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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/ploskasn/Con Black-box optimization plays a pivotal role in addressing complex real-world problems where
tinuousBoundedMINLPLibrary/ the underlying mathematical model is unknown or expensive to evaluate. In this context, this

work presents a method to enhance the performance of derivative-free optimization algorithms

Igfﬂ?;ﬁ optimization by integrating an adaptive sampling process. The proposed methodology aims to overcome the
Derivative-free optimization limitations of traditional methods by intelligently guiding the search towards promising regions
Surrogate modeling of the search space. To achieve this, we utilize machine learning models, which effectively
Adaptive sampling substitute first principles models. Furthermore, we employ the error maximization approach to
Machine learning steer the exploration towards areas where the surrogate model deviates significantly from the

true model. Moreover, we involve a heuristic method, an adaptive sampling procedure, that
repeats calls to a widely-used derivative-free optimization algorithm, SNOBFIT, allowing for
the creation of new and improved surrogate models. To evaluate the efficiency of the proposed
method, we conduct a comparative analysis across a benchmark set of 776 continuous problems.
Our findings indicate that our approach successfully solved 93% of the problems. Notably, for
larger problems, our method outperformed the standard SNOBFIT algorithm by achieving a 19%
increase in problem-solving rate, and when, we introduced an additional termination criterion
to enhance computational efficiency, the proposed method achieved a 31% time reduction
compared to SNOBFIT.

1. Introduction

Black-box optimization problems, also known as simulation-based problems, pose unique challenges for traditional optimization
algorithms. These problems are characterized by the absence of an explicit mathematical model, making it difficult to compute
derivatives or gradients that are typically used in optimization techniques. Derivative-free optimization (DFO) algorithms have
emerged as efficient approaches to tackle these black-box problems by relying solely on function evaluations of the problems. In
traditional optimization algorithms that rely on derivatives or gradients, such as gradient-based methods, the optimization process
involves evaluating both the objective function and its derivatives at each iteration to determine the direction of the steepest descent
or ascent. This information guides the algorithm towards the optimal solution.

On the other hand, DFO algorithms focus on finding the optimal solution for a given objective function without relying
on derivative information. This makes DFO algorithms particularly well-suited for scenarios where the objective function is
computationally expensive, discontinuous, noisy, or lacks analytical expressions [1-5]. In recent years, the integration of machine
learning techniques into DFO algorithms has shown promising results, leading to significant advancements in solving complex
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optimization problems [6-8]. Moreover, DFO algorithms rely on evaluating the objective function at various points in the search
space, making them applicable to a wide range of black-box problems.
The bound-constrained optimization model for black-box optimization problems can be defined as shown in Eq. (1):

minimize (or maximize) f(x)
x (€D)]
s.t. xeX

where:

* X = (x,x5,...,x,) represents the vector of decision variables or the design parameters of the optimization problem.

+ f(x) represents the objective function. In the context of minimization, we seek to find a vector x* that minimizes the objective
function f(x*).

+ X is the feasible region, representing the set of all possible x values for which the objective function f(x) is defined.

To enhance the efficiency of DFO algorithms, machine learning methods, typically surrogate modeling techniques, are often
incorporated [6-10]. Surrogate modeling involves constructing a surrogate or approximation model of the objective function based
on a limited set of function evaluations. This surrogate model captures the underlying behavior of the objective function and provides
an efficient way to explore the search space and make informed decisions on where to sample next.

Adaptive sampling approaches in soft computing are techniques designed to selectively and iteratively sample data points to
efficiently and effectively model complex systems, optimize functions, or solve problems. These approaches are particularly valuable
in scenarios where data collection is expensive, time-consuming, or computationally intensive. Adaptive sampling techniques have
demonstrated considerable efficacy in diverse domains, including deep convolutional networks, multi-objective optimization, and
data mining endeavors [11,12]. An adaptive sampling procedure combines the power of machine learning methods with DFO
algorithms to improve the exploration and exploitation of the search space. Instead of relying solely on the DFO algorithm to
find points in the search space, surrogate models are used to guide the sampling process. The surrogate model helps identify regions
of the search space that are likely to contain promising solutions, enabling the DFO algorithm to focus its search on these areas.
By iteratively updating the surrogate model based on new function evaluations, the adaptive sampling procedure adapts to the
characteristics of the objective function and intelligently directs the search towards the global optimum. Adaptive sampling is a
dynamic process where the selection of sample points is adjusted based on the information obtained from previously sampled points.
This iterative adjustment aims to improve the efficiency and accuracy of optimization tasks. The primary goal of adaptive sampling
is to focus sampling efforts on regions of the input space that are more informative or critical for the problem at hand.

While some studies have shown promising results by integrating surrogate models with DFO algorithms, there still exist gaps in
the literature that need further investigation. Prior studies have predominantly focused on optimizing the actual objective function.
However, in scenarios characterized by high dimensionality and challenging objective functions, surrogate models have exhibited
limited performance in accurately predicting the objective function. Our approach, in contrast, employs adaptive sampling with
surrogate models and a DFO solver guided by the error maximization technique. Our methodology targets the identification of
points where the discrepancy between the surrogate model and the actual function is maximized. Rather than optimizing the original
function directly, our optimization efforts are channeled towards improving the surrogate model. Once the surrogate model closely
approximates the original function, derivative-based optimization solvers can converge more swiftly to a solution than a DFO solver
operating on the original objective function.

Unlike traditional DFO algorithms that focus on directly obtaining the optimal solution for black-box problems, our approach
instead of solely seeking the direct solution, strategically leverages DFO algorithms to iteratively reduce the error in the surrogate
model compared to the original model. By prioritizing the reduction of error rather than obtaining the direct solution at each step,
our adaptive sampling procedure enhances the efficiency and accuracy of the optimization process. This distinctive algorithmic shift
allows us to continuously improve the surrogate model’s predictive capabilities, leading to more informed decisions on where to
sample next.

In this paper, we focus on improving DFO algorithms through an adaptive sampling procedure, specifically utilizing the
SNOBFIT [13] algorithm. This procedure incorporates elements of both deterministic and stochastic methodologies. However, the
overall approach adopts a heuristic framework due to the inherent randomness introduced by the initial sampling techniques. Our
proposed methodology is applicable to any DFO algorithm that relies on function evaluations to optimize black-box problems and can
utilize existing function evaluations, i.e., it includes warm start capabilities. Specifically, we investigate the integration of surrogate
modeling into SNOBFIT to enhance its efficiency and accuracy in solving black-box problems. Our study is conducted on a set of
continuous bound-constrained problems from MINLPLib library [14], providing a comprehensive evaluation of the proposed adaptive
sampling technique. The decision to use SNOBFIT as the base for our adaptive sampling approach is justified by its well-established
reputation for handling expensive black-box functions efficiently. Through our analysis and experimentation, we aim to contribute to
the advancement of efficient strategies for addressing DFO challenges in complex real-world scenarios. Additionally, our objective
is to explore the synergies between classical optimization techniques and surrogate models, leveraging their combined potential
to push the boundaries of optimization performance. We employ DFO solvers to enhance the surrogate models, leveraging these
improved models to approximate the original function and subsequently identify the optimal solution.

The remainder of the paper is organized as follows. Related work on DFO, surrogate modeling, and adaptive sampling
techniques is presented in Section 2. In Section 3, we describe the methodology employed in this study, including the integration
of SNOBFIT with surrogate modeling and the adaptive sampling procedure. Section 4 provides insights of the execution of the
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ADASNOBFIT algorithm on two illustrative examples, while Section 5 presents the computational experiments conducted to evaluate
the performance of the proposed approach. We provide details on the experimental setup, performance metrics, and analyze the
results obtained from the experiments. Finally, in Section 6, we present the conclusions drawn from our findings and discuss the
implications of the adaptive sampling technique for improving DFO algorithms.

2. Related work

Black box optimization is a significant challenge that requires the application of adequate techniques. One of the methods used
to solve such problems is DFO algorithms. DFO algorithms are widespread techniques that are used when gradients or internal
structures of black box functions remain obscure. They are necessary for solving optimization problems related to complex, non-
differentiable, or computationally expensive functions. DFO algorithms are split into two main categories local and global search
algorithms [2,15]. The category of local search methods is further divided into two categories, the direct strategies and the model-
based strategies. The direct strategies involve directly probing the function’s values in the search space, typically through methods
like pattern or mesh-based search [16-18]. Unlike direct strategies, model-based strategies construct a mathematical model of the
objective function and make decisions based on this model [19,20]. The second category is the category of global search methods
which is further divided into three categories, the deterministic global search algorithms, the global model-based search algorithms,
and stochastic global search algorithms. The deterministic algorithms systematically explore the search space in order to locate the
global optimum [21-23]. On the other hand, model-based algorithms, like in the category of local search methods, employ surrogate
models or response surface models to approximate the objective function [24-26]. Finally, stochastic algorithms utilize probabilistic
techniques such as random sampling, evolutionary algorithms, or simulated annealing to explore the search space [27-29].

There exist various DFO solvers, most of them can only handle continuous variables (for a comparison of continuous DFO
solvers see [2]), while some others can also handle integer and categorical variables (for a comparison of mixed-integer DFO solvers
see [30]). These solvers have been applied to a wide range of complex black-box optimization problems, like software tuning [31,32],
groundwater supply and hydraulic capture community problems [33], optimizing the circuitry configuration of heat exchangers [34],
oil production optimization problems [35], and chemical product design [36].

Surrogate techniques represent a valuable approach for solving black-box optimization problems, especially when dealing with
intricate or computationally demanding objective functions. Surrogate modeling methods such as Bayesian optimization have a well-
established track record of efficiently optimizing expensive black-box objective functions [37]. These methods involve constructing
simplified models that approximate the behavior of the black-box function. Previous works have used a wide range of such methods,
like Polynomial Regression [38], Kriging [39], Response Surface Methodology [40], Gaussian Process Regression [41], Support
Vector Machines [42], Radial Basis Functions [43], and others. In these techniques, models are trained using a limited number
of function evaluations. Once constructed, they are used instead of the original function, enabling faster and more cost-effective
evaluations. In addition to the classical techniques in the construction of these models, there are also works that apply artificial neural
networks [44,45]. Furthermore, several surrogate techniques find application in constrained black-box optimization problems [46].
These techniques are combined with sampling techniques to produce new points based on the surrogate model. In addition, surrogate
techniques are combined with DFO algorithms and especially with global optimization techniques, called surrogate-base global
optimization, which use predictive models to search the search space, resulting in a marked reduction in the need for function
evaluations [47].

In the realm of solving black box optimization problems, an approach highlighted in the literature, and one that we explore in
this paper, involves the integration of DFO methods with surrogate techniques. This combination aims at achieving better results
with better execution times over conventional DFO algorithms. In addition to the straightforward integration of DFO algorithms
with surrogate models, noteworthy advancements have been achieved through the implementation of adaptive sampling procedures.
These processes play a pivotal role in the enhancement and reconstruction of surrogate models, leading to substantial improvements
in performance and accuracy. Zhaiand and Boukouvala [7] proposed a data-driven branch and bound algorithm that uses machine
learning models to obtain lower bounds for black-box optimization problems. While they do not employ any DFO algorithms
themselves, they use an adaptive sampling process. The key idea is to bound approximate surrogate models using statistical metrics,
leading to consistent convergence to the same optimum despite different initialization and training procedures. Wang et al. [48]
presented a new hull form optimization system based on a Gaussian process regression algorithm and an adaptive sampling strategy.
The system is designed to efficiently search the design space for optimal solutions and is shown to be highly efficient in solving
single-objective optimization problems. The proposed system offers a promising alternative to traditional simulation-based design
methods and has the potential to significantly reduce the time and cost required for hull form optimization.

Cozad et al. [49] proposed a methodology for building accurate and simple surrogate models using a small number of simulations
or experiments, which involves building a low-complexity surrogate model and improving it systematically through the use of DFO
solvers. Garud et al. [50] presented a surrogate-based black-box optimization framework that uses domain exploration and adaptive
sample placement to efficiently find global minimums in complex, compute-intensive models. The framework employs a two-stage
approach that balances global exploration and local exploitation to escape local traps and progress towards a global optimum. Bajaj
et al. [51] presented a trust region-based two-phase algorithm for constrained black-box and grey-box optimization with infeasible
initial points. The algorithm involves finding a feasible point and then improving the objective in the feasible region using an
optimization-based sampling strategy that can handle hard constraints effectively.

Most existing works on adaptive sampling processes coupled with DFO algorithms target to solve directly the original objective
function. In this paper, we argue that it is preferable, at least for large and complex models, to use the error maximization method
for guiding the search process into regions where the generated surrogate model is not close to the actual model. Thus, we aim to
create a more representative surrogate model and then use traditional derivative-based techniques to find its optima.
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Fig. 1. Adaptive sampling procedure.

3. Methodology

In Fig. 1, we present a heuristic methodology, the proposed adaptive sampling surrogate-based procedure. Initially, the original
function is displayed and 100 initial points are produced. Then the surrogate model is generated and a derivative-based optimization
(DBO) solver is called to find the minima of the model. Finally, a DFO solver generates the next points using an error maximization
technique, and the new points are fed back into the training dataset to generate an improved surrogate model again until the
termination criteria are met and we have the final output of the model, aiming to have a surrogate model that will be close to the
original function; then, we can use traditional DBO techniques to find the optima.

In order to comprehensively address the optimization process for black-box optimization problems, we have structured an
adaptive sampling procedure into four distinct steps, each playing a crucial role in achieving efficient and accurate results. The initial
step of our method is the production of the initial points, which marks the beginning of the optimization process. The approach that
we use is to employ Latin Hypercube sampling to select a set of starting points within the bounds of the search space. Latin Hypercube
sampling facilitates a more systematic exploration of the parameter space, ensuring diversity while minimizing the risk of converging
to local optima. By sampling the search space, the algorithm can explore different regions and gain an initial understanding of the
landscape of the black-box optimization problem.

The second step of the ADASNOBFIT focuses on the construction of the surrogate model, which plays a pivotal role in the
proposed methodology. Given the challenges posed by the lack of direct observations or expensive evaluations of the black-box
function, it becomes crucial to develop a surrogate model that can accurately approximate its behavior. The surrogate model is
iteratively improved and serves as a proxy for the actual function. We evaluated the surrogate model’s accuracy using the R-squared
score. By constructing a surrogate model, we can invoke local and global DBO solvers to pinpoint positions where the local and global
minima are anticipated in the predicted function, and potentially, in the actual function. Furthermore, the surrogate model provides
valuable assistance to the DFO algorithm in discovering new data points. This is achieved by employing an error maximization
strategy, which relies on the surrogate model to guide the search process.

To build the surrogate model, we leverage the information obtained from the previously evaluated points. The initial surrogate
model originates from the 100 initial points from the Latin Hypercube method, thus displaying a comparatively suboptimal
performance during its initial phases, while subsequent data points are generated through the DFO solver. These points serve as a
training set, forming the basis for training the surrogate model to predict the behavior of the black-box function. By utilizing all the
available data, we can capture the relationships and patterns present in the function, enabling accurate predictions of its behavior
at unexplored points. In our approach, we employ Automated Learning of Algebraic Models (ALAMO) [52] optimization tool which
implements a Lasso regularization technique for constructing the surrogate model. ALAMO is a versatile optimization tool specifically
designed for constructing surrogate models in complex engineering systems. It offers an efficient and robust framework for building
surrogate models using various regression techniques, including Lasso regularization. Lasso regularization is a powerful method that
combines feature selection and regularization, allowing us to create a model that captures the essential characteristics of the black-
box function. By selecting relevant features and penalizing excessive complexity, the Lasso regularization technique helps to create
a concise and interpretable surrogate model. Additionally, we use ALAMO with a variety of basis functions for model construction,
including linear functions, exponential functions, sine and cosine functions, logarithmic functions, and monomial terms with powers
up to 5. We also use multiplicative interactions between variables with a power of 1.

Once the surrogate model is established, the third step of our method entails DBO techniques. In this phase, DBO techniques
search for the optimal solution of the surrogate model. These techniques leverage derivative information provided by the surrogate
model to guide the search towards regions of the search space with the most promising solutions. They identify both local and global
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optimal solutions from the surrogate model and subsequently assess these points within the original function. In cases where the
surrogate model closely approximates the original function or the surrogate model approximates the minima of the original function,
the DBO solvers successfully pinpoint the optimal solution. However, if there is a substantial deviation between the surrogate model
and the original function, these points are employed as additional data points to augment the search process for warm starting the
DFO algorithms in the next step. DBO methods offer a powerful approach to efficiently explore the search space and converge
towards optimal solutions. These methods utilize the gradient or higher-order derivative information from the surrogate model to
guide the search direction and step size.

To ensure a thorough exploration of the search space, the surrogate model can be optimized both locally and globally. Local
optimization solvers focus on refining the surrogate model within a local region, aiming to find the best possible solution within
that specific area. Global optimization solvers, on the other hand, explore the entire search space to identify the global solution and
a diverse set of local solutions. By combining local and global derivative-based optimization strategies, our approach enables the
discovery of both optimal and sub-optimal solutions, offering a thorough exploration of the search space. In our implementation, we
utilize the Branch-And-Reduce Optimization Navigator (BARON) [53] optimization solver for global optimization and the IPOPT [54]
optimization solver for local optimization. BARON is a powerful optimization solver that employs global optimization algorithms to
find the global solution efficiently. By leveraging sophisticated techniques such as branch-and-reduce, BARON efficiently explores
the entire search space and identifies globally optimal solutions. On the other hand, IPOPT is a popular optimization solver that
specializes in local optimization. It employs interior-point methods to refine the surrogate model within local regions, enabling the
identification of high-quality local solutions.

Finally, the last step of the ADASNOBFIT is to incorporate the adaptive sampling process, which operates on two levels: DFO
and a technique used to guide the search. DFO enables the algorithm to explore the search space without relying on derivative
information. Within the DFO level, our framework employs the error maximization sampling strategy. The original DFO solvers aim
to minimize the objective function. In this methodology, instead of minimizing the objective function, we try to find points that
maximize the error of the surrogate model with the original function through the error maximization sampling strategy. This strategy
aims to maximize the discrepancy between the actual value of the problem and the predicted value provided by the surrogate model.
By formulating this discrepancy as a square difference divided by the actual value, the algorithm can prioritize the exploration of
regions where the surrogate model has the highest uncertainty or exhibits the largest deviations from the true function behavior.
Instead of merely directing the DFO to find the optimal point, we guide it towards identifying an improved surrogate model. This
approach essentially leads to discovering the optimal point of the original function. This adaptive sampling approach allows for
efficient and targeted exploration of the search space, enabling the algorithm to focus on promising regions and allocate resources
accordingly. In Eq. (2) we present the error maximization strategy:

A~ 2
max <M> @
x y(x)

where:

+ y(x) represents the actual solution of the black-box problem
5 (x) represents the surrogate model’s solution

As new data points are sampled using the error maximization strategy, they are added to the training set, which forms the basis
for building new surrogate models. Through an iterative process, the surrogate models are continuously refined, benefiting from the
newly acquired data and enhancing their accuracy and predictive capabilities. This adaptive sampling procedure creates a feedback
loop where the optimization algorithm iteratively improves its understanding of the black-box problem and refines its search for
optimal solutions.

To implement the DFO level, our procedure utilizes SNOBFIT v2.1 [13] as the algorithmic solver. SNOBFIT is a powerful
DFO algorithm that is well-suited for black-box problems. It offers several advantages, such as the ability to handle constraints
and efficient exploration of the search space. Additionally, SNOBFIT provides the capability for warm-start optimization, allowing
the algorithm to incorporate previously evaluated points as input. This warm-start feature significantly enhances the efficiency
of the optimization process, as the algorithm can leverage the knowledge gained from prior evaluations and expedite the search
for improved solutions. During each iteration of the adaptive sampling process, we construct an enhanced surrogate model. This
improved model, in combination with all previously evaluated data points, guides SNOBFIT to suggest new data points while
considering the information from prior evaluations. It is important to note that only a few solvers have the capability to utilize
already evaluated points as input, making SNOBFIT our choice for the adaptive sampling process.

In Fig. 2 we present a schematic representation of the ADASNOBFIT algorithm. For each step of the method, we present the
points produced and the stage at which each surrogate model is created until the final condition (1 ;,,)-

The 100 initial points from the Latin Hypercube sampling method serve as the starting point for constructing a surrogate model
using ALAMO. To find both local and global minima of this surrogate model, we employ two solvers: the global solver BARON and
the local solver IPOPT. We evaluate the two points in the original function and add them to the total data set with the points.

Moreover, SNOBFIT is called, taking into account all the previously evaluated points, and it suggests the next n;,,, new points.
The algorithm does not generate the points based on the minimization of the original function. Instead, the generation of these new
points by SNOBFIT is guided by the error maximization strategy, which aims to maximize the discrepancy between the actual value
of the problem and the predicted value provided by the surrogate model. These newly generated points are then used to construct
a new surrogate model until the limit of n,,, points is reached.
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Fig. 2. Representation of the ADASNOBFIT algorithm.

The adaptive sampling procedure involves repeated calls to SNOBFIT, allowing for the creation of new and improved surrogate
models. The iterative nature of this process helps in continuously refining the surrogate model with the objective of finding the
minimum of the function. By leveraging this adaptive sampling technique, our algorithm intelligently explores the search space,
concentrating its efforts on regions with higher uncertainty in the surrogate model. This strategy enables more efficient and
accurate optimization results, showcasing the superiority of our approach compared to the standard SNOBFIT algorithm for solving
challenging black-box optimization problems.

4. Illustrative examples

In this section, we present two illustrative examples, aiming at providing a better understanding of the search strategies employed
by the ADASNOBFIT and SNOBFIT. In both cases, we set a limit of a maximum of 2500 function evaluations. Our first example is
based on the trigx problem from the MINLPLib [14] library, which features two continuous variables. We imposed a lower bound of
—1,000 and an upper bound of 1000 to the free variables. The formulation of this bound-constrained problem is as follows in Eq. (3):

min x% -x
X
st —1000 < x; < 1000
—1000 < x, < 1000

x€R, xR

3

Figs. 3 and Fig. 4 illustrate the search strategy of the ADASNOBFIT and SNOBFIT, respectively, on the problem trigx. Both solvers
successfully located the global optimum. In the two heatmaps, blue and green hues represent high and low objective function values,
respectively. The global minimum is located at [0, 0] and is marked with a red circle. Both solvers start with the same starting point,
which is located at [554, 339] and is marked with a yellow circle. Moreover, the points evaluated by each solver are marked with
white crosses. From the two figures, we observe that SNOBFIT generates points, particularly around the optimal point, limiting its
search space near the optimal solution. Both ADASNOBFIT and SNOBFIT commence with an initial exploration of the search space.
However, as iterations progress, SNOBFIT increasingly narrows its focus towards the vicinity of the optimal solution. In contrast,
the ADASNOBFIT seeks to find a balance by exploring various points, including those outside the directly correlated region of the
optimal solution. Our proposed methodology appears to offer extended coverage of the examined area. It concentrates near the
optimal solution while also exploring other regions where local minima have been identified. This approach proves particularly
valuable in dealing with more complex problems with multiple variables, preventing it from becoming stuck in local minima and
ensuring a comprehensive exploration of the entire search space.

The second example is based on the pooling epa3 problem from MINLPLib [14] library. It is a multidimensional problem with
100 continuous variables. Fig. 5 provides insights into the progression of the gap between each iteration’s outcome and the true
solution for both ADASNOBFIT and SNOBFIT algorithms. We define the gap as the percentage by which the best solution found
deviates from the known optimal solution. In the initial 100 iterations, SNOBFIT and our proposed methodology exhibit nearly
identical performance. However, from the 100th to approximately the 400th iteration, SNOBFIT displays improvements, while our
proposed approach does not find better solutions. Beyond the 400th iteration, as the surrogate model for our methodology refines,
we observe a continuous reduction in the gap, eventually converging to the optimal solution around the 900th iteration. Conversely,
SNOBFIT achieves a slower reduction in the gap, but without reaching the exact solution throughout the entire optimization process.

5. Experimental study

The experiments were performed on a server with an Intel Xeon CPU E5-2660 v3 (2 CPUs - 10 cores each; single-threaded) with
128 GB of main memory, a clock of 2.6 GHz, an L1 code cache of 32 KB per core, an L1 data cache of 32 KB per core, or L2 cache
of 256 KB per core, and an L3 cache of 24 MB, running under Ubuntu 20.04.3 LTS 64-bit.

In this study, we conducted our experiments using a diverse set of 776 optimization problems from the MINLPLib [14] library.
This library is renowned for housing some of the most challenging mathematical problems, making it an ideal choice to evaluate
the efficacy of our proposed adaptive sampling technique. We specifically focused on continuous problems from the library, limiting
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them to a maximum of 500 variables to ensure tractability and efficiency in our analysis. In case of free variables, we imposed a lower
bound of —1,000 and an upper bound of 1000. To ensure compatibility with the proposed method, we modified the optimization
models associated with these problems, converting them into bounded problems without constraints. We also removed from the
problem the variables that appeared only in the constraints and not the objective function. This preprocessing step allowed us to
effectively apply the adaptive sampling technique while maintaining the essence and complexity of the original problems.

To comprehensively evaluate the performance of the ADASNOBFIT, we compare it with the utilization of the SNOBFIT algorithm
alone. To achieve this, we have implemented two different approaches for solving the optimization problems: SNOBFIT and our
proposed method with the adaptive sampling procedure. To mitigate the impact of randomness, we conducted five repetitions of
the experiments for both ADASNOBFIT and SNOBFIT algorithms. The results presented below are the average values of the five
runs. In addition, we applied a common termination criterion of 2500 iterations for each problem (i.e., n;,,, = 2,500), ensuring
that both algorithms had an equal opportunity to explore the optimization landscape.

In the proposed method, SNOBFIT is involved, but other steps are also included in the procedure as presented in Section 3. Our
method begins by utilizing 100 initial points from the Latin Hypercube sampling method for each problem. Then, SNOBFIT is used
for the next 100 function evaluation (i.e., n;,, = 100). This configuration was identified as the best-performing one after extensive
experimentation involving different numbers of »,,, (50, 100, 200, and 300).

The reported results are presented as the mean values obtained from the five runs. This rigorous experimental design allowed
us to obtain robust and statistically significant findings, showcasing the effectiveness and consistency of our adaptive sampling
approach as compared to the standalone SNOBFIT algorithm.

A problem was considered successfully solved if the objective function value was within 1% or 0.01 of the global optimum
solution. Among the total of 776 problems, our algorithm obtained the optimal solution in 722 cases, outperforming the standard
SNOBFIT algorithm, which achieved optimal solutions in 691 instances. Furthermore, our algorithm achieved superior results in
78 problems, finding solutions that were smaller and also significantly closer to the true optimal solutions compared to SNOBFIT.
In most of these cases, SNOBFIT managed to find optimal solutions based on the defined limit, with 31 exceptions where our
approach outperformed it. Moreover, among the 691 optimal solutions yielded by the SNOBFIT algorithm, ADASNOBFIT successfully
identified 678, exhibiting a disparity in only 13 instances. Conversely, out of the 722 optimal solutions generated by ADASNOBFIT,
SNOBFIT identified 678, demonstrating a discrepancy in 44 instances. Furthermore, a total of 41 problems remained unsolved by
both algorithms.

In addition to the final optimal solutions achieved for the problems, the progressive attainment of these results also holds a
significant interest. In Fig. 6 we present the average gap for all problems solved as the number of function evaluations gradually
reaches the value of 2500. Even in the initial iterations, where the surrogate model may be less accurate due to limited data points,
we observe that our method follows a similar course to SNOBFIT, albeit slightly outperforming it. The only instance where SNOBFIT
exhibits better performance is during the generation of the 80th to 100th points, just before the end of the initial sampling method.
However, once the first 100 points are used for constructing a new surrogate model with ALAMO, and then use BARON and IPOPT to
locate local and global optima, our algorithm swiftly regains the lead. From that point onwards, our algorithm consistently maintains
its advantage, and even after 2500 iterations, SNOBFIT fails to surpass it. This consistent superiority of our algorithm demonstrates
the efficacy of the adaptive sampling procedure and its ability to continuously improve the surrogate model, leading to better results
compared to the conventional SNOBFIT approach.

In Fig. 7, we present the percentage of problems solved as the number of function evaluations incrementally approaches the
threshold of 2500. Notably, our proposed methodology exhibits superior efficacy compared to SNOBFIT, achieving a problem-solving



E. Karantoumanis and N. Ploskas Results in Control and Optimization 16 (2024) 100460

80

60

40

Percentage of problems solved

20
—— ADASNOBFIT
~—— SNOBFIT
0 -
0 500 1000 1500 2000 2500
Function evaluations
Fig. 7. Percentage of problems solved.
—— ADASNOBFIT

8004 —— SNOBFIT
—~ 600 A
o
@
2
]
E
=1
< 400 A
o
g
<

200 A

0 B

0 5 10 15 20 25
Function evaluations (x100)

Fig. 8. Average execution time.

rate of 93%, whereas SNOBFIT attains 89% success. It is worth highlighting that the algorithm experiences substantial enhancement
during the initial 500 function evaluations of the optimization process, followed by a diminished rate of progress.

In addition to addressing performance improvements, we need to consider the issue of execution time in our analysis. The
ADASNOBFIT utilizes SNOBFIT for multiple iterations, and for each of these iterations, it is necessary to construct a surrogate
model, leading to worse execution times. In Fig. 8, we present the average time required to solve problems both for SNOBFIT and
our algorithm. After 2500 function evaluations, the proposed methodology exhibits an average execution time of 855 s, in contrast
to SNOBFIT’s average time of 458 s. Within the initial 500 function evaluations, the average time for the proposed methodology
has a smaller deviation than that of SNOBFIT. This similarity arises because the surrogate models, in their simpler form, are created
and resolved more rapidly. Any subsequent increase in time is primarily attributable to the overhead incurred by invoking ALAMO,
BARON, and IPOPT.

Based on the insights drawn from the preceding figures, it becomes evident that after approximately 500 function evaluations,
ADASNOBFIT has effectively solved a significant portion of the problems, all while maintaining competitive time performance.
Consequently, we conducted a follow-up experiment, this time introducing an additional termination criterion to our proposed
methodology. This new criterion dictates that once the adaptive sampling process has run five times, generating 500 new data
points, and there is no enhancement in the objective value, the process is terminated. This way, not all problems need to reach the
2500 function evaluations criterion.

Table 1 displays the total number of optimal solutions and the average time required for three scenarios: ADASNOBFIT,
ADASNOBFIT incorporating the termination criterion mentioned above, and SNOBFIT. The results reveal that when the termination
criterion is applied, ADASNOBFIT achieves 718 optimal solutions, which is only four solutions less than ADASNOBFIT without the
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Table 1
Optimal solutions and execution time.
Optimal solutions Average time
ADASNOBFIT 722 855
ADASNOBFIT with termination criterion 718 595
SNOBFIT 691 458
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Fig. 9. Average gap for small problems.

termination criterion. In terms of execution time, we observe a substantial improvement compared to the basic ADASNOBFIT. The
proposed methodology achieves an average time of 593 s, which is 260 s faster than the baseline method and 137 s longer than
SNOBFIT. Given this notable time improvement with only a minor loss of four optimal solutions, it can be concluded that the
most effective approach, balancing time and problem-solving capability, is to employ the termination criterion within the proposed
methodology.

Next, we showcase graphical representations of the average gap, average execution time, and percentage of problems solved
across three distinct problem categories. We have categorized the problems based on their complexity, classifying them as small if
they involve one to ten variables, medium if they involve 11 to 50 variables, and large if they involve 51 to 500 variables. Out of a
total of 776 problems, 415 are small. Among these, SNOBFIT solved 412 problems, while ADASNOBFIT solved 405 problems. Figs. 9
and 10 depict the average gap and the percentage of solved problems for these problems. While our method closely approaches
SNOBFIT in both metrics, it falls slightly short. Additionally, in Fig. 11, we observe that SNOBFIT outperforms our method in terms
of execution time for small problems, mainly due to the computational overhead of our method when calling ALAMO, IPOPT, and
BARON.

Moving on to the medium-sized problems (210 out of 776), SNOBFIT solved 193 problems, while our method solved 203
problems. Figs. 12 and 13 show that ADASNOBFIT excels in terms of both the average gap and the percentage of solved problems for
medium problems. Interestingly, approximately 40% of the problems are solved in the first iterations since some of these problems
have a trivial global solution at the origin of the axes. In terms of execution time (Fig. 14), SNOBFIT remains faster than our method
for medium-sized problems.

Lastly, 151 out of 776 problems are large problems. SNOBFIT solved 86 problems, whereas our approach solved 114 problems.
Figs. 15 and 16 demonstrate that our method consistently outperforms SNOBFIT in terms of both the average gap and the percentage
of solved problems for large problems. Notably, a significant percentage of the problems are solved by our method in the first
iterations, while SNOBFIT requires about 500 iterations to reach the same percentage of solved problems. Execution time, as depicted
in Fig. 17, shows that our method is on par with or only slightly slower than SNOBFIT for these complex problems, indicating that
the time required for ALAMO, BARON, and IPOPT calls becomes less significant as the problem complexity increases.

Table 2 provides a summary, organized by problem category, showcasing the number of variables involved, the number of
problems, as well as the number of optimal solutions achieved using both SNOBFIT and ADASNOBFIT.

Table 3 provides a summary, of average times for all categories without the termination criterion. As the function evaluations
remain constant across all problem categories in 2500, we observe that the time complexity for both ADASNOBFIT and SNOBFIT
increases with the dimensionality. We also examined the performance of our method using the termination criterion mentioned
above. The outcome revealed a noteworthy reduction of the average time, decreasing from 1945 s (our method without the
termination criterion) to 1342 s (our method with the termination criterion). This means that ADASNOBFIT outperforms SNOBFIT
by 31% in terms of execution time.
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Table 2
SNOBFIT and ADASNOBFIT optimal solutions by category.
Category Variables Problems SNOBFIT ADASNOBFIT
optimal optimal
Small 1-10 415 412 405
Medium 11-50 210 193 203
Large 51-500 151 86 114
Table 3
SNOBFIT and ADASNOBFIT average time by category.
Category SNOBFIT ADASNOBFIT
All 458 855
Small 94 533
Medium 173 703
Large 1852 1945
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6. Conclusions

In this paper, we have introduced a method to elevate the efficiency of DFO algorithms through the integration of an adaptive
sampling process. Our proposed methodology is designed to surmount the constraints typically associated with conventional
derivative-free methods by utilizing surrogate models and an error maximization strategy to guide the search towards promising
areas within the search space. The constructed surrogate models exhibit high accuracy and are capable of replacing the first principles
model in the optimization problem without significant loss of information of the objective function.

We conducted a comprehensive evaluation of the proposed adaptive sampling method in conjunction with SNOBFIT across a
diverse set of 776 continuous problems. The results demonstrated that ADASNOBFIT is effective and robust, offering a significant
improvement over traditional derivative-free methods. ADASNOBFIT solves 723 problems in contrast to SNOBFIT which solves
698 problems. Additionally, when an early termination criterion is applied, the proposed methodology solves 718 problems
with a substantial improvement in terms of time. Another significant observation is the advantage of our proposed methodology
over SNOBFIT in the context of problems with 51 to 500 variables. This enhancement is evident through a 19% increase in
problem-solving efficiency and a 31% reduction in execution time when applying the termination criterion.

ADASNOBFIT has potential applications in various fields such as engineering, finance, and machine learning. We anticipate
that this methodology can be applied to other black-box systems, offering numerous benefits and improvements for time-sensitive
applications and integrated optimization environments where the use of complex or rigorous models may not be suitable. In future,
we plan to extend this methodology to solve mixed-integer black-box optimization problems, utilizing more DFO solvers that can
be warm-started by existing function evaluations.
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