 2024), Sep-
tember 11–13, 2024, Piraeus, Greece. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3688671.3688759

This work is licensed under a Creative Commons Attribution International

4.0 License.

SETN 2024, September 11–13, 2024, Piraeus, Greece
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0982-1/24/09

https://doi.org/10.1145/3688671.3688759

1 Introduction
Constraint Programming (CP) is a paradigm for modeling and solv-

ing Constraint Satisfaction Problems (CSPs) using techniques from

AI, computer science, and operations research. CP is applied in

various domains, such as scheduling, resource allocation, and as-

signment problems [27, 34]. To model a real-world problem as a

CSP, the user has to define the variables, their domains, and the

constraints of the problem. Variables represent the entities of the

problem on which some decision needs to be made, domains define

possible values for the variables, and constraints describe relation-

ships between variables. By defining these elements, CP facilitates

the formulation of complex problems in a way that is both intuitive

and close to their original definitions, hence providing a conve-

nient approach to their solution. However, the modeling process

has been identified as an important bottleneck for the wider user

of CP, as substantial expertise is required for the identification and

formulation of the constraints [9, 10]. This has led to an increasing

interest in Constraint Acquisition (CA) techniques, which can help

to automate the modeling process [6, 7, 31].

CA relies on examples of solutions and non-solutions, and possi-

bly on user feedback, to generate constraints iteratively, potentially

saving considerable time and effort compared to the laborious man-

ual modeling of the constraints. There are two primary CA learning

paradigms: passive learning (PL) and active learning (AL). AL is a

paradigm that exploits explicit user input to acquire constraints.

This input is obtained by soliciting feedback from the user, which

can be a human or a software tool, on whether a given example

(i.e., a set of variable assignments) constitutes a solution. AL is

particularly focused on acquiring fixed-arity constraints, with no

AL system so far being able to learn global constraints.

In PL, the system tries to acquire constraints by observing and an-

alyzing examples of solutions (and possibly non-solutions) without

requiring explicit user input. Most PL approaches rely only on solu-

tions of the problem, as they can be derived from previously solved

instances of a problem, historical datasets that record solutions to

similar problems, or simulations of the problem scenario. Most PL

systems primarily focus on acquiring global constraints, or patterns

of constraints, by analyzing the available solutions and identify-

ing common patterns among them. Then, AL can be employed to

complete a basic model obtained through PL.

https://orcid.org/0000-0003-0766-2704
https://orcid.org/0000-0002-3040-0959
https://orcid.org/0000-0001-5876-9945
https://orcid.org/0000-0002-5702-9096
https://doi.org/10.1145/3688671.3688759
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3688671.3688759
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3688671.3688759&domain=pdf&date_stamp=2024-12-27

SETN 2024, September 11–13, 2024, Piraeus, Greece Balafas et. al.

Although the quality of the given set of solutions is of high

importance in passive CA, its impact is rather overlooked in the

literature. Passive CA systems are commonly evaluated on sets of

solutions artificially generated, focusing mainly on the number of

solutions used and not on how these solutions are structured. As

there are no standard evaluation sets or ways of generating them,

the obtained results can be highly affected by the quality of the

sets of solutions used. One significant factor regarding the set of

solutions used in the acquisition process is their diversity, i.e., how

different they are. Like in standard machine learning, where the

diversity of solutions has been identified as a very important factor,

along with the size of the dataset used [12, 30], diverse solutions in

CA provide a broader representation of the problem space, which

may enhance the correctness of the acquired set of constraints. By

analyzing a wider range of solutions, CA systems can identify and

confirm a variety of patterns, leading to the formulation of con-

straint models that more accurately capture the given problem. Also,

incorporating diverse solutions can lead to the detection of rare

but critical scenarios that might otherwise be overlooked, thereby

improving the system’s performance in real-world applications.

In this work, we focus on enhancing the understanding of the

impact of solution diversity on PL methods. We evaluate the impact

of solution diversity on PL methods in three problems: Sudoku,

Greater than Sudoku, and WLP. To this end, we evaluate the per-

formance of a passive CA system, using different sets of solutions,

that vary in their diversity. We used well-known diversity metrics

to measure solution diversity. Our experiments focus on evaluating

how close the learned set of constraints is to the target set of con-

straints for the given benchmarks. Our experiments demonstrate

that solution diversity significantly impacts the effectiveness of pas-

sive learning methods in constraint acquisition. Higher diversity in

solution sets improves constraint learning accuracy.

However, in real-world applications, it is unlikely that we will

have a large pool of (diverse) solutions available. Thus, we cannot

easily predict how accurate the CPmodel extracted using CAwill be

prior to applying a CA method. To tackle this, we propose to apply

diversitymetrics on the available set of solutions in order to evaluate

its quality. We show how a machine learning (ML) model can be

used to predict whether or not a given set of example solutions will

result in a good CSP model, based on a feature representation of the

given solutions set, regarding its diversity and amount of solutions it

contains. The results demonstrate that the ML model can accurately

predict the recall (quality) of the constraint model learned by the

CA system, based on features capturing the diversity and size of the

given solution set. Across all benchmarks the ML model achieved

very high 𝑅2
scores, ranging from 97.61% to 99.89%, when using

different diversity metrics as features. These high 𝑅2
values indicate

that the machine learning model can reliably estimate the expected

recall, and consequently the quality of the learned CP model. This

predictive capability is valuable when we do not have access to a

large, diverse pool of solutions, allowing us to assess if the available

solutions are sufficient for accurate CA or if more data is needed.

To summarize, we address the following key questions:

(1) How does solution diversity impact the effectiveness of PL

methods in semi-automated CP modeling across different

problems?

(2) Can we develop a predictive model to estimate the expected

recall of the learned constraints given the diversity measures

and the number of solutions provided to the CA process?

The remainder of this paper is structured as follows. Background

on CP, CA, diversity of solutions, and supervised ML is given in

Section 2. In Section 3, we review the related work. Following this,

we outline our methodology employed to evaluate the impact of

solution diversity on PL methods in CA systems and present the

results obtained from the experimental analysis in Section 4. In

Section 5, we present an ML model to estimate the expected recall

of the learned constraints. Finally, Section 6 concludes the paper.

2 Background
2.1 Constraint Programming
Constraint Programming (CP) is a powerful paradigm for solving

combinatorial problems. Formally, a Constraint Satisfaction Prob-

lem (CSP) [33] can be defined as a triple (𝑋, 𝐷,𝐶):
• 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}: a set of 𝑛 variables.

• 𝐷 = {𝐷𝑥1
, 𝐷𝑥2

, . . . , 𝐷𝑥𝑛 }: a set of 𝑛 domains, where each

domain 𝐷𝑥𝑖 is the finite set of possible values that variable

𝑥𝑖 can take.

• 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}: A set of𝑚 constraints. Each constraint

𝑐𝑖 specifies the allowable combinations of values for a subset

of variables.

The goal is to find an assignment 𝑎 for the variables in 𝑋 such

that all constraints in𝐶 are satisfied. Such an assignment 𝑎 is called

a solution 𝑠 of 𝐶 . The set of all solutions of 𝐶 is notated as 𝑠𝑜𝑙 (𝐶).
Constraints in CP are divided into two main types: fixed-arity

and global constraints. Fixed-arity constraints involve a predeter-

mined, number of variables.When these constraints apply to exactly

two variables, they are known as binary. Common fixed-arity con-

straints include various mathematical relations among a specified

number of variables, e.g. 𝑥1 > 𝑥2. On the other hand, global con-

straints are constraints applied to sequences of variables, thus, they

do not have a fixed-arity, providing a global view of the patterns

present in the problem [26]. Various global constraints exist to

capture different patterns in CSPs [2]. In this work, we define the

constraints allDifferent and count, as these are present in the

problems used in our experimental analysis. The allDifferent
constraint applies to a set of variables 𝑋 ′ and requires that each

pair of variables 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 ′ must satisfy 𝑥𝑖 ≠ 𝑥 𝑗 for 𝑖 ≠ 𝑗 [25, 29].

The count constraint [2], denoted as Count(𝑋 ′, 𝑣, 𝑐), specifies that
exactly 𝑐 variables in the set 𝑋 ′ should take on the value 𝑣 .

2.2 Constraint Acquisition
In Constraint Acquisition, the goal is to learn the set of constraints

𝐶 of a CSP, given a set of examples. That is, a set of solutions 𝑆

and possibly a set of non-solutions 𝑁 . The pair (𝑋, 𝐷) is called
the vocabulary of the problem at hand and is common knowledge

shared by the user and the system.

Besides the vocabulary, the learner is also given a language Γ
with the possible relations of (global or fixed-arity) constraints

that may exist in the problem. Using the vocabulary (𝑋, 𝐷) and
the constraint language Γ, the system builds a constraint bias 𝐵,
which is the set of candidate constraints for the problem (i.e. all

The Impact of Solution Diversity on Passive Constraint Acquisition SETN 2024, September 11–13, 2024, Piraeus, Greece

the constraints that may possibly exist in the model). This set of

candidate constraints can either include the constraints derived by

applying the relations in Γ to all combinations of variables in 𝑋 or

only use specific assumptions on the patterns to search for.

Let 𝐶𝑇 , the target constraint network, be an unknown set of

constraints such that for every assignment 𝑒 over 𝑋 it holds that

𝑒 ∈ 𝑠𝑜𝑙 (𝐶𝑇) iff 𝑒 is a solution to the problem the user has in mind.

The goal of CA is to learn a constraint set𝐶𝐿 ⊆ 𝐵 that is equivalent

to 𝐶𝑇 . As in the literature, we assume that the bias 𝐵 can represent

𝐶𝑇 , i.e., there exists a 𝐶 ⊆ 𝐵 s.t. 𝑠𝑜𝑙 (𝐶) = 𝑠𝑜𝑙 (𝐶𝑇). Thus, a set

equivalent to 𝐶𝑇 can be extracted from 𝐵. The acquisition process

has converged on the learned network𝐶𝐿 ⊆ 𝐵 iff consistent with the

given examples of solutions and non-solutions, i.e., 𝑆 ⊆ 𝑠𝑜𝑙 (𝐶𝐿) ∧
𝑁 ∩ 𝑠𝑜𝑙 (𝐶𝐿) = ∅, and for every other consistent constraint network
𝐶 ⊆ 𝐵, it holds that 𝑠𝑜𝑙 (𝐶) = 𝑠𝑜𝑙 (𝐶𝐿).

In passive CA the set of solutions and non-solutions is preex-

isting, thus, the methods typically focus on learning a constraint

network that meets the first property. As shown in [7], proving

the second property is coNP-complete, requiring an exponential

number of examples. As a result, depending on the method used,

the set of constraints learned can be more restrictive than 𝐶𝑇 , i.e.,

𝑠𝑜𝑙 (𝐶𝐿) ⊊ 𝑠𝑜𝑙 (𝐶𝑇), or more loose than 𝐶𝑇 , i.e., 𝑠𝑜𝑙 (𝐶𝑇) ⊊ 𝑠𝑜𝑙 (𝐶𝐿).

2.3 Diversity
As we will demonstrate, the diversity of the examples in the given

sets of solutions and non-solutions can significantly impact the qual-

ity of the derived constraint models. Mathematically, the diversity of

assignments for a CSP can be quantified using various metrics. Com-

monly used diversity metrics include the Hamming distance, 𝐿1-

norm, and 𝐿2-norm. Given two example solutions 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛)
and 𝑠′ = (𝑠′

1
, 𝑠′

2
, . . . , 𝑠′𝑛), these metrics are defined as follows:

• Hamming distance: measures the number of positions

at which the corresponding elements of the examples are

different. It is defined as:

𝑑𝐻 (𝑠, 𝑠′) =
𝑛∑︁
𝑖=1

I(𝑠𝑖 ≠ 𝑠′𝑖)

where I is the indicator function, which is 1 if the condition

is true and 0 otherwise.

• 𝐿1-norm (Manhattan distance): measures the sum of the

absolute differences between corresponding elements of the

examples. It is defined as:

𝑑𝐿1
(𝑠, 𝑠′) =

𝑛∑︁
𝑖=1

|𝑠𝑖 − 𝑠′𝑖 |

• 𝐿2-norm (Euclidean distance): measures the square root

of the sum of the squared differences between corresponding

elements of the examples. It is defined as:

𝑑𝐿2
(𝑠, 𝑠′) =

√√
𝑛∑︁
𝑖=1

(𝑠𝑖 − 𝑠′𝑖)2

2.4 Supervised Machine Learning
Supervised ML is a task that involves learning a function over a

given dataset. The dataset, denoted as E, is a collection of 𝑁 train-

ing examples, E = {(𝜙1, 𝑦1), (𝜙2, 𝑦2), ..., (𝜙𝑁 , 𝑦𝑁)}. Each training

example is a pair (𝜙𝑖 , 𝑦𝑖), where 𝜙𝑖 is a feature vector from the input

space Φ and 𝑦𝑖 is the target value from the output space 𝑌 . The

feature vector 𝜙𝑖 is composed of𝑚 features, 𝜙𝑖 = (𝜙𝑖1, 𝜙𝑖2, . . . , 𝜙𝑖𝑚),
with each feature 𝜙𝑖 𝑗 being a quantifiable property or characteristic

of training example 𝑖 . In the case of classification, 𝑌 contains dis-

crete values, each representing a class of the problem. In the case

of regression, 𝑌 contains continuous values. A supervised learning

model aims to learn a function 𝑓𝜃 : 𝑋 → 𝑌 , parameterized by a set

of learnable parameters 𝜃 . These parameters are adjusted during

the training process to minimize a loss function 𝐿(𝑓𝜃 (𝜙), 𝑦), which
measures the error between the predicted and actual target values.

The performance of regression models is often evaluated using

the coefficient of determination, denoted as 𝑅2
. It is defined as:

𝑅2 = 1 −
∑𝑁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2∑𝑁

𝑖=1
(𝑦𝑖 − 𝑦)2

where 𝑦𝑖 is the actual target value, 𝑦𝑖 is the predicted value, and

𝑦 is the mean of the actual target values. An 𝑅2
score of 1 indicates

perfect prediction, while a score close to 0 indicates that the model

cannot predict better than a mean predictor.

3 Related Work
This section reviews the key developments in passive CA algorithms

and the generation of diverse solutions.

3.1 Passive CA
Due to the increased interest in semi-automating the modeling pro-

cess, several approaches for passive CA have been introduced. The

various approaches primarily differ on the following: the type of

constraints they focus on learning, their ability to handle noisy in-

put, and whether they require only solutions or also non-solutions

for the acquisition process. An early approach to passive CA is

the algorithm ConAcq.1 [4, 5, 7], which learns constraints from

user-provided examples of solutions and non-solutions. A passive

learning method based on inductive logic programming was pro-

posed in [15]. This system uses background knowledge on the

structure of the problem to learn a representation of the problem,

correctly classifying the examples given. An One-Class Constraint

Acquisition with Local Search (OCCALS) algorithm was presented

in [28], which, given a one-class training set (i.e. only examples of

solutions), acquires a non-convex MILP model.

None of these approaches are robust to errors in the labeled

data. To this end, SeqAcq and BayesAcq were introduced, being

robust to noise in the training set. In SeqAcq, a statistical approach

based on sequential analysis is used [22], while in BayesAcq, a

naive Bayes classifier is trained to distinguish between solution

and non-solution, using the candidate constraints as features. Then,

based on the trained classifier, a set of constraints is derived [23].

Additionally, MINEACQ [20] was recently introduced, using unsu-

pervised learning that is capable of learning from both labeled and

unlabeled data to get around the data collection bottleneck.

A limitation of the previously mentioned methods is that they

operate only with fixed-arity constraints. On the other hand, Mod-

elSeeker [3], a well-known CA system, learns global constraints.

It leverages the global constraint catalog [2] to derive constraint

models from positive examples, based on patterns that commonly

SETN 2024, September 11–13, 2024, Piraeus, Greece Balafas et. al.

exist in CP models. Although it cannot learn fixed-arity constraints,

it is powerful on learning complex constraint problems.

Another directionwas presentedwith the COUNT-CPmethod [14].

COUNT-CP is a generate-and-aggregate approach, in contrast to

the generate (candidate constraints) and test approach that is com-

monly used. It learns fixed-arity bounded expressions, aggregating

their bounds based on the input set of solutions to the problem.

Its main advantage is that it also involves a generalization step, to

learn expressive first-order constraints.

Inmanyworks, it is assumed that a sufficient number of examples

is needed to learn a set of constraints representing the problem, with

the evaluation procedure typically using thousands of examples [21,

22]. There are a few systems that can learn from a small number of

solutions, presenting an evaluation over sets of solutions of different

size [2, 14]. However, to the best of the authors’ knowledge, there is

no work evaluating the effect of the diversity of the solutions given

to CA on its performance, although it is a very important factor.

Most passive CA systems return the most restrictive consis-

tent constraint set. Non-diverse solutions result in a small set of

eliminated candidates, leading to many additional constraints. For

example, although ModelSeeker has been shown to perform well

with a few solutions, its effectiveness can be limited if the solutions

are not sufficiently diverse or representative [3]. Non-solution di-

versity is crucial for validating constraints [22]. To this end, we

evaluate the effect of solution diversity on the performance of CA

systems, focusing on the extracted set of constraints.

3.2 Diverse Solution Generation
Solution diversity in CP refers to generating multiple solutions to a

constraint satisfaction or optimization problem, with each solution

being significantly different from the others. The generation of such

diverse solutions has received attention in the literature, as it can

be useful in several scenarios, e.g. when the user preferences are

partially known, due to being difficult to model, or when we want

to use different solutions of the same staff scheduling to ensure

fairness across the workers.

Hebrard et al. [13] explored the generation of diverse solutions

using CP. Their approach leverages heuristic approaches to find

solutions that are significantly different from each other, thus pro-

viding a broader perspective of the solution space. They introduced

several metrics for measuring solution diversity, including Ham-

ming distance and various domain-specific criteria. Their exper-

iments on different benchmarks are very encouraging, and their

method has been widely adopted [8, 16]. Petit et al. [18] proposed

a framework for generating diverse and high-quality solutions,

addressing limitations of methods focusing on either diversity or

quality. Petit and Trapp [19] introduced solution engineering to

enhance quality and diversity by modifying existing solutions to

meet user criteria. Vadlamudi et al. [32] proposed algorithms guar-

anteeing a set of K diverse solutions, overcoming limitations of

heuristic methods.

While the generation of diverse solutions using CP methods has

received attention in the literature, being useful in several scenarios,

there are no studies that focus on the impact of solution diversity in

CA. In this paper, we investigate how solution diversity influences

passive learning approaches for CA, and how we can use diversity

metrics to predict whether a given set of solutions will enable

accurate constraint learning.

4 Evaluating the Impact of Solution Diversity
In this section, we first outline the methodology employed to eval-

uate the impact of solution diversity on passive learning methods

in CA systems. Then we describe our experimental setup, followed

by the discussion of the results.

4.1 Methodology
We first briefly describe the CA system used, and then we discuss

the different methods that can be used to generate sets of solutions

to systematically evaluate passive CA systems. Finally, we show

how we assess the diversity impact in the learned constraints set.

Constraint Acquisition System
We utilized a passive CA system that focuses on learning global

constraints [1], though any CA system can be used. The CA system

employed in this study aims to learn the set of constraints 𝐶 using

a given set of solutions 𝑆 ⊆ 𝑠𝑜𝑙 (𝐶). Inspired by the well-known

ModelSeeker system, it focuses on learning global constraints. As a

result, the language Γ includes relations corresponding to global

constraints, such as allDifferent and count. The CA system per-

forms the following steps:

• Generating the Candidate Global Constraints: Our CA
system uses predefined partitions, like rows, columns, di-

agonals, and other sequential and local patterns. For each

partition of variables that can be created based on the struc-

ture of the given problem, candidate global constraints from

the language Γ are generated and added to the bias 𝐵. For

example, variables within a row or column in Sudoku would

be matched with the allDifferent constraint.
• Filtering Candidate Constraints: The system filters the

set of candidate constraints 𝐵 to retain only constraints that

are consistent with the set of solutions 𝑆 . If a constraint is

satisfied across all solution sets, it is added to 𝐶𝐿 .

𝐶𝐿 ← {𝑐 |
∧
𝑠∈𝑆

𝑠 ∈ 𝑠𝑜𝑙 (𝑐), ∀ 𝑐 ∈ 𝐵}

The system outputs the learned constraint model 𝐶𝐿 ⊆ 𝐵, that
is consistent with the provided solutions 𝑆 . As this approach is

based on eliminating candidates, and not confirming constraints

through their violation in non-solutions, it always learns the set of

constraints in 𝐶𝑇 , but can also learn additional ones, if the set of

solutions is not diverse enough.

Generating Diverse Solution Sets
To investigate the impact of solution diversity on the performance

of the CA system, we generate a large solution pool for each bench-

mark problem using a CP solver. Let 𝑆𝑝𝑜𝑜𝑙 = {𝑠1, 𝑠2, . . . , 𝑠𝑁 } denote
this pool of solutions, where each 𝑠𝑖 is a solution to the problem,

and 𝑁 = |𝑆𝑝𝑜𝑜𝑙 | being the size of 𝑆𝑝𝑜𝑜𝑙 .
Using the solution pool 𝑆𝑝𝑜𝑜𝑙 , we can create a diverse solution

set 𝑆𝑑 using three different approaches:

(1) Sequential Collection: Solutions are collected consecu-

tively from the pool 𝑆𝑝𝑜𝑜𝑙 , with fixed gaps between them.

The Impact of Solution Diversity on Passive Constraint Acquisition SETN 2024, September 11–13, 2024, Piraeus, Greece

This introduces varying levels of diversity in the resulting

solution sets. Formally, for a gap size 𝑔, the sequentially

collected solution set 𝑆𝑑 is defined as:

𝑆𝑑 = {𝑠𝑖 ∈ 𝑆𝑝𝑜𝑜𝑙 | 𝑖 ≡ 0 (mod 𝑔)} (1)

(2) Random Selection: Solutions are randomly selected from

the pool 𝑆𝑝𝑜𝑜𝑙 and added to 𝑆𝑑 .

(3) Distance-Based Selection: A solution set 𝑆𝑑 is created

using a predefined distance for Hamming, 𝐿1, or 𝐿2 metrics.

Evaluating Diversity Impact
To evaluate this impact, we count the number of global constraints

in 𝐶𝐿 , learned from each generated solution set after the CA pro-

cess, compared to the set of global constraints in the target set of

constraints 𝐶𝑇 . When the solutions are not diverse enough, the

CA system may identify spurious constraints that hold true for the

given solutions but do not generalize to the entire feasible space.

This leads to a learned constraint model that is more restrictive than

the true model, potentially excluding valid solutions that were not

present in the training set. This can be the case for the CA system

used in this study when the solutions are not diverse enough. On

the other hand, learning fewer constraints suggests that the CA

system has not been able to acquire all the target constraints from

the given set of solutions. In this case, the learned constraint model

is more relaxed than the true model, allowing solutions that violate

some of the actual constraints. This happens in CA systems that

use non-solutions to confirm candidate constraints.

Ideally, the CA system should learn the exact set of constraints

that define the problem. This indicates that the given set of solutions

is diverse enough to accurately represent the problem space and

allows the CA system to generalize effectively. By comparing the

number of learned constraints to the known set of constraints for

each benchmark problem, we can evaluate how well the CA system

performs under different levels of solution diversity.

4.2 Experimental Setup
Our experiments aim to answer the following questions:

(Q1) How does the diversity of solutions affect the learned con-

straint models?

(Q2) How does the number of solutions influence the performance

of the CA system?

We first describe the benchmark problems used in this study.

Next, we outline the solution generation process, highlighting the

methods employed to create diverse solution sets with the Ham-

ming, 𝐿1, and 𝐿2 distances. We then explain the evaluation process.

Benchmark Problems
We selected three benchmark problems for this study: Sudoku,

Greater Than Sudoku, and the Warehouse Location Problem (WLP).

Sudoku and Greater Than Sudoku. Sudoku is a popular puzzle

played on a 9 × 9 grid where the objective is to fill the grid with

numbers from 1 to 9 such that each row, column, and 3 × 3 subgrid

contains distinct numbers. In the context of CP, allDifferent
constraints are used to model the requirement that all variables

within a specified set take different values. Thus, for Sudoku there

are allDifferent constraints for each of the 9 rows, 9 columns,

and 9 subgrids, making a total of 27 allDifferent constraints.

Greater Than Sudoku extends this by adding inequality (> and <)

constraints between given adjacent cells, making it more complex.

The Greater than Sudoku boards used in this experimental study

has ten inequality constraints.

Warehouse Location Problem (WLP). The WLP involves deter-

mining optimal warehouse locations to minimize the total costs of

serving customers, including fixed costs for opening warehouses

and variable costs for serving customers from these locations. We

focused on the satisfaction part of the WLP, which includes con-

straints such as ensuring each customer is served by exactly one

warehouse and limiting the number of customers a warehouse

can serve. These constraints are captured using count constraints,

which ensure that the number of customers assigned to each ware-

house does not exceed a specified limit. Specifically, the count
constraint Count(𝑋 ′, 𝑖, 𝐾𝑖) ensures that the number of variables in

the set𝑋 ′ that take the value 𝑖 is exactly𝐾𝑖 . The WLP problem used

in this experimental study had 10 warehouses and 20 customers.

Solution Generation
For each benchmark problem, we generated an extensive pool of

solutions utilizing the Choco Solver [24]. Specifically, we produced

solution pools including 100,000 solutions for Sudoku, Greater Than

Sudoku, and 40,000 solutions for the WLP. These solution pools

were used for constructing the datasets with varying diversity. The

generation of these solutions required a cumulative computation

time of 278 hours, underscoring the computational intensity and

time-consuming nature of generating diverse solution sets.

Diversity Metrics and Dataset Creation
To evaluate the impact of solution diversity on the performance of

the CA system, we created diverse solution sets for each benchmark

problem using various distance metrics and selection methods. For

each of the above solution sets, we generated sets of 5, 50, 100,

200, 500, and 1000 solutions in order to study how the number of

solutions affect the CA system.

For Sudoku and Greater Than Sudoku, we generated solution sets

that met specific distance criteria based on the following metrics:

• Hamming Distance:We created solution sets with Ham-

ming distances of 1, 10, 20, 40, and 80.

• 𝐿1 Distance:We generated solution sets with 𝐿1 distances

of 1, 216, 432, and 658.

• 𝐿2 Distance:We generated solution sets with 𝐿2 distances

of 1, 24, 48, and 72.

For the WLP, which has fewer decision variables compared to

Sudoku and Greater Than Sudoku, we adjusted the distance criteria

to account for the smaller problem size:

• Hamming Distance:We created solution sets with Ham-

ming distances of 1, 5, 10, and 20.

• 𝐿1 Distance:We generated solution sets with 𝐿1 distances

of 2, 60, 120, and 180.

• 𝐿2 Distance:We constructed solution sets with 𝐿2 distances

of 2, 14, 27, and 40.

SETN 2024, September 11–13, 2024, Piraeus, Greece Balafas et. al.

We also employed the sequential and random selection strategies

as follows:

• Sequential Selection:We collected solutions consecutively

from the solution pool, with fixed gaps between each selected

solution. We used gaps of 1, 100, 1,000, and 10,000 solutions

to introduce varying levels of diversity in the solution sets.

• Random Selection:We randomly selected solutions from

the solution pool to create ten different solution sets with

various levels of diversity.

Evaluation Process
The generated solution sets were provided to the CA tool. The CA

tool was executed using each diverse solution set. During this phase,

the tool analyzed the solutions to infer the underlying constraints

of the given problem. The number of constraints learned by the CA

tool was used to evaluate the impact of solution diversity in CA.

4.3 Results
In this section, we present and discuss the results from evaluating

the impact of solution diversity on passive CA systems

Table 1 shows the AllDifferent constraints that the CA system

identified for diverse sets of Sudoku 9x9 puzzles. Solution diver-

sity significantly affects identifying AllDifferent constraints. For
Hamming distance, identified constraints decreased as distance

increased. For instance, when using a dataset of 1,000 solutions

with a Hamming distance of 1, 36 AllDifferent constraints were
identified by the CA system, whereas a dataset of 1,000 solutions

with a Hamming distance of 80 yielded the exact number of 27

constraints. Similar trends were observed for 𝐿1 and 𝐿2 distances,

where larger distances correlated with identifying the correct num-

ber of constraints. For example, a dataset of 1,000 solutions with an

𝐿1 distance of 658 led to the identification of the exact 27 constraints,

compared to 36 constraints when a dataset of 1,000 solutions with

a distance of 1 was used. Similarly, sequential collection methods

with small gaps led the CA system to acquire more constraints

compared to larger gaps. A large gap of 10,000 and 1,000 solutions

was not diverse enough, leading to 31 identified constraints, i.e., 4

additional ones. Importantly, randomly selected solution sets led to

the identification of the exact number of global constraints in the

problem (27 for Sudoku) across almost all dataset sizes.

Table 2 presents the results for the Greater Than Sudoku bench-

mark. The CA system identified the exact number of AllDifferent
constraints (27) when using datasets with a Hamming distance

of 80, an 𝐿1 distance of 658, or an 𝐿2 distance of 72, even with a

relatively small number of solutions (e.g., 500 or 1,000). Randomly

selected solution sets also consistently identified the correct num-

ber of constraints across almost all dataset sizes. As with Sudoku,

smaller Hamming, 𝐿1, and 𝐿2 distances resulted in the identification

of more constraints than the actual number present in the prob-

lem. In addition, larger datasets helped the CA tool identify fewer

constraints, as it was expected.

Table 3 presents the results for the WLP benchmark. Here, we

focus on the number of Count constraints that the CA system

identified. The CA system successfully identified the correct number

of Count constraints (10) when using datasets with a sufficient

number of solutions (500 or more), when any distance metric is

employed. However, for smaller dataset sizes, the system tended to

identify more constraints than the actual ones, with the exception

of randomly selected solution sets, which consistently led to the

identification of the correct number of constraints across all dataset

sizes. Sequential collection methods with large gaps (e.g., 1,000 or

10,000) also identified the correct number of constraints, even with

smaller dataset sizes.

Smaller diversity metrics lead to identifying more constraints

than present. This suggests that solution sets with high similarity

(i.e., low distance diversity) may not provide sufficient diversity for

the CA system to accurately learn the underlying constraints. In

contrast, larger distance metrics and randomly selected solution

sets tend to yield better results, enabling the CA system to identify

the correct number of constraints more consistently.

Interestingly, the effectiveness of different distancemetrics varies

across the problem types. For Sudoku and Greater Than Sudoku,

the Hamming distance appears to be the most informative, with

high distances leading to the identification of the exact number of

constraints even with relatively small dataset sizes. In contrast, for

the WLP, the choice of distance metric has less impact.

Another observation is that the CA system’s performance im-

proves as the number of solutions in the dataset increases. This is

particularly evident in theWLP results, where datasets with 1,000 or

more solutions consistently lead to the identification of the correct

number of constraints, irrespective of the distance metric employed.

This highlights the importance of having a sufficiently large and

diverse set of solutions for effective constraint acquisition.

5 Predicting the Quality of the Acquired
Constraint Set

In the previous section, we showed that the diversity of solutions

is very important for the quality of the acquired set of constraints,

combined with the number of solutions used. However, in real-

world applications, it is often challenging to obtain a large and

diverse set of solutions for training the CA system. The set of solu-

tions is typically preexisting, and not generated with the purpose

of being used for CA. Consequently, it becomes difficult to assess

the quality of the learned constraint model. To address this issue,

we propose the use of an ML model, for this purpose. As we demon-

strate, by leveraging the predictive capabilities of ML we can assess

the suitability of the solution set for CA beforehand.

In this section, we first show how a feature representation for

the size and diversity of the given set of solutions can be used to

estimate whether a given set of solutions will result in a reliable CP

model. Then we describe the experimental setup used for evaluating

our approach, followed by a discussion of the results.

5.1 Methodology
To use an ML model for this purpose, we build a set of training

examples: E = {(𝜙1, 𝑦1), (𝜙2, 𝑦2), ..., (𝜙𝑁 , 𝑦𝑁)}. In our dataset, each

training example (𝜙𝑖 , 𝑦𝑖) represents a CA instance. The features 𝜙𝑖
correspond to the characteristics of the set of solutions given, while

the target value represents the quality of the CP model that can be

extracted using a given CA method. In the dataset, we use instances

of different sizes, so that the ML model can learn to predict the

The Impact of Solution Diversity on Passive Constraint Acquisition SETN 2024, September 11–13, 2024, Piraeus, Greece

Table 1: Number of AllDifferent Constraints Learned for Sudoku 9x9 under Various Diversity Metrics

Hamming 𝐿1 𝐿2 Sequential Rnd
Sols 1 10 20 40 80 1 216 432 658 1 24 48 72 1 100 1,000 10,000
1,000 36 34 32 28 27 36 32 29 27 34 31 27 27 31 31 31 31 27
500 36 34 32 29 27 37 34 31 27 34 31 37 27 32 32 31 31 27
200 37 36 33 31 27 39 37 34 29 36 31 37 28 32 32 31 31 27
100 38 37 34 31 28 39 38 34 31 37 31 38 29 32 32 31 31 27
50 45 37 34 31 31 41 39 36 31 38 32 41 31 32 32 32 32 27
5 46 45 39 37 37 46 46 41 39 46 38 46 36 38 38 40 39 39

Note: 27 is the actual number of AllDifferent constraints.

Table 2: Number of AllDifferent Constraints Learned for Greater Than Sudoku 9x9 under Various Diversity Metrics

Hamming 𝐿1 𝐿2 Sequential Rnd
Sols 1 10 20 40 80 1 216 432 658 1 24 48 72 1 100 1,000 10,000
1,000 34 32 37 28 27 33 35 31 27 38 35 27 27 32 32 32 32 27
500 39 32 37 30 27 33 35 33 29 39 36 29 27 32 32 32 32 27
200 40 34 38 30 27 34 36 33 33 40 36 33 30 32 32 32 32 27
100 42 35 38 30 27 34 36 36 31 40 36 36 30 34 32 32 32 27
50 43 34 38 31 27 35 36 37 37 41 37 37 31 34 32 32 32 27
5 47 36 39 38 27 40 38 43 45 45 39 43 38 38 40 38 38 35

Note: 27 is the actual number of AllDifferent constraints.

Table 3: Number of Count Constraints Learned for WLP with 10 Warehouses and 20 Customers under Various Diversity Metrics

Hamming 𝐿1 𝐿2 Sequential Rnd
Sols 1 5 10 20 2 60 120 180 2 14 28 40 1 100 1,000 10,000
1,000 10 10 10 10 10 10 10 10 10 10 10 10 12 12 10 10 10
500 10 10 10 10 10 10 10 10 10 10 10 10 12 12 10 10 10
200 12 12 11 10 13 11 11 10 12 12 12 10 12 12 10 10 10
100 13 13 13 10 15 13 13 12 14 14 14 12 12 12 10 10 10
50 14 14 14 13 17 14 14 13 15 15 15 13 14 12 10 10 10
5 15 15 15 14 18 15 15 14 16 16 16 15 20 12 12 12 10

Note: 10 is the actual number of Count constraints.

recall of the CA methods in a variety of instances of the problem,

so that it can generalize to unseen instances.

In the rest of this section, we first discuss our proposed feature

representation, and then we show how the quality of the CP model

extracted can be represented using metrics from the CA and ML

literature.

Feature representation
Table 4 summarizes the input features 𝜙 used in the ML model that

correspond to characteristics of each set of solutions given.

Our feature representation captures characteristics of the set of

solutions used, regarding its size (i.e., the number of solutions it

includes), and diversity. As diversity metrics, we used the Hamming,

𝐿1, and 𝐿2 distances, as in Section 4. Because the given dataset will

not have a fixed diversity among different solutions, we capture the

minimum, maximum, mean, and standard deviation of each metric.

As our experiments show, all diversity metrics play a significant

role on the quality of the extracted set of constraints.

Table 4: Features Used in the Machine Learning Model

Feature Category Features
General Number of Solutions

Hamming Distance Min Hamming Distance

Max Hamming Distance

Mean Hamming Distance

Standard Deviation of Hamming Distance

𝐿1 Distance Min 𝐿1 Distance

Max 𝐿1 Distance

Mean 𝐿1 Distance

Standard Deviation of 𝐿1 Distance

𝐿2 Distance Min 𝐿2 Distance

Max 𝐿2 Distance

Mean 𝐿2 Distance

Standard Deviation of 𝐿2 Distance

SETN 2024, September 11–13, 2024, Piraeus, Greece Balafas et. al.

Target Value
The goal is to estimate the quality of the extracted CP model when

a set of solutions is used with a given CA method. Hence, the target

value needs to represent the quality of the extracted CP model.

In CA the goal is not only to discriminate solutions and non-

solutions, but also to learn a model that is able to generate new

solutions to the given problem. Thus, typically, CA models are eval-

uated not only on howwell they capture a given test set of solutions

of the target set of constraints𝐶𝑇 , but also on whether the solutions

generated from the learned model are correct. Based on the above,

and as stated in the literature [14], Accuracy, Recall and Precision
can be used as performance measures of the learned models. With

recall, we can measure what percentage of the feasible region of the

target set of constraints is captured, i.e., what percentage of 𝑠𝑜𝑙 (𝐶𝐿)
is in 𝑠𝑜𝑙 (𝐶𝑇). On the other hand, with precision, we can measure

what percentage of the feasible region of the learned constraints

is actually feasible in the target model, i.e., what percentage of

𝑠𝑜𝑙 (𝐶𝑇) is in 𝑠𝑜𝑙 (𝐶𝐿). Accuracy captures the combination.

Depending on the CAmethod used and its invariants, we can use

a different metric to capture the quality of the CP model. Some CA

methods, typically the ones using solutions during the acquisition

process, guarantee (under certain assumptions) that they learn all

constraints of the given problem, but may also acquire constraints

that they should not. This happens when the number of available

solutions is not large enough, or they are not diverse enough. On

the other hand, some CA methods need non-solutions to confirm

if a constraint is part of the problem or not, before it is added to

𝐶𝐿 , and thus can miss some constraints if the non-solutions do not

capture some cases. In this paper, the CA method used belongs to

the first category and thus cannot have false negatives. Hence, we

use the Recall metric as a target value in the dataset, to represent

the performance of the CA method using the given set of solutions.

To measure the recall, we employ a test set of solutions for each

problem, capturing different parts of its feasible region, generated

using the target set of constraints𝐶𝑇 . Let𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑀 } denote
the test set of size |𝑇 | = 𝑀 , where each 𝑡𝑖 is a valid solution to the

problem. The recall is measured by testing what percentage of the

solutions in 𝑇 satisfy the learned set of constraints 𝐶𝐿 .

𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
|{𝑡 ∈ 𝑇 | 𝑡 ∈ 𝑠𝑜𝑙 (𝐶𝐿)}|

|𝑇 | (2)

To create our set of training examples for the ML model, we

use the following procedure: for each training example, we start

by selecting a set of solutions 𝑆 generated by one of the methods

described in Section 4. From this set 𝑆 , we extract the input features

𝜙 required for the model. Using these solutions, we then construct

a CP model𝑀 . Subsequently, the CA test cases 𝑇 are employed to

calculate the recall 𝑦.

5.2 Experimental Setup
The experiments in this section aim to answer the following ques-

tion: (Q3) Can an ML model accurately predict the recall of the CA

system based on features derived from the solution sets?

We use Random Forest (RF) models for our evaluation. The per-

formance of these models is evaluated using the coefficient of de-

termination (𝑅2
). We consider the three benchmark problems from

the previous section: Sudoku, Greater Than Sudoku, and the WLP.

For Sudoku, we use a single problem instance, as the structure

and constraints remain consistent across different Sudoku puzzles.

However, for Greater Than Sudoku, we generate 20 random in-

stances, each containing between 10 and 30 random greater-than

constraints. This allows us to evaluate the ML model’s performance

across a variety of Greater Than Sudoku problem configurations,

ensuring the robustness and generalizability of our approach. Simi-

larly, for the WLP, we generate 20 random instances with varying

numbers of warehouses and customers, from instances with 5 ware-

houses and 10 customers to 50 warehouses and 200 customers.

Evaluation Process
The generated solution sets were provided to the CA tool. For each

solution dataset, the following evaluation process was conducted:

(1) Constraint Learning Phase: The CA tool was executed

using each diverse solution set. During this phase, the tool

analyzed the solutions to infer the underlying constraints of

the given problem.

(2) Test Set Generation: For each benchmark problem, we gen-

erate separate test sets to evaluate the performance of the

CA tool. For Sudoku, as we use a single problem instance, we

generate a single test set consisting of 100 solutions. These

solutions are distinct from the ones used in the training

datasets to ensure an unbiased evaluation of the CA tool’s

performance on unseen Sudoku solutions. For Greater Than

Sudoku, we generate 20 test sets, each corresponding to one

of the 20 random problem instances. Each test set contains

100 solutions specific to its respective problem instance. Sim-

ilarly, for the WLP, we generate 20 test sets each test set

consists of 100 solutions, each associated with one of the 20

random problem instances.

(3) Recall calculation: Each solution test set was evaluated

with the learned set of constraints. Recall was calculated as

the ratio of the number of test cases correctly satisfied by

the learned model to the total number of test cases.

(4) Feature Extraction and Logging to Dataset: Throughout
the evaluation process, we logged the features described in

Section 5.1 from each solution set used. The extracted fea-

tures capture essential characteristics of the solution sets,

such as their size and diversity metrics. For each solution

dataset, we record the number of solutions it contains, as well

as statistical measures of the Hamming, 𝐿1, and 𝐿2 distances

between solutions, including the minimum, maximum, mean,

and standard deviation. These features served as input fea-

tures for training the ML model to predict the recall of the

CA tool.

Machine Learning Model Training
An RF regressor was trained, implemented using the scikit-learn

library [17]. 10-fold cross-validation was used for the evaluation,

presenting the average R-squared (𝑅2
) scores.

5.3 Results
We now present the results of the RF model with our approach.

Table 5 presents the results for the RF model when applied to

predict the recall of the CA system to various solution sets. We

The Impact of Solution Diversity on Passive Constraint Acquisition SETN 2024, September 11–13, 2024, Piraeus, Greece

Table 5: ML model results

Dataset Feature Group R2 (%)
Greater Than Sudoku Hamming 99.89

Greater Than Sudoku 𝐿1 99.89

Greater Than Sudoku 𝐿2 99.89

Greater Than Sudoku All 99.89

Sudoku Hamming 98.63

Sudoku 𝐿1 98.13

Sudoku 𝐿2 98.38

Sudoku All 98.32

WLP Hamming 97.61

WLP 𝐿1 99.67

WLP 𝐿2 99.67

WLP All 99.58

have generated four different models for each benchmark problem,

utilizing as features the number of solutions and (i) the metrics

related to the Hamming distance, (ii) the metrics related to the

𝐿1 distance, (iii) the metrics related to the 𝐿2 distance, and (iv) all

the metrics. For Greater Than Sudoku, the RF model achieved an

impressive 𝑅2
score of 99.89% across all feature groups (Hamming,

𝐿1, 𝐿2, and All), indicating a strong ability to predict the recall of

the CA system based on different diversity metrics of the solution

sets. For Sudoku, the RF model’s performance was slightly lower

but still highly accurate, with 𝑅2
scores ranging from 98.13% to

98.63% across the feature groups. In the case of the WLP, the RF

model demonstrated excellent predictive performance, achieving

𝑅2
scores of 99.67% for both 𝐿1 and 𝐿2 features, and a slightly lower

score of 97.61% for Hamming features.

These results demonstrate that the machine learning model can

accurately predict the CA system’s recall based on the features of

solution sets, with very high 𝑅2
scores indicating strong predictive

power. The strong predictive performance of the RF model across

all problem types and feature groups indicates that the diversity

metrics capture meaningful information about the quality of the

solution sets for constraint acquisition.

The methods and findings from this study can be extended to

other CSPs, such as nurse rostering [11]. For effective model build-

ing in such applications, a substantial number of solutions are

required to train the ML model adequately. In real-world scenarios,

where generating a large set of solutions may not be feasible, it is

crucial to explore alternative approaches to build robust ML models

with limited data.

Therefore, we further experiment with the predictive ability of

the ML model if fewer solutions are present in the solution pool.

In the previous experiment, we used 40,000 solutions to generate

the diverse solution sets for each instance of the dataset. We now

compare the model’s performance using also smaller subsets of

2,000 and 1,000 solutions in the solution pool, meaning that the

diverse sets of solutions generated will have a limited size and

diversity. Each subset was evaluated across the 20 WLP instances.

The results presented in Table 6 demonstrate the impact of the

number of solutions on the performance of the ML model for pre-

dicting the recall of the CA system in the WLP when trained on

varying sizes of solution sets. When using the full dataset of 40,000

solutions, the ML model shows excellent performance, with 𝑅2

scores ranging from 97.61% to 99.67% across all feature groups

(Hamming, 𝐿1, 𝐿2, and All). However, as the total number of solu-

tions used for training the ML model decreases, the performance

of the model declines. With 2,000 solutions, the 𝑅2
scores drop to

a range of 71.75% to 82.31%, indicating a reduction in the model’s

predictive accuracy. This trend continues when the number of so-

lutions is further reduced to 1,000, with 𝑅2
scores ranging from

65.23% to 76.93%. These results show that while having a large and

diverse dataset is ideal for training, highly accurate ML models

are still able to be developed with acceptable performance using

smaller solution sets. The ML model’s ability to maintain 𝑅2
scores

close to 77% with just 1000 solutions when all features are used.

This demonstrates its potential for application in scenarios where

having or generating extensive solution sets is not possible.

Table 6: R2 scores for WLP under Different Solution Counts

40,000 sols 2,000 sols 1,000 sols

Feature Group R2 (%) R2 (%) R2 (%)
Hamming 97.61 74.64 67.87

𝐿1 99.67 71.75 65.23

𝐿2 99.67 77.92 71.72

All 99.58 82.31 76.93

6 Conclusions
In this study, we investigated the impact of solution diversity on

passive CA methods across three problems: Sudoku, Greater Than

Sudoku, and WLP. Our findings demonstrate that solution diversity

plays a crucial role in the performance of passive learning methods

in CA. The results show that higher diversity metrics and random

selection improve constraint identification. In contrast, smaller so-

lution diversity metrics tend to result in the identification of more

constraints than the actual number present in the problem. This

indicates that a lack of diversity in the provided examples may

hinder the CA system’s ability to distinguish between essential and

spurious constraints, leading to overfitting and reduced generaliza-

tion performance. In addition, the results highlight the importance

of the size of the solution set in conjunction with its diversity. As

the number of solutions in the dataset increases, the CA system’s

performance generally improves, particularly when the solutions

are diverse. A large, varied set of examples is needed for effective

learning.

To address the challenge of assessing the quality of a given solu-

tion set for CA in real-world scenarios, where generating a large

and diverse set of examples may not always be feasible, we pro-

posed the use of an ML model to predict the recall of the constraint

acquisition system based on the diversity of the available solutions.

High 𝑅2
scores show diversity metrics effectively indicate solution

set suitability. This model helps estimate CA system performance

based on available examples.

SETN 2024, September 11–13, 2024, Piraeus, Greece Balafas et. al.

Acknowledgments

The research work was supported by the Hel-

lenic Foundation for Research and Innovation (HFRI) under the 4th

Call for HFRI PhD Fellowships (Fellowship Number: 9446).

References
[1] Vasileios Balafas, Dimosthenis C. Tsouros, Nikolaos Ploskas, and Kostas Stergiou.

2024. Enhancing Constraint Acquisition throughHybrid Learning: An Integration

of Passive and Active Learning Strategies. International Journal on Artificial
Intelligence Tools (2024). In press.

[2] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. 2007.

Global constraint catalogue: Past, present and future. Constraints 12 (2007),

21–62.

[3] Nicolas Beldiceanu and Helmut Simonis. 2016. Modelseeker: Extracting global

constraint models from positive examples. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 10101 LNCS, 284715 (2016), 77–95. https://doi.org/10.1007/978-

3-319-50137-6_4

[4] Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. 2004.

Leveraging the learning power of examples in automated constraint acquisition.

In Principles and Practice of Constraint Programming – CP 2004, Mark Wallace

(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 123–137.

[5] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. 2005.

A SAT-based version space algorithm for acquiring constraint satisfaction prob-

lems. In Machine Learning: ECML 2005: 16th European Conference on Machine
Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16. Springer, Springer,
Berlin, Heidelberg, 23–34.

[6] Christian Bessiere, Abderrazak Daoudi, Emmanuel Hebrard, George Katsirelos,

Nadjib Lazaar, Younes Mechqrane, Nina Narodytska, Claude-Guy Quimper, and

TobyWalsh. 2016. New approaches to constraint acquisition. Springer International
Publishing, Cham, 51–76. https://doi.org/10.1007/978-3-319-50137-6_3

[7] Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. 2017.

Constraint acquisition. Artificial Intelligence 244 (2017), 315–342. https://doi.

org/10.1016/j.artint.2015.08.001

[8] Michael Bloem and Nicholas Bambos. 2014. Air traffic control area configuration

advisories from near-optimal distinct paths. Journal of Aerospace Information
Systems 11, 11 (2014), 764–784.

[9] Eugene C Freuder. 2018. Progress towards the holy grail. Constraints 23, 2 (2018),
158–171.

[10] Eugene C Freuder and Barry O’Sullivan. 2014. Grand challenges for constraint

programming. Constraints 19 (2014), 150–162.
[11] Celia A. Glass and Roger A. Knight. 2010. The nurse rostering problem: A critical

appraisal of the problem structure. European Journal of Operational Research 202,

2 (2010), 379–389. https://doi.org/10.1016/j.ejor.2009.05.046

[12] Zhiqiang Gong, Ping Zhong, and Weidong Hu. 2019. Diversity in machine

learning. IEEE Access 7 (2019), 64323–64350. https://doi.org/10.1109/ACCESS.

2019.2917620

[13] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. 2005.

Finding diverse and similar solutions in constraint programming. In Proceedings
of the 37th AAAI Conference on Artificial Intelligence. AAAI, Pittsburgh, PA, USA,
372–377.

[14] Mohit Kumar, Samuel Kolb, and Tias Guns. 2022. Learning constraint program-

ming models from data using generate-and-aggregate. In 28th International Con-
ference on Principles and Practice of Constraint Programming (CP 2022) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 235), Christine Solnon (Ed.).

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29:1–

29:16. https://doi.org/10.4230/LIPIcs.CP.2022.29

[15] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. 2010. On

learning constraint problems. In 2010 22nd IEEE International Conference on Tools
with Artificial Intelligence, Vol. 1. IEEE, IEEE, Arras, France, 45–52.

[16] Tuan Anh Nguyen, Minh Do, Alfonso Emilio Gerevini, Ivan Serina, Biplav Sri-

vastava, and Subbarao Kambhampati. 2012. Generating diverse plans to handle

unknown and partially known user preferences. Artificial Intelligence 190 (2012),
1–31.

[17] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[18] Thierry Petit and AndrewC. Trapp. 2015. Finding diverse solutions of high quality

to constraint optimization problems. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI’15). AAAI Press, Buenos Aires,
Argentina, 260–266.

[19] Thierry Petit and Andrew C. Trapp. 2019. Enriching solutions to combinatorial

problems via solution engineering. INFORMS Journal on Computing 31, 3 (jul

2019), 429–444. https://doi.org/10.1287/ijoc.2018.0855

[20] Steven Prestwich. 2021. Unsupervised constraint acquisition. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, Wash-

ington, DC, USA, 256–262. https://doi.org/10.1109/ICTAI52525.2021.00042

[21] Steven Prestwich. 2021. Unsupervised constraint acquisition. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, Wash-

ington, DC, USA, 256–262. https://doi.org/10.1109/ICTAI52525.2021.00042

[22] S. D. Prestwich. 2020. Robust constraint acquisition by sequential analysis. In

24th European Conference on Artificial Intelligence (ECAI 2020) (29 Aug-08 Sept)
(Frontiers in Artificial Intelligence and Applications, Vol. 325). IOS Press, Santiago
de Compostela, Spain (online), 355–362. https://doi.org/10.3233/FAIA200113

[23] Steven D Prestwich, Eugene C Freuder, Barry O’Sullivan, and David Browne.

2021. Classifier-based constraint acquisition. Annals of Mathematics and Artificial
Intelligence 89 (2021), 655–674.

[24] Charles Prud’homme, Fages Jean-Guillaume, and Lorca Xavier. 2016. Choco

solver documentation. https://choco-solver.org

[25] Jean-Charles Régin. 1994. A filtering algorithm for constraints of difference

in CSPs. In Proceedings of the Twelfth AAAI National Conference on Artificial
Intelligence (Seattle, Washington) (AAAI’94). AAAI Press, Seattle, Washington,

USA, 362–367.

[26] Francesca Rossi, Peter van Beek, and TobyWalsh. 2008. Constraint programming.

InHandbook of Knowledge Representation, Frank vanHarmelen, Vladimir Lifschitz,

and Bruce Porter (Eds.). Foundations of Artificial Intelligence, Vol. 3. Elsevier,

Amsterdam, The Netherlands, 181–211. https://doi.org/10.1016/S1574-6526(07)

03004-0

[27] Helmut Simonis. 2001. Building industrial applications with constraint pro-
gramming. Springer Berlin Heidelberg, Berlin, Heidelberg, 271–309. https:

//doi.org/10.1007/3-540-45406-3_6

[28] Daniel Sroka and Tomasz P. Pawlak. 2018. One-class constraint acquisition

with local search. In Proceedings of the Genetic and Evolutionary Computation
Conference (Kyoto, Japan) (GECCO ’18). Association for Computing Machinery,

New York, NY, USA, 363–370. https://doi.org/10.1145/3205455.3205480

[29] Kostas Stergiou and Toby Walsh. 1999. The difference all-difference makes. In

Proceedings of the 16th International Joint Conference on Artificial Intelligence -
Volume 1 (Stockholm, Sweden) (IJCAI’99). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 414–419.

[30] Sug, Hyontai. 2018. Performance of machine learning algorithms and diversity

in data. MATEC Web Conf. 210 (2018), 04019. https://doi.org/10.1051/matecconf/

201821004019

[31] Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis. 2018.

Efficientmethods for constraint acquisition. In Principles and Practice of Constraint
Programming, John Hooker (Ed.). Springer International Publishing, Cham, 373–

388.

[32] Satya Gautam Vadlamudi and Subbarao Kambhampati. 2016. A combinatorial

search perspective on diverse solution generation. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016,, Dale Schuurmans

and Michael P. Wellman (Eds.). AAAI Press, Phoenix, Arizona, USA, 776–783.

https://doi.org/10.1609/AAAI.V30I1.10079

[33] Willem-Jan van Hoeve. 2001. The alldifferent Constraint: A Survey. CoRR
cs.PL/0105015 (05 2001).

[34] Mark Wallace. 1996. Practical applications of constraint programming. Con-
straints 1 (1996), 139–168.

https://doi.org/10.1007/978-3-319-50137-6_4
https://doi.org/10.1007/978-3-319-50137-6_4
https://doi.org/10.1007/978-3-319-50137-6_3
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1016/j.ejor.2009.05.046
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.1287/ijoc.2018.0855
https://doi.org/10.1109/ICTAI52525.2021.00042
https://doi.org/10.1109/ICTAI52525.2021.00042
https://doi.org/10.3233/FAIA200113
https://choco-solver.org
https://doi.org/10.1016/S1574-6526(07)03004-0
https://doi.org/10.1016/S1574-6526(07)03004-0
https://doi.org/10.1007/3-540-45406-3_6
https://doi.org/10.1007/3-540-45406-3_6
https://doi.org/10.1145/3205455.3205480
https://doi.org/10.1051/matecconf/201821004019
https://doi.org/10.1051/matecconf/201821004019
https://doi.org/10.1609/AAAI.V30I1.10079

	Abstract
	1 Introduction
	2 Background
	2.1 Constraint Programming
	2.2 Constraint Acquisition
	2.3 Diversity
	2.4 Supervised Machine Learning

	3 Related Work
	3.1 Passive CA
	3.2 Diverse Solution Generation

	4 Evaluating the Impact of Solution Diversity
	4.1 Methodology
	4.2 Experimental Setup
	4.3 Results

	5 Predicting the Quality of the Acquired Constraint Set
	5.1 Methodology
	5.2 Experimental Setup
	5.3 Results

	6 Conclusions
	Acknowledgments
	References

