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Abstract—Linear programming solvers include various options
that can be used to control algorithmic aspects and considerably
impact the solver performance. As it is obvious, manually
finding optimal parameters is a very difficult task and sometimes
impossible. For this reason, it is necessary to implement smart
techniques that will automate this process. Other works have
utilized derivative-free optimization solvers to tune solver param-
eters. In this work, eight open-source derivative-free optimization
solvers are utilized for finding (near) optimal tuning parameters
of state-of-the-art linear programming solvers. We investigate
how sensitive linear programming solvers are to a parameter
tuning process. Extensive computational results are presented on
tuning four linear programming solvers (CLP, CPLEX, GUROBI,
and XPRESS) over a set of 70 benchmark problems. We find
better parameters for all linear programming solvers, achieving
a reduction in execution time over their default parameters up
to 26%. We conclude that several derivative-free optimization
solvers outperform others on finding optimal optimal tuning
parameters for linear programming solvers.

Index Terms—Optimization, linear programming, perfor-
mance, parameter learning

I. INTRODUCTION

The software automatic tuning research area has been
recognized as an important research area, especially in the
last two decades, and works on finding better values for
the parameters of an algorithm or a software package have
increased significantly. Various approaches, including opti-
mization algorithms, heuristic methods, and deep learning
methods have been applied to tune software packages. The
success of these methods is mainly based on the following
factors: (i) how sophisticated the method is, (ii) the type of
the software used to tune, and (iii) the training library.

Tuning the options of optimization solvers is of great
importance since this can considerably impact a solver’s per-
formance. Even though there are various performance metrics
for assessing the tuning process of an optimization solver,
two are the most important ones: (i) decreasing its execution
time, and (ii) finding a better solution (sometimes the optimal
one) than the optimization solver with the default param-
eters. Optimization solvers include a variety of parameters
that control various algorithmic aspects during the solution
process. However, even if only a few parameters exist, it is
usually impossible to list all parameter settings because the
combinations are too many. Therefore, software developers
perform extensive computational experiments on a dataset and
set default option values based on these results (and on their
experience). However, the selected option values may not be

adequate for other unseen instances, especially large ones, and
may lead the optimization solvers to poor performance. As a
result, various works [1]– [4] have attempted to design and
implement a systematic method for finding better option values
of optimization solvers.

The following optimization problem can describe the pa-
rameter tuning problem:

min f(O,P )
s.t. O ∈ R

where f is the metric for assessing the solver performance
(the execution time is usually used as the metric), O is the set
of the option values (independent of each other), P is the set
of the problem instances, and R is the feasible region, i.e., it
includes all possible parameter combinations. The options can
take any value between their bounds.

It is very difficult to find optimal solutions for this problem
since the relationship between the parameters and the perfor-
mance of the solver is implicit, i.e., there is no algebraic form
to express the performance function. A few works (e.g., [4]
[5]) have focused on finding a relation between the execution
time of an optimization solver and various problem parame-
ters, e.g., number of variables, constraints, and nonzeros, but
the results were not very accurate when the training library
included instances of various classes and sizes. In addition,
some parameters may take discrete values, resulting in a
complex and nonsmooth surface of the objective function,
implying that derivative information obtained through local ap-
proximation may be inaccurate [6]. This problem can be solved
by optimization algorithms that do not require explicit func-
tional representations of the objective function or gradients [7].
Therefore, we have selected to use derivative-free optimization
(DFO) solvers to speedup the optimization solvers’ execution
time, and more specifically, linear optimization solvers, by
tuning their option settings. We treat the tuning problem as
a black-box optimization problem, where the algebraic form
of the objective function is not known, and we solve it through
performing simulations of different option combinations. Each
simulation includes solving the problem with a different set
of parameters.

Various works have utilized DFO solvers as tuning strategies
[1] [3] [6] [8]. Most of them use DFO solvers that can
only handle continuous variables, and thus, they use rounding
techniques for integer option parameters. This can lead to sub-
optimal results. In this work, we utilize seven DFO solvers



that are capable of dealing with both continuous and discrete
variables (for a recent review on mixed-integer DFO, see [9]).
We have also included in our computational study a DFO
solver that can handle only continuous variables.

In addition, all previously tuning methods targeted mixed-
integer programming solvers as well as local and global
nonlinear programming solvers. The changes on the parameter
values on these solvers can lead to great speedups. Since
no previous work has been conducted to investigate whether
option tuning has a significant impact on continuous linear
optimization algorithm, we aim to investigate the applicability
of option tuning on continuous linear optimization solvers.
More specifically, we tune four linear programming (LP)
solvers, namely CLP [10], CPLEX [11], GUROBI [12], and
XPRESS [13]. We opted to tune the dual simplex algorithm
since it is typically used in branch-and-bound frameworks to
solve mixed-integer LP solvers [14]. Thus, tuning the dual
simplex algorithm will have a great impact not only for solving
continuous LP problems but also for mixed-integer ones. Even
though LP algorithms are regarded mature, it will make a huge
impact in practical problems even a small reduction on the
execution time.

The rest of this paper is structured as follows. Section
II includes a brief description of the DFO algorithms and
software used, while Section III presents the framework used
to automate the option tuning of optimization solvers. In
Section IV, numerical results based on 70 LP problems from
Kennington [15], Mészáros [16], Mittelmann [17], and Netlib
[18] libraries are conducted in order to investigate whether
or not DFO algorithms have affect LP solvers’ performance.
Finally, conclusions are provided in Section V.

II. DERIVATIVE-FREE OPTIMIZATION SOLVERS

DFO algorithms are intended to solve optimization prob-
lems where gradient information is unavailable or unreliable.
The first DFO algorithms were proposed by Spendley et al.
[19] and Nelder and Mead [20]. As a result of the need to solve
practical problems, DFO has emerged as an appealing area of
study. Many real-world engineering problems involve complex
computer simulations, which are being used as a partial substi-
tute for laboratory experiments. Such problems are known as
expensive black-box optimization systems since the objective
and constraints of the problem cannot be obtained as closed-
form equations. On top of the above challenges, real-world
optimization problems have multiple optimal solutions, non-
smoothness, and discontinuities. Under these circumstances,
classical optimization algorithms may perform poorly and
DFO algorithms are used in these cases.

The number of studies focused on new DFO algorithms and
applications have rapidly increased. Various new algorithms
have been developed, including generalized pattern search
methods [21], trust-region methods [22], radial basis functions
[23], and hybrid algorithms combining various algorithmic
approaches [24]. The increase in computational power has also
given rise to new parallel implementations of DFO algorithms
that can also perform multiple simulation in parallel.

The mixed-integer DFO problem is of interest since there
exist many real-world applications that require some or all
variables to be discrete, including the software tuning problem
[6] [8], the optimization of the circuitry design of heat ex-
changers [25], and the hydraulic capture community problems
[26]. The first DFO algorithm handling discrete variables
was proposed by Audet and Dennis [27]. Various new algo-
rithms have been developed, including extensions to the mesh
adaptive direct search method [28], line-search methods [29],
surrogate models [30], and heuristic approaches [31].

Most recently, DFO methods have been incorporated in
software packages and made it easier to use in various
applications. Many software packages that implement DFO
algorithms have been developed. In this work, we have se-
lected seven open source DFO algorithms, which can handle
both continuous and integer variables, for tuning LP solvers.
In addition, we also selected MCS, which cannot handle
integer variables explicitly, since it performed well on the
computational study in [7]. Table II presents eight DFO solvers
that were utilized to tune LP solvers’ performance.

III. A FRAMEWORK FOR TUNING OPTIMIZATION
ALGORITHMS

Figure 1 depicts the framework design that we implemented
to tune optimization algorithms. The inputs to the framework
are:

• the LP solver that will be tuned.
• parameter information of the selected LP solver. For each

parameter, the following information is needed: (i) the
type of the variable (continuous, discrete, or categorical),
(ii) the lower bound, (iii) the upper bound, and (iv) the
default value.

• the DFO solvers that will be used to tune the optimization
algorithms. The user can select many DFO solvers that
will be executed in parallel and the best performance will
be displayed at the end of the tuning process

• the training library in which the parameter tuning will
take place.

Initially, the first step involves the execution of the LP solver
with the default option values over the training library, i.e., a
set of problems that is used for finding the best parameter
values. Then, the framework runs in parallel all selected DFO
solvers. In this step, each DFO solver produces a new feasible
solution in each iteration. Each solution is evaluated on the
training library using GAMS. HTCondor is also automatically
utilized for running multiple GAMS jobs and thus allowing to
save much computational time by performing various runs in
parallel.

The impact of each option on the solver’s performance is
calculated by computing optvalue/defvalue, where optvalue
is the execution time of the solver where a non-default value
when a specific option is used (various values are tested
for each option and the optvalue is extracted from the best
performance of all values) and defvalue is the execution time
of the solver for the default value (from Step 1). Therefore, if
optvalue/defvalue < 1, then there exists a non-default value



BFO 2.0 [32] https://github.com/m01marpor/BFO
DAKOTA/MADS 6.10 [33] https://dakota.sandia.gov/
DAKOTA/SOGA 6.10 [33] https://dakota.sandia.gov/

DFLBOX [34] http://www.iasi.cnr.it/∼liuzzi/DFL/index.php/list3/14-mixed-integer-nonlinear-programming/16-dflbox
MCS 2.0 [35] www.mat.univie.ac.at/∼neum/software/mcs/

MISO [36] https://ccse.lbl.gov/people/julianem/
NOMAD 4.1.0 [37] https://www.gerad.ca/en/software/nomad

SNOBFIT [38] www.mat.univie.ac.at/∼neum/software/snobfit/
TABLE I

DFO SOLVERS USED

Fig. 1. Framework used to tune LP solvers using DFO solvers.

https://github.com/m01marpor/BFO
https://dakota.sandia.gov/
https://dakota.sandia.gov/
http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3/14-mixed-integer-nonlinear-programming/16-dflbox
www.mat.univie.ac.at/~neum/software/mcs/
https://ccse.lbl.gov/people/julianem/
https://www.gerad.ca/en/software/nomad
www.mat.univie.ac.at/~neum/software/snobfit/


that leads the solver to perform better on the specific instances.
On the other hand, if optvalue/defvalue > 1, then all non-
default values lead the solver to perform worse on the specific
instances). This information is communicated to the DFO
solvers in order to produce the next feasible solution. After
a predefined number of simulations performed by the DFO
solvers, we terminate the parameter tuning process. Typically,
we want to obtain the best parameter combination in a small
number of simulations.

In this step, other performance metrics (other than the
reduction of the execution time) can be used. For example,
in minimization (maximization) problems, the decrease (in-
crease) of the objective value can be aimed when there exist
problems that cannot be optimally solved in a given time.
However, since most LP algorithms find the optimal solutions
on the majority of benchmark instances in a reasonable amount
of time, we opted to use here the solver’s execution time as
the performance metric.

Each DFO solver’s optimization results are saved to a file.
The best optimization results from all DFO solvers are also
stored into separate files. All this information is collected in
the third step and the following output is provided to the user:

• the best combination of values found for the option
setting.

• the best DFO solver.
• the speedup over the default solver’s performance.

IV. COMPUTATIONAL RESULTS

In this computational study, we apply the eight aforemen-
tioned DFO solvers to tune the execution time of the dual
simplex algorithm of the following LP solvers: (i) CLP, (ii)
CPLEX, (iii) GUROBI, and (iv) XPRESS. Computational
results are based on a set of 70 LP problems from Kennington,
Mészáros, Mittelmann, and Netlib libraries. The computational
comparison has been performed on an Intel Core i7-8700 3.2
GHz with 16 GB of main memory and 12 cores, running under
CentOS 8.4.

Most of the LP solvers have numerous options mainly
divided into the following categories: (i) preprocessing, (ii)
algorithmic, (iii) limit, (iv) and tolerance. Five options were
selected for each LP solver; all options are important option
settings in presolve, scaling, pricing, pivot, and crash proce-
dures of the LP solvers. The options selected for each LP
solver are the following:

• CLP: maxFactor, passPresolve, scaling, dualPivot, and
crash

• CPLEX: aggfill, scaind, dpriind, folding, and reduce
• GUROBI: sifting, simplexpricing, aggfill, prepasses, and

presparsify
• XPRESS: presolve, presolvePasses, crash, dualGradient,

and autoScaling
Table IV presents the execution times with default param-

eters (column 2) and tuned parameters by each DFO solver
(columns 3–10). First of all, all DFO solvers achieved to
decrease the execution time of all LP solvers. The best runtime
reductions for each LP solver are the following:

• 18% for CLP, achieved by DAKOTA/MADS.
• 16% for CPLEX, achieved by MISO.
• 25% for GUROBI, achieved by NOMAD.
• 26% for XPRESS, achieved by DAKOTA/SOGA.
It is particularly interesting that the best performance for

each LP solver was achieved by a different DFO algorithm.
Figure 2 presents the comparison of the different DFO solvers
on this tuning option benchmark. Various DFO solvers have a
good performance on tuning the four different LP solvers.

The number of the problems that the DFO solvers improved
the default LP performance is one of the most straightforward
assessment criterion to compare the ability of DFO solvers
to tune the LP solvers. A DFO solver that can improve the
execution time of a LP solver on more instances suggests a
greater ability to find optimal option values. In the computa-
tional study, we also consider the effect of the disturbances
from the computational environment to the execution time of
the optimization solvers. Thus, runtime reductions between
−5% and 5% are considered insignificant. As a result, a
significant improvement corresponds to a runtime reduction
greater than 5%. The percentage of insignificant and significant
runtime reductions for each solver is shown in Figure 3. To
obtain these results, we used the best results from all DFO
solvers. The DFO solvers reduced CLP’s performance on
23% of the problems while having no effect on 43% of the
problems. Furthermore, on 36% of the problems, the DFO
solvers improved CLP’s performance. All other LP solvers
produce similar results.

V. CONCLUSIONS

Hyper-parameter tuning is an important field that received
considerable attention in the last decade. Various approaches,
including DFO solvers and deep learning approaches, have
been successfully applied. However, the tuning of optimization
solvers was a hard task for these approaches since the search
space is very large and the optimization problems in the
training library have usually different characteristics. Some
works have previously applied tuning methods on mixed-
integer programming solvers and local and global nonlinear
programming solvers. There has been no similar work to
investigate whether significant speedups can be obtained by
tuning continuous linear optimization solvers. This work aims
to fill this gap and present computational evidence showing the
ability of DFO solvers to tune continuous linear optimization
solvers. Continuous linear optimization solvers are utilized in
various applications and even a small reduction on their exe-
cution time would have a huge impact in practical problems.

In the computational study, we tuned four LP solvers,
namely CLP, CPLEX, GUROBI, and XPRESS, over a set
of 70 benchmark instances. Important option settings in pre-
solve, scaling, pricing, pivot, and crash procedures of the LP
solvers have been used in the tuning process. We developed
a framework to automate this procedure and utilized GAMS
and HTCondor. Eight open source DFO solvers were used to
tune the LP solvers. We found better parameters for all LP
solvers, achieving a reduction in execution time over their



Fig. 2. Results on tuning the performance of LP solvers.

(a) Results for CLP (b) Results for CPLEX

(c) Results for GUROBI (d) Results for XPRESS

Fig. 3. Number of improvements for the group of 70 problems.



Solver Default BFO DFLBOX DAKOTA/MADS DAKOTA/SOGA MCS MISO NOMAD SNOBFIT
CLP 32.78 26.90 27.46 26.84 27.37 27.19 27.66 27.28 27.93

CPLEX 16.55 14.08 14.30 14.36 14.05 14.14 13.93 13.99 14.78
GUROBI 17.49 13.42 14.81 13.43 13.36 13.31 13.18 13.16 13.23
XPRESS 19.11 14.59 14.11 14.50 14.09 14.22 14.12 14.28 14.18

TABLE II
EXECUTION TIMES WITH DEFAULT PARAMETERS AND TUNED PARAMETERS BY EACH DFO SOLVER

default parameters up to 18% for CLP, 16% for CPLEX,
25% for GUROBI, and 26% for XPRESS. The computational
experiments show that several derivative-free optimization
solvers outperform others on finding optimal optimal tuning
parameters for LP solvers.
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