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A B S T R A C T

Improving the energy efficiency of building envelope components and technologies is of utmost importance, as it 
aligns with the crucial goals of providing carbon neutrality worldwide. This study presents a decision-making 
methodology for selecting thermal insulation materials and their thickness, as well as window frame mate
rials, under the optimization of multiple criteria (economic, energy and environmental), giving a life cycle 
perspective too. Different Mathematical Programming models were formulated, examining the optimal solutions 
compared with the optimal Pareto solutions. The proposed method was implemented to a residential building 
considering different climate conditions of the Greek territory. Results of single-objective optimization show that 
a well-thermally protected building increases the economic, energy and environmental costs; for the case of 
climate zone A, an increase of 4.6, 2.8 and 8.3 times, compared to the optimal values of each criterion, is re
ported, while for the other climate zones the respective increase is lower. This highlights the importance of 
balancing the criteria, under a weighting sensitivity analysis. In the multi-objective optimization problem, 
compromise programming and Chebyshev goal programming are beneficial, reaching a percentage of 90 % for 
fitting the Pareto optimal results, in comparison to the global criterion and goal programming methods with a 
fitting of 13.5 %.

Introduction

The escalating energy consumption worldwide, driven by economic 
progress, population growth, and technological advancements, is 
contributing to the rise in global warming. In 2021 the residential and 
the service sectors in the European Union (EU) reached to consume 262 
and 130 Mtoe of final energy respectively. A significant percentage of 
40 % of this energy consumption came from the building sector, while 
this sector seems also to hold a substantial position in the global envi
ronmental landscape, accounting for 325-million-ton CO2 eq. emissions 
in the EU, with a share of 12.5 %, compared to the other sectors [1,2].

The above statistics highlight the importance of the energy problem 
and climate change, providing the need of formulating innovative 
strategies to enhance energy efficiency and decarbonization, as well as 
to optimize the way of managing energy demand/consumption in the 
building sector. This can be achieved through restricting the existing 
certificates, that assess the energy performance of buildings, as pre
sented in the recent recast of the Energy Performance of Buildings 
Directive (EPBD) [3], that focuses on implementing long-term 

renovations to convert the existing building stock into Nearly Zero En
ergy Buildings (NZEBs), for balancing energy consumption and pro
duction. Enhancing the thermal resistance of buildings and adopting 
passive retrofitting strategies, including the utilization of renewable 
energy sources (RES) (Directive 2010/31/EU) are essential measures for 
the EPBD goals [4]. For these reasons, the EU Member States need to 
develop comprehensive plans for building renovation by setting short- 
and long-term milestones. For instance, many European countries with 
Mediterranean climates, such as Greece, incorporate regulations, in line 
with the EPBD, that restrict both heating and cooling energy demands, 
especially by setting limitations in thermal transmittance for different 
building components, based on climate conditions. In such regulations, 
it is considered that improving the thermal resistance of building en
velopes plays a vital role for enhancing their energy efficiency, as 
depicted in [5], proofing that their design contributes to 20 %–50 % of 
their heating and cooling demands. In addition, the proper imple
mentation of thermal insulation can lead to significant reductions in 
both economic and environmental costs, as well as energy savings of 
about 40–45 % [6,7]. Moreover, considerable efforts have been devoted 
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to research/develop/improve technologies for low-energy and sustain
able buildings, in order to meet the objectives of high thermal efficiency 
described in the regulations. Such efforts include the integration of RES 
into buildings [8], the utilization of high-performance devices [9], the 
formulation of innovative building design methods [10], like multi- 
energy systems and Energy Hubs [11,12], the use of models based on 
data for improving the energy efficiency of buildings during their 
operation [13], the assurance of indoor thermal comfort through 
energy-efficient solutions [14] etc.

However, it is noted that the energy consumed during building 
construction is not specified in detail and often surpasses the initially 
designed levels. This difference is known as the energy performance gap, 
identifying additional energy consumption or a deviation from energy 
efficiency standards during the building’s operation [15]. Also, the un
limited increase of insulation thickness until the complete elimination of 
heat losses/gains in space heating/cooling, or the installation of over
sized energy systems should be avoided. This is due to practical and 
economic issues, as well as due to the costs of embodied ener
gy consumption and the associated carbon emissions emerged during 
different life cycle stages of the materials production, such as raw ma
terial extraction, production processes, installation, and disposal 
[16,17]. Dealing with such issues, the optimization concept seems to be 
crucial for not only combining alternative design scenarios, but also for 
considering multiple goals for enhancing sustainability and efficiency of 
buildings.

In the literature, most research studies adopt single-objective opti
mization (SOO) approaches upon building design, focusing on the 
reduction of economic and energy costs, the mitigation of environmental 
emissions, as well as enhancing the energy efficiency and thermal 
comfort [18]. Various optimization methods have been suggested, 
employing both mathematical and simulation-based approaches, 
focusing on the optimal selection of insulation materials. Mathematical 
approaches typically rely on deriving classical heat transfer equations to 
identify optimal solutions, while simulation-based techniques, such as 
genetic algorithms (GA) and particle swarm optimization, are integrated 
into energy simulation tools like Energy Plus [19,20,21]. Similarly, 
various SOO approaches address life cycle costing (LCC) and life cycle 
assessment (LCA) perspectives, addressing economic and environmental 
concerns in the building sector [22,23].

However, real-world building design involves dealing with con
flicting optimization criteria, setting MOO problems for investigating 
different scenarios of alternative building envelope materials and 
considering factors like different insulation types, roofing materials, 
finishing materials, types of windows, their size and glazing etc. [24]. 
Some studies explore the effects of building shape, size and solar 
orientation of each facade on energy consumption too, showing that 
proper parameter adjustments during the design stage can lead to sig
nificant improvements [25]. One of the first attempts of formulating 
mathematical models considering multiple criteria was developed by 
[26], where multiple optimal solutions were investigated for improving 
the thermal operation of a building, concerning both cost and surface 
area during the design phase. Also, [27] utilized a simulation-based 
MOO approach, in order to reduce building energy consumption in a 
cost-effective way, by utilizing energy simulation and optimization 
tools, such as TRNSYS, GenOpt and MATLAB. A wide range of multiple 
alternative options was considered, such as decision making for external 
wall and roof insulation materials, the type of windows and the instal
lation of solar thermal collectors, with a focus on compromising the 
conflicting optimal solutions. [28] investigated multiple criteria for 
building optimization, including the minimization of the annual primary 
energy consumption, the amount of CO2 emissions and the initial in
vestment costs. MOO methods were formulated, according to the prin
ciples of MP, in order to provide balanced optimal solutions towards the 
conflicting criteria by applying weighting factors [29]. Similarly, a 
systematic tool for building retrofitting optimization was developed by 
[30] considering the selection of insulation materials, window types and 

solar panels, while different environmental criteria were implemented 
too. [31] proposed the development of a simulation-based MOO model, 
called RETROSIM, for assessing different alternative retrofitting choices 
of a building, such as the optimum material selection for external walls 
and roof insulation, different window types as well as the installation of 
solar thermal collectors and HVAC systems to meet heating and cooling 
demands. The main objectives consider primary energy consumption, 
costs and thermal comfort. [32] examined the advantages of imple
menting external wall insulation for buildings through a dynamic 
simulation and a MOO optimization methodology by utilizing GA and 
considering economic, energy and environmental criteria. [33] pro
posed a multi-criteria approach for designing green building envelopes 
by combining EnergyPlus with GA and artificial neural networks for 
minimizing material costs, CO2 emissions and energy consumption 
under a life cycle perspective.

The above literature analysis mentioned the need to incorporate 
decision-making methodologies considering multiple optimization 
criteria into the thermal building design, in order to investigate a wide 
range of alternative scenarios in line with the new legislation for miti
gating the energy and environmental problems. The current optimiza
tion problem deals with decisions which are related to the optimum 
insulation thickness and materials, as well as the choice of window 
frame materials, considering different climatic conditions; a residential 
building (240 m2) in Greece has been selected as a case study. While the 
examined criteria include the maximization of the building thermal 
resistance, as well as the minimization of economic, energy and envi
ronmental footprint, under a life cycle perspective (embodied energy 
and emissions), considering only the design phase of implementing 
thermal intervention strategies in the building envelope. This concept 
seems to be crucial for MOO decision-making in building thermal 
design, proposing a methodological framework that can be incorporated 
into relevant building certifications, in order to achieve energy saving 
and pollution reduction targets, considering economic constraints too. 
This has been achieved by providing multiple thermal design solutions 
under a comprehensive approach that examines different MP models. 
Even if several MOO methodologies can be found in literature (MP, GA, 
Pareto etc.), there is a research gap of comparing different optimization 
models, which is the main innovation of this study, highlighting their 
advantages and drawbacks. To do so, the proposed investigation aims to 
provide different MP models considering MOO, providing optimal so
lutions that compromise the examined criteria. The Pareto set consid
ered as the brute-force analysis of comparing the MP approaches. 
General Algebraic Modelling System (GAMS) was used for modelling 
and solving the MP problems, while a script in PYTHON was developed 
in order to calculate all the combinations of the proposed retrofitting 
alternatives and present the Pareto set. More specifically, in this paper 
four different MP methods were examined (global criterion, compromise 
programming, goal programming and Chebyshev goal programming). In 
global criterion (GC), the criteria of the baseline optimization problem 
were integrated into one objective function, leading to optimal solutions 
as close as possible to those achieved in SOO. The basic idea of the 
compromise programming (CP) method is to indicate an ideal solution 
that is a reference point for the decision-making problem, focusing on 
finding compromised as close as possible to this point. For investigating 
the set of solutions nearest to the optimal point, the concept of distance 
is introduced, which is a measure showing the deviation of the optimal 
solution from the ideal one. The main scope of the goal programming 
(GP) method is to find optimal solutions by setting distinct goals for each 
optimization objective. Such goals represent the optimal values arising 
from SOO. The objective functions of this method were designed to 
minimise the deviations from such goals. The focus of reducing the gap 
between the set goals and the actual performance, leads to solutions as 
close as possible with the desired outcomes. Last but not least, the 
Chebyshev goal programming (ChGP) method is based on the GP one 
and their key difference is that the ChGP can achieve a better weighting/ 
balancing between the goals, finding intermediate solutions more easily. 
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This is achieved by introducing further constraints in the form of 
inequalities.

Methodology

Optimization framework

The proposed decision-making methodology focuses on improving 
thermal energy efficiency of building envelopes by evaluating various 
design investments, considering the optimal insulation thickness and 
material selection, as well as the proper window frame material. The 
goal of this study is to develop a MP model in GAMS for defining the 
optimal decisions for each optimization criterion (thermal resistance, 
economic, energy, environmental) under SOO. Also, several MOO 
models were developed, in order to provide balanced optimal solutions 
between the criteria examined. The results of four MOO methods were 
compared with the Pareto set. Fig. 1 presents the general concept of the 
proposed methodology in a flow chart.

Building case study

The optimization methodology proposed in this study was imple
mented in a case study building with a total surface of 240 m2. The 
building envelope structure is composed of the following five primary 
components, each of them having a specific material composition. 

• Masonry: construction of the external walls consisting of brick.
• Structural Frame Elements: construction consisting of concrete 

(beams, columns, shear walls).
• Flat Roof.
• Floor: open-to-air floor (pilotis).
• Windows: argon filled; triple glazed.

Fig. 2 presents a 3D illustration of the outer building envelope 
examined, indicating the basic dimensions and the facades orientation. 
While Table 1 presents the construction of each building envelope 
component, identifying the thickness and the thermal conductivity of 
each structure.

Optimization parameters

Decision-making for selecting building envelope materials is 
considered as a laborious and complex process, due to the existence of an 
extensive variety of such materials in the market, as well as due to 
considering the improvement of alternative objectives. In this context, 
this study examined the optimal thermal insulation and window frame 
materials, considering economic, energy and environmental criteria, 
under the limitations of thermal resistance for each climate zone pro
vided by the Greek EPBD [34]. The proposed insulation materials are 
representative for the building sector and include Expanded (EPS) and 
Extruded Polystyrene (XPS), Polyurethane (PU), Rock Wool (RW) and 
Glass Wool (GW). While Aluminium, PVC and Timber define the alter
native materials for framing the windows. The economic cost encom
passes both the capital purchase and installation expenses associated 
with all the above, while for the environmental and energy footprint, the 
analysis includes CO2 equivalent emissions and Non-Renewable Primary 
Energy (NRPE) consumption, according to LCA principles. NRPE rep
resents the total energy derived from fossil fuels used in the construction 
of a system or material. Such data were collected from literature, 
considering the stages from row material extraction until the installation 
of final products. An important aspect for defining the energy and 
environmental footprint is the functional unit (FU) of the analysis. 
Considering the insulation materials, the FU represents the material 
amount needed to achieve thermal resistance of 1 m2K/W over 1 m2 

surface area. As for the windows LCA, the FU is specified as a standard 

Fig. 1. The framework of the decision-making process.
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triple-glazed window (1.65 x 1.3 m2), featuring a 4 mm thick glass pane, 
16 mm of argon-filled gas spacing, and a percentage of 25 % for the 
framing. The Life Cycle Inventory defined by the Environmental Product 
Declaration, while the CML 2001 and Cumulative Energy Demand 
methods were used in [35] and [36] for estimating the environmental 
impacts. The thermal, economic, energy, and environmental charac
teristics of the materials evaluated are presented in Table 2.

Optimization model

Creating decision-making methodologies for improving thermal en
velope design, considering both SOO and MOO, requires the formulation 
of representative mathematical models. This study formulates MP 
models by defining the following key aspects. 

• Design variables: define the key factors influencing the decision- 
making optimization process and providing optimal solutions.

• Constraints: identify limitations or requirements of the optimization 
problem, resulting into feasible optimal solutions.

• Objective functions (optimization criteria): determine the goals of 
the optimization problem, including the design variables.

• Mathematical techniques: involves the selection of the appropriate 
mathematical method and solver for defining the optimal solutions.

For this study, the above MP concept was structured in GAMS, which 
is a computational tool specialized in the formulation of such optimi
zation problems, incorporating several solvers for providing optimal 
solutions. In more detail, the process begins with setting constant values, 
which are represented as parameters, vectors and tables in GAMS, 
associated with relative indexes. These values could be automatically 
integrated into the primary equations of the objective functions and the 
constraints, along with the design variables. The final step involves 
specifying the type of optimization model and selecting the appropriate 
solver, in order for the optimal solutions to be defined by setting values 
to the design variables. For example, the optimal decisions were pro
vided by identifying the insulation thickness and materials through 
calculations made in the objective functions. The proposed MP problem 
is mixed-integer nonlinear, and the BARON solver was used for inves
tigating the optimal solutions [37].

Design variables and constraints
The proposed optimization methodology deals with the decision- 

making towards the optimal selection of thermal insulation materials 
and their appropriate thickness for each examined component of the 
building envelope, as well as the best fitted frame material choice for the 
triple glazed windows. In this context, relevant design variables should 
be set in the MP problem, in order for the aforementioned choices to be 
defined in the optimization process. 

Fig. 2. 3D illustration of the building envelope.

Table 1 
Construction of each building envelope component.

Components Materials Thermal 
conductivity 
(W/mK)

Thickness 
(m)

Structural 
Element 
(Abe ¼ 48.9 m2)

Inner plaster roughcast 0.87 0.02
Reinforced concrete 2.03 0.35
Outer plaster roughcast 0.87 0.02

Masonry 
(Abr ¼ 78.9 m2)

Inner plaster roughcast 0.87 0.02
Brick 0.52 0.09
Brick 0.52 0.12
Outer plaster roughcast 0.87 0.02

Floor 
(Afl ¼ 240 m2)

Tile 1.05 0.01
Cement 0.72 0.004
Fine aggregates 
concrete

0.64 0.04

Polyethylene film 1.76 0.001
Reinforced concrete 2.03 0.35
Outer plaster roughcast 0.87 0.025

Roof 
(Arf ¼ 240 m2)

Tile 1.05 0.038
Cement mortar 1.4 0.02
Polyethylene film 1.76 0.001
Waterproofing material 0.17 0.004
Fine aggregates 
concrete

0.64 0.08

Polyethylene film 1.76 0.001
Vapor barrier 1.76 0.01
Reinforced concrete 2.03 0.2
Outer plaster roughcast 0.87 0.025

Table 2 
Basic data of the examined insulation and frame materials.

Materials Thermal 
*W/mK **W/ 
m2K

Economic 
*€/m3 

**€/m2

Energy 
MJ/ 
FU

Environmental 
kg CO2/FU

Glass Wool 0.033* 149* 25.8 1.49
Expanded 

Polystyrene
0.034* 223.5* 67.0 2.00

Extruded 
Polystyrene

0.035* 464* 112.0 4.95

Polyurethane 0.023* 765* 80.0 3.60
Rock Wool 0.033* 287* 18.0 3.02
PVC 1.225** 205.4** 4443.5 205
Timber 1.35** 393.4** 1769.2 108
Aluminium 1.85** 525.6** 9322.1 502
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• xwn,i: Binary variables for choosing window frame material (i: 
Aluminum, PVC, Timber).

• xins,k,j: Binary variables for selecting thermal insulation material (j: 
RW, GW, EPS, XPS, PU) for each building envelope component (k: 
Masonry (br), Structural frame elements (be), Roof (rf), Floor(fl)).

• xk: Integer variables for choosing the thickness per ds = 1 cm of the 
thermal insulation material for each building envelope component 
(k).

Τhe above binary design variables should be constrained, in order to 
select only one frame material for all the windows and one thermal 
insulation material, for each building envelope component.

There are also constraints defining thermal resistance bounds, 
considering each component of the building envelope, as well as the 
climate zone. The upper bounds should come with thermal trans
mittance values (U-values) proposed by the Greek EPBD, ranging upon 
the climate zones from 0.35-0.6 W/m2K for the building envelope 
components and from 2.6-3.2 W/m2K for windows. While, for the lower 
bounds, it is assumed that the U-values should be higher than 0.15 W/m2 

K.

Single objective optimization
The optimization criteria were structured as objective functions 

shown in Eqs. (1) and (2). These formulas include the constant values of 
the building envelope characteristics defined in 2.2 and the design 
variables described in section 2.4.1, which are connected to the values 
shown in Table 2. Eqs. (1) and (2) calculate the thermal, economic, 
energy and environmental properties of the building case study, in order 
to provide the optimal decisions considering the options of insulation 
thickness and materials.

The first objective is to minimize the coefficient of thermal trans
mittance (ΣUA), along with Um, which is a critical index for identifying 
thermal resistance of building envelopes (objective function of Eq.1). 
This is considered as the only criterion for evaluating the thermal per
formance of a building envelope during the design stage in the Greek 
version of the EPBD [34]. 

minΣUA = Awn • bwn •
∑

i

(
Uwn,i • xwn,i

)
+
∑

k

⎛

⎜
⎜
⎜
⎝

Ak • bk

•
1

Rin +
∑

nk

(
dnk
λnk

)

+
xk•ds∑

j(λins.j•xins,k,j)
+ Rout

⎞

⎟
⎟
⎟
⎠

(1) 

where, 

• Rin, Rout (m2 K/W): thermal resistance caused by indoor and outdoor 
air convection.

• nk: represents the layers of the building envelope structure for each k 
component (Table 1).

• Awn, Ak (m2): the overall area of the windows and the components of 
the building envelope (Table 1).

• bwn, bk: a reducing rate, which is considered as 1 for surfaces in 
contact with ambient air.

The other objective of the optimization problem is to minimize the 
costs of the economic (Cins, Cwn), energy (NRPEins, NRPEwn) and envi
ronmental (Envins, Envwn) parameters, which are illustrated as S in the 
objective function of Eq. (2). 

min Cost/Env/NRPE = Awn •
∑

i

(
Swn,i • xwn,i

)
+
∑

k

(

Ak • xk • ds

•
∑

j

(
Sins,j • xins,k,j

)
)

(2) 

Multi-Objective optimization
The complex and multi-dimensional nature of building envelope 

design requires the formulation of MOO models, for evaluating various 
criteria. The criteria examined include the minimization of thermal 
transmittance, economic, energy and environmental costs, as illustrated 
in the previous section (2.4.2) incorporating the same objective func
tions in MOO formulas. Four MOO methods of MP were examined in this 
study, to address pairs of all the beforementioned criteria. To ensure 
comparability of each optimization criterion, it is important to 
normalize the objective functions on a common scale, assessing their 
impact on the optimization problem, as described in Eq. (3) and (4). Two 
distinct approaches of normalizing the objective functions were exam
ined (Norm 01, Norm mm), considering the objective functions 
described in Eq. (1) and (2), as well as the optimal results of SOO. Also, 
weighting factors were assigned to the MOO methods in order to indi
cate the relative importance of each criterion. For these weights, a 
sensitivity analysis was conducted, considering that the summing of the 
weighting values of the examined criteria should be at 100 % so as to 
evaluate their effect on the optimal decision outcomes. Two distribution 
steps were implemented for the analysis (1 % and 0.1 %) to check the 
effectiveness of each method. So, the optimization process for the MOO 
models includes the minimization of a normalized objective function 
that considers weighting factors for each optimization criterion. The 
implementation of different values in the weighting factors (sensitivity 
analysis) defines a complex optimization process that can lead to a wide 
range of optimal solutions, which is the ultimate objective for balancing 
the conflicting criteria.

The flow chart presented in Fig. 3 summarizes the basic aspects and 
steps of implementing the MOO methods examined.

The form of the normalized objective functions used in GC and CP 
methods are presented in Eq. (3), respectively. 

f cr
Norm =

⎧
⎪⎪⎨

⎪⎪⎩

wcr •
zcr − zcr,min

zcr
,Norm01

wcr •
zcr − zcr,min

zcr,max − zcr,min
,Normmm

(3) 

where, 

• zcr: The objective functions of SOO (ΣUA, Cost, Env, NRPE).
• zcr,min, zcr,max: The optimum values (minimum and maximum) 

derived from SOO for each criterion (ΣUA, Cost, Env, NRPE).
• wcr: Weights of each criterion (cr).

In GC the criteria of the SOO problem were integrated into one 
objective function that minimizes the summing of the fcr

Norm terms shown 
in Eq. (3) for each normalization type and for the examined criteria each 
time. This process leads to optimal solutions as close as possible to those 
achieved in SOO. While, in CP, the objective is the minimization of a 
variable that is bigger than the value of fcr

Norm for each criterion. This is 
achieved by setting inadequate constraints which are linked to the 
variable set under minimization. The basic idea of CP is to indicate an 
ideal solution that is a reference point (optimal point) for decision- 
making, trying to find a solution as close as possible to this point.

Similarly, the form of the normalized functions used in Goal Pro
gramming (GP) and Chebyshev Goal Programming (ChGP) is presented 
in Eq. (4), while the form of constraints is shown in Eq. (5). 
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hcr
Norm =

⎧
⎪⎪⎨

⎪⎪⎩

wcr •
n−

cr + p+
cr

zcr
,Norm01

wcr •
n−

cr + p+
cr

zcr,max − zcr,min
,Normmm

(4) 

zcr + n−
cr − p+

cr = zcr,min (5) 

where, 

• n−
cr, n−

cr, p+
cr, p+

cr: Negative and positive deviation variables from the 
optimal goals of each criterion (cr).

In GP there is one objective function minimizing the summing of the 
hcr

Norm terms shown in Eq. (4) for each normalization type and for the 
examined criteria each time. The aim of this method is to find optimal 
solutions by setting distinct goals for each optimization objective. Such 
goals represent the optimal values arising from SOO. The objective 
functions of this method are designed to minimize the deviations from 
such goals. The focus of reducing the gap between the set goals and the 
actual performance, leads to solutions as close as possible to the desired 
outcomes. While the objective function of ChGP is in line with the 
concept of CP by inserting inadequate constraints for the deviations. 
This leads to improving the goal weighting/balancing and finding in
termediate solutions more easily.

Also, a brute-force approach for defining the Pareto set was applied, 
in order to provide a benchmark for evaluating the accuracy of the 
examined MOO methods. Pareto set can find optimal solutions under a 
balancing perspective of the optimization criteria. Scripts in Python 
were developed in order to calculate all possible combinations, consid
ering five insulation materials, three window frame materials and 
insulation thickness with a step analysis of 1 cm in the thickness ranges 
set by the U-value constraints. This process resulted in roughly 100 
million different combinations for climate zone A, used to calculate the 
values of the four optimization criteria examined and the Pareto set was 
defined for all the pairs of them.

Results

Results of SOO

In case of maximizing the thermal resistance of the building enve
lope, the limit of 0.15 W/m2K was set leading to the same optimal so
lution for all the climate zones. This solution includes three insulation 
materials with different thicknesses (in cm) for the examined compo
nents (21br:XPS/21be:EPS/14rf:PUR/22fl:XPS). PUR is chosen for roof insu
lation, with low thickness, because of its low thermal conductivity, 
while XPS and EPS were chosen with higher thicknesses, leading to U- 
values nearest to 0.15 W/m2K. Also, the low U-value of the PVC sets it as 
the optimal solution for windows framing.

Considering the economic, energy and environmental optimization 
criteria, the optimal decisions made for the insulation thickness were 
aligned with the restrictions of the U-values set for each climate zone. 
The optimization outcomes indicate a progressive increase in insulation 
thickness moving from warmer to colder regions (A:4br/5be/5rf/6fl, 
B:5br/6be/6rf/7fl, C:6br/7be/7rf/8fl, D:7br/7be/8rf/9fl). This is due to the 
stricter restrictions set by the Greek EPBD for regions with adverse cli
matic conditions. GW is selected as the economically and environmen
tally friendlier material, while RW is identified as having the minimum 
embodied energy. While, for the window frames, PVC was the 
economically optimal decision, and Timber was the optimal result for 
the energy and environmental criteria.

The pattern of the optimal results reflects the need for higher thermal 
resistance in colder climates in order to meet the energy efficiency 
standards, highlighting the trade-offs in material selection based on 
various sustainable metrics.

Further analysis of the optimization outcomes, a contradiction be
tween the examined criteria was observed in Fig. 4, as the selection of 
materials with low U-values (ΣUA criterion) for improving the insu
lation properties of the building envelope leads to higher economic 
costs. This is in-line with the results in [28], where double glazed win
dows and high insulation thickness were selected. It is also depicted that 
the goal of high thermal protection of the building envelope leads to 
higher energy wastes and emissions to the environment. Results in Fig. 4
(a) show that an extremely thermally protected building envelope (high 

Fig. 3. Description of the MOO process.
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insulation thickness) in climate zone A increases the economic, energy 
and environmental costs by 4.6, 2.8 and 8.3 times, compared to the 
optimal values when optimizing each criterion separately. In addition, 
when minimizing energy and environmental footprints, an increase in 
the economic parameters is observed, while the quality of insulation 
protection worsens to the levels provided by the Greek EPBD restrictions 
for each climate zone conditions. This pattern is aligned with the results 
presented in [30], where the minimization of the environmental impacts 
(especially climate change) of their case study force to spending more 
economic resources by utilizing environmentally friendlier materials 
and systems based on RES. Last but not least, results in Fig. 4 (b) show 
that the warmer climate zone (i.e., A), the lighter the insulation re
strictions, which lead to lower economic, energy and environmental 
costs. It is also highlighted that the economic costs are higher when 
minimizing the energy and environmental criteria for all the climate 
conditions, while the energy costs seem to be higher when the economic 
criterion is considered. This is due to the change in the window frame 
material, while the insulation status stays constant for both the material 
and the thickness selection.

Results of MOO

Pareto results
The Pareto set provides balanced optimal solutions between the 

examined criteria for all the examined climate zones, providing feasible 
decisions. For example, when the economic budget is fixed into a spe
cific range of values, final decisions could be made considering the other 
three criteria simultaneously. It is also highlighted that there is a high 
contradiction between ΣUA and all the other criteria (Fig. 5), which 
leads to a higher number of balanced results, rather than in the cases of 
Cost-Env-NRPE optimization (Fig. 6). The number of optimal solutions, 
when the ΣUA criterion is included, is smaller in climate zone D than in 
A, due to the higher U-value restrictions in the climate zones with 
worsened climatic conditions. While, for the other criteria combinations 
provide fewer solutions, due to their lack of contradiction. For example, 
in Cost-Env optimization, only two possible solutions were provided, for 
each climate zone, which are the same as the results of single criteria 
optimization.

In ΣUA-Cost optimization, a continuous distribution of optimal so
lutions within the cost range of 12,700€ to 26,000€ spreads out, while 
above the threshold of 26,000€, only some separated solutions emerged. 
This distinction arises from the uniformity of insulation materials across 
all building envelope components (GW), as well as there is a continuous 
distribution of insulation thicknesses. However, in the latter cost range, 
alternative combinations of both the insulation materials and their 
thicknesses were witnessed. For all the optimal results, PVC window 
frame material is the optimal choice. Considering ΣUA-Env and ΣUA- 
NRPE optimization, the above distribution ranges were different, 

Fig. 4. Optimal values of Um, Cost, Env and NRPE considering (a) all the optimization criteria for climate zone A, and (b) the costing criteria for all climate zones.
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because of the change of the window frame material too (PVC and 
Timber).

In Cost-Env, Cost-NRPE and Env-NRPE, the insulation thicknesses 
are the minimum ones, in order to meet the thermal insulation limits for 
each climate zone. However, the differentiation of optimal solutions is 
attributed to the combinations of different insulating materials, espe
cially between GW and RW, which are the first two materials with the 
lowest values in economic, energy and environmental costs. In Cost- 

NRPE optimization, a significant change can be depicted, which is due 
to the simultaneous alteration of the window frame material and the 
insulating material. Such a change is not presented in Env-NRPE, as 
timber is the optimal choice.

MP results
This section presents the results of a weighting sensitivity analysis 

(distribution step analysis of 1 % and 0.1 %) in the MP models compared 

Fig. 5. The optimal Pareto values of (a) ΣUA-Cost, (b) ΣUA-Env and (c) ΣUA-NRPE optimization criteria, for all the climate zones.
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to the Pareto results. Fig. 7 presents the percentage of matching the 
optimal Pareto values from the MP models for high (ΣUA-Cost) and low 
(Env-NRPE) contradictive criteria. In particular, the Pareto set was more 
accurately represented by the finer step analysis across all the MP 
optimization scenarios, as a higher number of weight combinations were 
investigating leading to an increased number of optimal solutions. 
However, when the criteria are less contradictive with each other, the 
step of 1 % is adequate for meeting the Pareto set.

As far as the best fitted method is conserved, the CP and ChGP seem 
to be the most appropriate models (especially with normalization mm), 
capturing a significant number of values in the Pareto set, as shon in 
Fig. 7 (a). In more detail, the ChGP method can capture 467 optimal 
solutions out of 518 points belonging in the Pareto set (90.2 %) when 
ΣUA-Cost optimization criteria were considered and with a step analysis 
of the weights at 0.1 %. While the GC and GP methods for the same 
optimization problem can capture only 70 out of 518 optimal points. 
When the step analysis has been increased to 1 %, the best MOO method 
is again the ChGP (Norm mm), but the fitted optimal solutions were 
decreased to 97 out of 518. Similar conclusions can derive when ΣUA- 
Env and ΣUA-NRPE optimization criteria were examined, with ChGP 
being the best method as it can reach 503 out of 568 solutions in ΣUA- 
Env and 495 out of 565 solutions in ΣUA-NRPE. This is due to the high 
contradiction expressed between such criteria.

In addition, in Cost-Env, Cost-NRPE and Env-NRPE optimization, 
where the Pareto set is smaller, CP and ChGP can identify the entire 
Pareto set. More specifically, the results presented in Fig. 7 (b) show that 
both CP and ChGP can capture all the 16 optimal results belonging in the 
Pareto set, even if the step analysis of the weights is set at 1 %. This is 
due to the flexibility given by the inequality constraints in such models. 
While GC and GP seem to be less accurate for capturing the optimal 
Pareto results, especially the models with Norm 01, that can only fit the 
Pareto set at 12.5 %, i.e., 2 out of 16 optimal solutions.

Comparing the MOO models examined, it is important to mention 
their basic advantages and drawbacks. 

• The computational time of formulating and solving each MP model 
was at the same range of time for a specific time-step analysis, but 
always lower compared to Pareto analysis.

• The lower time-step analysis of the MP models, the higher compu
tational time spent, due to the increased number of goals set for each 
criterion, examining more alternative solution scenarios.

• Increasing the number of the optimization parameters (design vari
ables or objectives functions) is simpler when formulating a MP 
problem, rather than generating all the combinations for defining 
new Pareto sets.

• The concept of creating MP problems seems to be more difficult than 
generating a brute-force methodology including specific steps, which 
can be easily formulated step-by-step.

The suitability and accuracy of MP models is not clear from an initial 
stage.

Conclusion

This paper presents a decision-making methodology, focusing on 
improving building envelope design through optimization. The analysis 
was conducted to a residential building, incorporating an analysis for 
different climatic conditions in Greece. The optimization technique in
cludes the formulation of different MP models considering four basic 
criteria; economic, energy, environmental (based on LCA) and thermal 
insulation, noting that the latter one is in line with the design criteria 
imposed by the Greek version of the EPBD. The objective of the opti
mization is to make optimal decisions related to the insulation material 
and thickness choices, as well as the optimal frame material of a triple 
glazed window. The analysis incorporates mathematical models for both 
SOO and MOO, focusing on implementing and comparing different MOO 
methods too. In this way, the different envelope design solutions for 
insulation thickness and materials can be evaluated under an economic, 
energy and environmental perspective. This is essential in practice, as 

Fig. 5. (continued).
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the decision-maker (stakeholder or engineer) can evaluate the optimal 
decisions provided as optimal results of this study, leading to insulation 
interventions, considering the available economic budget, the re
strictions of U-values for different climate conditions, as well as the 
energy and environmental costs of such interventions. In this context, 
the steps that should be conducted by the decision maker for adapting 
real-world applications into the methodology of this study start with the 
definition of the geometry and thermal properties of the building en
velope that is going to be examined. The next step is to set the input data, 

considering the alternative options of insulation or window frame ma
terials, as well as their costs (optimization criteria). Choosing the 
appropriate optimization model, the results could provide optimal de
cisions considering the criteria examined. The results provided in the 
current study can be utilized by engineers for optimal decisions for 
thermal insulation considering different climate condition in Greece, 
following the restrictions provided by the regulations.

The optimization results show that the four examined criteria seem 
to be in conflict, as depicted in both the SOO and MOO approaches, 

Fig. 6. The optimal Pareto values of (a) Cost-NRPE and (b) Env-NRPE optimization criteria, for all the climate zones.
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especially when the criterion of thermal insulation is included. While a 
milder degree of conflict among the other criteria is depicted, even 
though results show that economic costs increase when using environ
mentally friendlier materials. These highlight the trade-offs among the 
objectives and emphasize the need to strike a balance between the 
competing criteria through MOO. To address this issue, the Pareto set 
was generated, presenting the optimal values for all the criteria com
binations, while different MP approaches were examined too, in order to 
decrease the computational time compared to a brute-force analysis.

Considering the contradiction between the optimization criteria, the 
following should be highlighted: 

• High contradiction for all the climate conditions is depicted when 
considering the following criteria ΣUA-Cost, ΣUA-Env and ΣUA- 
NRPE. This is due to the ΣUA criterion that leads to high insulation 
thickness.

• Medium contradiction is depicted when considering Cost-Env and 
Cost-NRPE criteria, where the optimal selection of PVC window 
frame material leads to lower economic but higher energy costs.

• Low contradiction is depicted when considering Env-NRPE, because 
of similar optimal choices.

As for the comparison between the MOO methods, different MP 
models were formulated, and by implementing a sensitivity analysis of 
different weighting combinations, the optimum results were compared 

to the ones provided by the Pareto set. Results showed that: 

• The lower step analysis of the weights considered, the higher number 
of optimal solutions resulted in the Pareto set.

• The higher contradiction between the optimization criteria shows 
that the methods of GC and GP are not appropriate for finding the 
Pareto set.

• The CP and especially the ChGP methods can capture the Pareto set 
in an effective manner, even in higher or lower contradiction be
tween the criteria.

Considering the above analysis, the contradiction between the opti
mization criteria depicted in SOO highlights the need of balancing them 
in MOO approaches. So, the formulation and utilization of efficient MP 
models can streamline the decision-making process, mitigating the need 
for time-consuming brute-force MOO methods, in order to provide an 
effective method for evaluating different intervention scenarios during 
building envelope design. The more efficient model proposed from this 
analysis (ChGP) can be utilized by decision makers, in order to adapt the 
input parameters for their case building. The use of such a model reduces 
computational time for such optimization problems, leading to accurate 
decisions in low time.

Looking forward, future research could extend the current method
ology to the building operation by calculating energy demands, offering 
insights into energy system managing and highlighting the importance 

Fig. 7. Percentage of fitted values to the Pareto set for optimizing (a) ΣUA-Cost and (b) Env-NRPE criteria.
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of reducing the payback period for energy-efficient design projects. 
More specifically, the optimal decisions obtained from this study could 
be used to estimate heat gains and losses, considering heating loads from 
sun, occupants, lighting, airtightness, thermal conductivity, thermal 
capacity etc. Moreover, the proposed methodology can incorporate 
more optimization criteria, such as indoor air quality parameters or 
parameters that impact the shading of the building. This would pave the 
way for developing a more comprehensive approach affecting building 
energy efficiency.

CRediT authorship contribution statement

V Kilis: Writing – original draft, Visualization, Validation, Method
ology, Investigation, Funding acquisition, Formal analysis, Conceptu
alization. N Ploskas: Writing – review & editing, Software, 
Methodology, Formal analysis, Data curation. G Panaras: Writing – 
review & editing, Supervision, Resources, Project administration, 
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Vasileios Kilis reports financial support was provided by Hellenic 
Foundation for Research and Innovation. Vasileios Kilis reports a rela
tionship with Hellenic Foundation for Research and Innovation that 
includes: funding grants. If there are other authors, they declare that 
they have no known competing financial interests or personal re
lationships that could have appeared to influence the work reported in 
this paper.

Acknowledgments

The research was supported by the 

Hellenic Foundation for Research and Innovation (HFRI) under the 4th 

Call for HFRI PhD Fellowships title.

Data availability

Data will be made available on request.

References

[1] European Commission, Directorate-General for Energy. EU energy in figures- 
Statistical pocketbook 2023. Publications Office of the European Union. 2023. 
Available at: https://data.europa.eu/doi/10.2833/502436.

[2] Eurostat. Energy Statistics – an overview. 2021. Available at: https://ec.europa. 
eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_over 
view#Primary_energy_production.

[3] European Union. DIRECTIVE (EU) 2024/1275 OF THE EUROPEAN PARLIAMENT 
AND OF THE COUNCIL of 24 April 2024 on the energy performance of buildings 
(recast). Official Journal of the European Union. 2024. Brussels.

[4] European Parliament And Council, Directive 2010/31/EU of 19 May 2010 on the 
energy performance of buildings (recast). 2010; 13–35.

[5] Sadineni SB, Madala S, Boehm RF. Passive building energy savings: a review of 
building envelope components. Renew Sustain Energy Rev 2011;15:3617–31.

[6] Ballarini I, Corrado V, Madonna F, Paduos S, Ravasio F. Energy refurbishment of 
the italian residential building stock: Energy and cost analysis through the 
application of the building typology. Energy Policy 2017;105:148–60.

[7] Aguacil S, Lufkin S, Rey E, Cuchi A. Application of the cost-optimal methodology to 
urban renewal projects at the territorial scale based on statistical data—A case 
study in Spain. Energ Buildings 2017;144:42–60.

[8] Zhang C, Cui C, Zhang Y, Yuan J, Luo Y, Gang W. A review of renewable energy 
assessment methods in green building and green neighborhood rating systems. 
Energ Buildings 2019;195:68–81.

[9] Ran S, Lyu W, Li X, Xu W, Wang B. A solar-air source heat pump with thermosiphon 
to efficiently utilize solar energy. J Build Eng 2020;31:101330.

[10] Bakht MN, Panizza RO, Hudon P, Chassain PY, Bashari M. Economy-energy trade 
off automation–a decision support system for building design development. J Build 
Eng 2020;30:101222.

[11] Fabrizio Е, Corrado V, Filippi М. A model to design and optimize multi-energy 
systems in buildings at the design concept stage. Renew Energy 2010;35:644–55.

[12] Kilis V, Paschalidis N, Ploskas N, Panaras G. Energy hub optimization on residential 
building case. E3S Web Conf 2023;436:01017. https://doi.org/10.1051/e3sconf/ 
202343601017.

[13] Li A, Xiao F, Zhang C, Fan C. Attention-based interpretable neural network for 
building cooling load prediction. Appl Energy 2021;299:117238.

[14] Haddad S, Synnefa A, Marcos MÁP, Paolini R, Delrue S, Prasad D, et al. On the 
potential of demand-controlled ventilation system to enhance indoor air quality 
and thermal condition in Australian school classrooms. Energ Buildings 2021;238: 
110838.

[15] Zare N, Shafaat A, Asadi S. Review of energy performance gap and solutions in 
residential buildings. IOP Conf Ser: Earth Environ Sci 2022;1085:012013. https:// 
doi.org/10.1088/1755-1315/1085/1/012013.
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