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Optimizing concentrated solar power plants using adaptive
sampling-based derivative-free algorithms

EMMANOUIL KARANTOUMANIS and NIKOLAOS PLOSKAS, University ofWestern Macedonia,
Greece

The optimization of complex real-world systems often presents a challenge when explicit derivatives of the
objective function are unavailable. In this paper, we address a real-world black-box optimization problem
arising from the design and operation of Concentrated Solar Power (CSP) systems. CSP systems present a
unique challenge due to their nonlinear, multi-modal nature, which complicates optimization using traditional
gradient-based methods. Derivative-free optimization (DFO) techniques are well-suited to tackle such black-
box problems, but even these methods can become impractical when the number of function evaluations
required is too large since the evaluation can be expensive. To overcome this limitation, we utilize an adaptive
sampling DFO approach that requires a smaller number of function evaluations by intelligently selecting
informative points based on surrogate models. The surrogate models are then optimized using derivative-based
optimization algorithms to find new sampling points that may be (near-) optimal. We apply this methodology
to optimize a CSP problem from the SOLAR benchmark tool, specifically focusing on minimizing the cost of
thermal storage, and the total investment cost. The results demonstrate that our adaptive sampling method,
ADASNOBFIT, outperforms the well-known SNOBFIT algorithm in terms of solution quality.

CCS Concepts: •Mathematics of computing→ Continuous optimization; • Computing methodologies
→ Continuous simulation; • Applied computing→ Decision analysis.

Additional Key Words and Phrases: Black-box optimization, Derivative-free optimization, Surrogate modeling,
Adaptive sampling, Concentrated solar power
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1 Introduction
In real-world optimization problems, it is often the case that the underlying function to be op-
timized is not explicitly known or analytically tractable [21]. These problems are referred to as
"black-box" problems because the internal workings of the system remain hidden, and only input-
output relations can be observed. Black-box optimization (BBO) is particularly challenging because
traditional optimization methods, such as gradient-based algorithms, rely on explicit derivatives
of the objective function, which are not available in black-box scenarios. Instead, derivative-free
optimization (DFO) techniques must be employed, relying solely on function evaluations to guide
the search for optimal solutions.
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2 Karantoumanis & Ploskas

Black-box issues occur in many real-world applications where intricate biological processes,
simulations, or physics dictate the system being improved. These issues could include noise,
large processing costs, or measurement uncertainties, which would make optimization even more
difficult. Examples of black-box problems include tuning machine learning models [8, 25], software
tuning [15, 23], and calibrating scientific simulations [7, 20].

To further improve the performance of DFO algorithms, surrogate models are often utilized [19,
28]. In such algorithms, a surrogate model is designed to mimic the objective function based on the
previous function evaluations. In case the simulations are expensive, the surrogate model can be
used to explore the search space. In order to sample the search space, adaptive sampling techniques
are being used to guide the search for new promising points.
One particularly relevant and challenging black-box optimization problem is found in the field

of renewable energy, specifically in Concentrated Solar Power (CSP) systems [5, 6, 18, 24, 27]. CSP
traps and changes energy emitted from sunlight into thermal energy using mirrors or lenses to
concentrate sunlight onto a receiver. From the receiver, thermal energy warms a fluid that uses
steam turbines or a different type of heat engine to generate energy. One of its greatest advantages
is the ability to store the thermal energy in molten salts within the CSP system. It allows continuous
power production by these systems even after sunset or on cloudy days. Additional benefits of
this capability include increasing dispatchability in the system to be a stable and reliable source
of power to supply load variation, as well as stability in a grid. CSP can also be hybridized to
other energy sources, such as the natural gas or biomass-based systems, to improve flexibility and
efficiency. This versatility makes CSP important in the transition to renewable energy and the
decarbonization of electricity grids.

However, because of the intricate nature of their components and interconnections, CSP systems
provide challenging black-box issues for both design and operational optimization [3, 17]. The design
and arrangement of solar collectors, the effectiveness of heat transfer systems, the capacity and
control of thermal storage, and the power cycle’s overall efficiency are just a few of the interrelated
elements that affect a CSP system’s performance. System performance is further complicated by
environmental factors as wind speed, ambient temperature, and sun irradiation. These factors are
typically modeled through detailed physics-based or empirical simulations that do not provide
explicit gradient information, which presents a significant challenge for optimization. As a result,
traditional gradient-based optimization methods struggle with the inherent non-linearities, noise,
and uncertainties of these simulations, particularly due to the lack of differentiable models. CSP
systems often exhibit discontinuities in their performance landscape, such as phase changes in heat
transfer fluids or varying efficiency thresholds in power cycles, making gradient-based methods
unsuitable for robust optimization.

Given these complexities, DFO methods are highly suitable for addressing these challenges. DFO
techniques, which do not rely on gradient information, can explore the design space efficiently
even when the performance function is noisy, discontinuous, or involves high-dimensional vari-
ables. These methods are particularly effective in scenarios where evaluations are expensive or
when model fidelity makes computation prohibitive, allowing for a more flexible and adaptive
approach to optimizing CSP systems. By leveraging DFO, it becomes possible to identify (near-)
optimal configurations and operational strategies that maximize energy output, efficiency, and
cost-effectiveness, while accounting for the uncertainty and variability inherent in CSP operations.

Even conventional DFO approaches frequently need a significant number of function evaluations
to converge to a satisfactory solution, even though they are appropriate for black-box problems.
When each function evaluation is computationally costly, as is the case in many real-world appli-
cations, such as CSP system simulations, this is especially problematic. These methods’ practical
utility is limited by their high computing cost, particularly in situations where time or resources
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are limited. In order to overcome this difficulty, we employ a DFO algorithm with warm start
points and an adaptive sampling technique. By carefully choosing the most instructive locations
for evaluation and using surrogate models to approximate the target function, this method seeks
to reduce the number of function evaluations. By refining the surrogate model iteratively based
on new data, the algorithm can guide the search toward promising regions of the solution space,
achieving high-quality results in a significantly smaller number of iterations.

In this paper, we present the results of utilizing an adaptive sampling DFO algorithm to optimize
a CSP system. The problem is approached as a black-box one, and our goal is to demonstrate the
effectiveness of the adaptive sampling DFO algorithm compared to a classic DFO algorithm in
finding near-optimal solutions for a highly nonlinear, multi-modal CSP problem while minimizing
the number of expensive function evaluations.

The remainder of the paper is organized as follows. An overview of the related work is presented
in Section 2. In Section 3, we describe the methodology employed in this study. Section 4 provides
the obtained results and insights. Finally, conclusions are provided in Section 5.

2 Related work
In many domains, optimization is essential, especially when it comes to managing intricate systems
with functional boundaries and constraints. It can be difficult to simulate production processes
effectively in many industrial applications. Consequently, there is an increasing demand for BBO
algorithms that can solve real-world issues without the requirement for exact production models.

Due to its many difficulties, CSP systems are well suited for black-box optimization, particularly
when costly function evaluations are required. Complex characteristics like as receiver design,
heat storage configurations, and heliostat field patterns must frequently be optimized for these
systems. With the help of thermal energy storage devices, CSP technology uses mirrors or lenses to
focus sunlight, producing heat that is then transformed into electricity. These plants must manage
variables such as energy storage, solar field operation, and turbine performance under varying solar
radiation conditions. Because performance evaluation of every design is computationally expensive
since detailed simulations must be run for different environmental and operational conditions,
nonlinear interactions between the design variables and performance metrics combined with the
high cost of the simulations make the CSP optimization problems hard to solve with traditional
methods. This has motivated the use of black-box approaches. Other works have used black-box
optimization algorithms for optimizing CSP plants, which will be reviewed in this section.
A local search technique called rqlif was created by Manno et al. [17] to optimize expensive

black-box issues, with a special emphasis on the start-up stage of CSP plants. To improve solution
efficiency, this derivative-free optimization approach uses linear implicit filtering and a regularized
quadratic model. The numerical experiments conducted by the experimenters revealed that rqlif
was successful in solving 76.63

Hamilton et al. [9] developed a methodology for optimizing the design of CSP and photovoltaic
(PV) hybrid systems using NLopt’s DFO algorithms [12]. Their approach evaluates the financial
feasibility and performance of these systems under various time-of-delivery pricing structures. The
study found that the optimized designs could improve the base case power purchase agreement
price by 15% to 21% while achieving capacity factors between 50% and 62%. These results highlight
the potential for enhanced efficiency and cost-effectiveness in renewable energy solutions.

Luo et al. [16] developed a robust optimization framework to handle uncertainties affecting the
design of a molten salt solar power tower plant. The study used a combination of Monte Carlo
simulation for uncertainty propagation and a simulated annealing algorithm to solve the multi-
objective optimization problem. The objectives include minimizing both the expected value and the
standard deviation of the levelized cost of energy. The results reveal a trade-off between minimizing

, Vol. 1, No. 1, Article . Publication date: January 2024.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Karantoumanis & Ploskas

economic cost and reducing risk under uncertainty, with a final optimal solution yielding a 23.09
c/kWh expected levelized cost of energy and 1.25 c/kWh standard deviation, reducing economic risk
by 17.22% compared to the deterministic design. The work also employs Sobol’s global sensitivity
analysis to identify critical parameters like direct solar radiation and heliostat field costs as major
influencers on the model output, which helps guide the optimal design.
Cox et al. [3] utilize formal design-of-experiment sampling designs and a Bayesian optimiza-

tion algorithm for optimizing utility-scale solar plants with energy storage in order to maximize
economic performance. The study combines the National Renewable Energy Laboratory’s (NREL)
System Advisor Model (SAM) [2] for simulating plant operations with a revenue-maximizing
mixed-integer linear program for dispatch optimization. A Bayesian optimization algorithm is used
to design plants with photovoltaics, CSO, and energy storage. Results show improvements of 6–19%
in lifetime benefit-to-cost ratios through optimal system sizing.

The SOLAR tool [1] is designed as a black-box simulator to benchmark optimization algorithms
for CSP systems. It simulates real-world scenarios, creating a set of benchmark problems based on
different operational configurations and constraints of the power plant. These benchmark problems
are designed to test optimization algorithms on both continuous and mixed-integer variables,
challenging them to maximize energy efficiency and minimize operational costs while respecting
physical constraints like temperature limits and material capacities. The benchmark problems
include tasks such as optimizing the turbine’s operational schedule or managing the heat storage
system. Andrés-Thió et al. [1] employed GA, CMA-ES [10], and NOMAD [14] algorithms to find
near-optimal solutions. The results showed that NOMAD effectively navigated the feasible solution
space, often achieving high-quality solutions with fewer function evaluations; however, these
algorithms required thousands of function evaluations.
In our previous work [13], we introduced an adaptive sampling procedure utilizing the SNOB-

FIT [11] algorithm. This approach was evaluated using a comprehensive benchmark consisting of
776 continuous optimization problems, each characterized by bound constraints. Our extensive
testing demonstrated the efficacy of this method, successfully solving 93% of the problems. In this
paper, we apply the adaptive sampling procedure to solve a real-world CSP problem with a few
function evaluations.

3 Methodology
Our approach addresses black-box optimization using an adaptive sampling method, breaking the
process into stages, as shown in Figure 1. As 𝑛 indicates the problem’s dimension, the process
entails producing points and building surrogate models until a termination condition based on the
number of points (𝑛𝑓 𝑖𝑛𝑎𝑙 ) or the 𝑅2 score threshold is satisfied.
The method starts with an initial design of experiments by Latin Hypercube Sampling (LHS)

to generate 2𝑛 points in the search space. LHS provides a diverse and well-scattered set of initial
points. This reduces the possibility of local optima and gives a good overview of the optimization
landscape. Next, we construct a surrogate model to approximate the black-box function, which is
refined iteratively using new points generated by the DFO solver SNOBFIT. This surrogate model
helps search space exploration and guides the optimization to promising areas of minimum points.
For surrogate modeling, we utilize the tool ALAMO [4], which mainly employs methods such
as LASSO regularization while building the model. Moreover, local and global Derivative-based
optimization (DBO) solvers are employed for optimization. The use of BARON [22] guarantees the
investigation of the global minimum while refining the solution with the use of IPOPT [26] as a
local optimizer.

The adaptive sampling procedure employs a DFO approach, allowing exploration of the search
space without relying on derivatives. By integrating an Error Maximization Strategy (EMS) 1, the
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Optimizing concentrated solar power plants using adaptive sampling-based derivative-free algorithms 5

Fig. 1. Adaptive sampling methodology

algorithm targets areas with the largest discrepancies between the surrogate model’s predictions
and the actual outputs, thereby enhancing efficiency and reducing function evaluations. Each
iteration generates new points based on the EMS, refining the surrogate model and establishing a
feedback loop that improves its predictive accuracy. If the surrogate model’s 𝑅2 score drops below
a threshold, indicating inadequate accuracy, the algorithm shifts to directly evaluating the original
black-box function, maximizing the use of the remaining function calls within the budget.

max
𝑥

(
𝑦 (𝑥) − 𝑦 (𝑥)

𝑦 (𝑥)

)2
(1)

where:
• 𝑦 (𝑥) represents the actual output value of the black-box problem
• 𝑦 (𝑥) represents the surrogate model’s output value

4 Experimental results
The SOLAR tool provides 10 benchmark black-box problems for optimization, each designed to chal-
lenge optimization algorithms in various contexts, including both constrained and unconstrained
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Problem Total variables Continuous Integer Fix

3 11 9 2
x1=4.6, x3=71.9, x5=6.2, x7=38.3,
x8=2.3, x9=11.2, x16=275, x18=0.0165,
x19=0.018, x20=0.019

4 17 11 6
x1=6, x3=70, x5=8, x7=45, x8=2.5,
x9=6, x16=520, x18=0.0165, x19=0.018,
x20=0.017, x22=0.0155, x23=0.016

10 5 5 - -
Table 1. Variable analysis

scenarios. Out of these 10 problems, the problem we focus on is the 10th, as it is the only fully
unconstrained problem. Problem 10 specifically deals with minimizing the cost of storage, a critical
factor in optimizing the performance and economic feasibility of renewable energy systems, such
as CSP.

This problem is an adaptation of problem 6, which also focuses on minimizing storage costs but
operates within a constrained environment. While problem 10 does not set explicit limits on the
variables of the problem system, it uses a penalty mechanism to allow violations of the constraints
as an implicit part of the optimization objective. This provides a smoother, more flexible search
space where the optimization process may investigate areas that in conventional constraint-based
formulations would have been considered infeasible but at the cost of higher penalties. Therefore,
the algorithm will explore and exploit effectively by trading off storage cost minimization with
violations in constraints.

To expand the experimental study, we modified two additional SOLAR tool problems, specifically
problems 3 and 4. The objective for problems 3 and 4 is to minimize the total investment cost while
satisfying the demand and respecting a maximum field size. We selected these problems due to their
focus on cost minimization with mixed-integer variables. As with the previous case, we applied
penalty techniques to non-valid constraints. Some variables in these problems were part of hidden
constraints that could not be violated. To address this, we converted these variables into constants,
assigning them values from the best solution identified by NOMAD.
The problems involve continuous or mixed-integer variables representing various design pa-

rameters of a CSP system. Some of these variables include the central receiver outlet temperature,
affecting thermal energy available for storage and power generation; the height and diameter of the
hot storage tank, influencing energy capacity; the insulation thickness of the hot, and cold storage
tanks which is crucial for minimizing heat loss and maintaining system efficiency, etc. In Table 1
we present the total number of variables for each problem, detailing the number of continuous and
integer variables, as well as the constant values assigned to specific variables that are subject to
hidden constraints.
We compared the performance of our suggested approach with a well-known DFO method

in order to fully evaluate its effectiveness. In particular, we conducted five iterations of each
experiment for each algorithm to compare the suggested approach, ADASNOBFIT, to SNOBFIT.
The average values from these five runs are shown in the results below, guaranteeing solid and
statistically significant results that demonstrate the efficiency and dependability of our adaptive
sampling strategy in comparison to stand-alone DFO techniques.
We applied a uniform termination criterion of 𝑛𝑓 𝑖𝑛𝑎𝑙 = 12 × 𝑛 iterations, where 𝑛 represents

the problem’s dimensionality. For the benchmark problem with a dimension of 5, this resulted in

, Vol. 1, No. 1, Article . Publication date: January 2024.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Optimizing concentrated solar power plants using adaptive sampling-based derivative-free algorithms 7

Problem SNOBFIT
optimal value

ADASNOBFIT
optimal value

SNOBFIT
time

ADASNOBFIT
time

3 4365.77 975.23 710 889
4 4,779.16 4,699.47 1,202 1,752
10 87.23 53.01 3,606 4,050

Table 2. Results

𝑛𝑓 𝑖𝑛𝑎𝑙 = 5 × 12 = 60 function evaluations, ensuring both algorithms had equal opportunities to
explore the optimization landscape.

As previously mentioned, the adaptive sampling process continues until the number of sampled
points exceeds 𝑛𝑓 𝑖𝑛𝑎𝑙 or the 𝑅2 score criteria are met. The 𝑅2 score must satisfy two conditions:
𝑅2 > 0.65 (indicating the model’s performance has degraded) and 𝑅2previous − 𝑅2current < 0.2
(indicating the current surrogate model performs significantly worse than the previous one). If
either condition is unmet, the adaptive sampling process stops, and the DFO algorithm proceeds
with the original black-box function for the remaining iterations.

SNOBFIT and ADASNOBFIT are clearly compared in Table 2 with respect to execution time and
solution quality for problems 3, 4, and 10. In terms of solution accuracy ADASNOBFIT consistently
outperforms SNOBFIT, obtaining superior values across all problems, demonstrating its effectiveness
in optimizing within strict evaluation bounds. For instance, ADASNOBFIT achieves a value of 53.01
in issue 10, which is significantly closer to the best-known answer of 42.41 (obtained by NOMAD
after 2,000 evaluations) than SNOBFIT’s 87.23. This demonstrates how ADASNOBFIT can produce
near-optimal solutions with fewer evaluations.
On the other hand, SNOBFIT is faster in execution, as shown by the shorter times across all

problems. The additional time required by ADASNOBFIT is primarily due to the extra computational
cost after the first 2𝑛 iterations, as building and solving the surrogate model using ALAMO, BARON,
and IPOPT introduces an overhead. Despite the additional time, ADASNOBFIT’s superior solution
quality across all problems suggests a valuable trade-off between computation time and solution
accuracy.
Figure 2 compares the performance of the SNOBFIT and ADASNOBFIT algorithms for the 3

problems. The x-axis represents the number of function evaluations, while the y-axis shows the
solution value. Initially, both algorithms start with the same initial point however, ADASNOBFIT
quickly converges to a much lower solution after the construction of the first surrogate model. The
ADASNOBFIT method demonstrates better performance by converging faster and reaching a lower
final solution value compared to SNOBFIT.

5 Conclusions
In this paper, we applied an adaptive sampling DFO approach to a challenging black-box opti-
mization problem in CSP system design. The results demonstrate that the proposed ADASNOBFIT
method outperforms the SNOBFIT algorithm for each of the three CSP benchmark problems. No-
tably, in problem 10 the proposed ADASNOBFIT methodology significantly outperformed SNOBFIT,
achieving a solution just 10.6 away from the best-known value of 42.41 obtained by the NOMAD
algorithm, but with only 60 function evaluations compared to NOMAD’s 2,000, demonstrating the
efficiency and effectiveness of our approach. Although ADASNOBFIT required more computation
time due to surrogate modeling overhead, the trade-off between function evaluation cost and
time complexity remains favorable in scenarios where each evaluation is expensive, such as in
large-scale CSP simulations. The study shows that adaptive sampling DFO can be a powerful tool
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(a) Problem 3 (b) Problem 4

(c) Problem 10

Fig. 2. Solution comparison of SNOBFIT and ADASNOBFIT

for optimizing CSP systems, especially in real-world applications where the evaluation budget
is limited. Future work will focus on extending this approach to more complex and realistic CSP
problems, including multi-objective optimization and the incorporation of additional operational
constraints.
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