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Interior point methods and simplex-type algorithms are the most widely-used algorithms for
solving linear programming problems. The simplex algorithm has many important applica-
tions. Hence, even small improvements in simplex-type algorithms could result in noticeable
practical impact. This paper presents a hybrid algorithm that combines the strengths of inte-
rior point methods and exterior point simplex algorithms. It applies an interior point method
for a few iterations leading to significant improvement of the objective function value. At this
point, the proposed algorithm uses an exterior point simplex algorithm to find an optimal
solution. A crucial point is the selection of the interior point that will be used by the exterior
point simplex algorithm to calculate a direction to the feasible region. The goal of the pro-
posed implementation is twofold: (i) improve the performance of the exterior point algorithm,
and (ii) find an optimal basic solution starting from an interior point (purification process).
The latter goal is very important since an optimal basic solution can be used to solve closely
related linear programming problems (warm-start) and linear programming relaxations of in-
teger programming problems. Computational results on a set of benchmark problems (Netlib,
Kennington, Mészáros) are presented to demonstrate the efficiency of the proposed hybrid
algorithm. The results show that the proposed algorithm is 1.53× faster than the exterior
point simplex algorithm.
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1. Introduction

Linear Programming (LP) is a significant research area in the field of operations
research. Linear programs can be found in almost every type of scientific and engi-
neering applications. The first approach for solving linear programming problems
(LPs) came from George B. Dantzig who set the fundamental principles. Dantzig
proposed the simplex algorithm [1] that starts from a basic feasible solution and
moves from one basic feasible solution to an adjacent one until an optimum so-
lution is found. The vast literature of operations research contains an extensive
family of simplex-type algorithms. Although the simplex algorithm is widely-used
until today, there exist many real-life applications that its performance degrades
due to a phenomenon called degeneracy. Simplex-type algorithms may stall at a
degenerate vertex for many iterations before moving to another vertex. Degeneracy
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and redundancy are very common in real-life applications. Consequently, many dif-
ferent approaches were presented in order to overcome degeneracy [2]. Over the last
decades, researchers focused on: (i) the reduction of the number of iterations that
the simplex algorithm performs [3] [4] [5] (for a review, see [6]), (ii) the reduction
of the computational work involved in each iteration [7] [8] [9] [10] (for a review,
see [11]), and (iii) new variants of the simplex algorithm [12] [13] [14] [15].

The first polynomial time algorithm for LP is the ellipsoid algorithm which was
developed by Khachiyan [16]. The ellipsoid algorithm is impractical for LP. In
1984, a totally new method arose and changed everything in LP [17]; Interior
Point Methods (IPMs) revealed that the simplex algorithm was not the only way
for solving an optimization problem. Since then, many IPMs have been proposed
(for a literature review, see [18] [19]). IPMs have some advantages over the simplex
algorithm. Probably, the most important advantage is that the number of iterations
is not related to the number of vertices. Nowadays, it is broadly accepted that an
infeasible primal-dual IPM is the most efficient algorithm of this category.

Since the development of the simplex method, various papers presented variants
of the simplex method that relax feasibility requirements. Al-Sultan and Murty
[20] proposed an exterior penalty algorithm for the nearest point problem. Sher-
ali et al. [21] investigated three exterior point approaches for solving LPs. These
algorithms have the advantage that they can be initialized at arbitrary starting
solutions and present a great degree of flexibility in designing particular algorith-
mic variants. A simplex-type algorithm generating solutions that are not feasible is
called an Exterior Point Simplex Algorithm (EPSA) [22]. Dantzig’s [1] parametric
self-dual algorithm, Kuhn’s [23] Hungarian method for the assignment problem,
Iri’s [24] successive shortest part method for minimum cost flow problems, Zionts’
[25] and Terlaky’s [26] criss-cross methods are some examples of exterior point
methods. However, they are not very efficient in practice for solving LPs. EPSA
was proposed by Paparrizos initially for the assignment problem [27] and then for
the solution of LPs [22]. Moreover, researchers introduced the primal–dual ver-
sions of the algorithm that enhanced its computational behavior [28] [29] [30] (for
a literature review of recent advances on EPSA, see [31]).

During the last decades, researchers proposed more efficient implementations of
LP algorithms. Other efforts focused on the parallelization of LP algorithms, on
CPUs [32] [33] [34] [35] [36] [37] and on GPUs [38] [39] [40] [41] [42] [43], and the
combination of different LP algorithms [44] [45] [46] [47] [48]. The proposed hybrid
algorithm belongs to the latter category. The idea to combine two types of LP
algorithms is not new. Kortanek & Zhu [47] proposed a pivoting procedure from
an interior point to a boundary point without worsing the objective value. This
procedure can be performed in finite steps but may not be polynomial. Bixby et
al. [45] and Bixby & Saltzman [46] proposed a combination of an IPM with the
simplex algorithm. The hybrid procedure starts running an IPM first and later
switches to the simplex algorithm. Andersen & Ye [44] proposed a combination
of an IPM with a pivoting algorithm using a totally different idea from [45] [46];
they construct an artificial linear programming problem, which approximates the
original problem, in any iteration of an IPM. Finally, they apply Megiddo’s pro-
cedure [49] to compute an optimal basis of the approximate problem in n pivot
steps. Al-Najjar and Malakotti [50] proposed hybrid-LP, a method for solving LPs
using both interior and boundary paths. Their method uses an interior direction
to pass to an improved basic feasible solution. Then, the simplex algorithm can
be applied in order to reach an optimal solution. The computational results of the
hybrid-LP method are very promising. Pan [51] proposed a pivoting algorithm us-
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ing the affine-scaling technique. This method produces a sequence of interior points
as well as a sequence of vertices, until reaching an optimal vertex. Triantafyllidis
[48] proposed a non-monotonic variant of the exterior point algorithmic family by
combining EPSA with IPMs.

This paper builds on the work done by Bixby et al. [45] by introducing a hybrid
algorithm that combines IPMs and EPSA. The idea of combining these two differ-
ent types of methods stemmed from the observation that IPMs are able to spot very
fast feasible solutions with good objective values, but they need a relatively long
time to converge to an optimal solution. In order to take full advantage of EPSA,
we use a variation of a Primal-Dual Exterior Point Simplex Algorithm (PDEPSA).
Primal-dual algorithms can deal more effectively with the problems of stalling and
cycling and as a result improve the performance of EPSA. This variation, which
is presented in this paper, is called Primal-Dual Interior Point Simplex Algorithm
(PDIPSA) since the algorithm computes a direction to the feasible region accord-
ing to the interior point that was found by an IPM. The IPM, which we use in
our hybrid algorithm, is Mehrotra’s Predictor-Corrector method [52], an infeasible
primal-dual IPM.

The main advantage of this hybrid algorithm is that it exploits the strengths of
both IPM and PDIPSA. In the first iterations, IPM moves from a positive point to
a positive point trying to achieve feasibility and optimality, simultaneously. At this
point, the proposed hybrid algorithm uses PDIPSA to find an optimal solution in
less expensive iterations. The goal of the proposed implementation is twofold: (i)
improve the performance of EPSA, and (ii) find an optimal basic solution starting
from an interior point (purification process). The latter goal is preferable for a
couple of reasons [44]. First of all, a basic solution has generally fewer nonzero
elements than a solution in the interior of the optimal face, which is desirable
when LP relaxations of integer programming problems are solved. Secondly, an
optimal basic solution can be used to warm-start simplex-type algorithms to solve
closely related LPs.

The paper is organized as follows. Section 2 includes the description of the gen-
eral framework of the proposed hybrid algorithm. In Section 3, we give the proof
of correctness. In order to gain an insight into the practical behavior of the pro-
posed hybrid algorithm, we have performed a computational study on a set of
benchmark problems (Netlib, Kennington, Mészáros). These results are presented
in Section 4. Finally, the conclusions and possible enhancements of the proposed
hybrid algorithm are outlined in Section 5.

2. Description of the hybrid algorithm

Initially, this Section presents the two algorithms that we combine in our imple-
mentation. Subsection 2.1 presents PDIPSA, a primal-dual interior point simplex
algorithm, while subsection 2.2 gives a brief overview of Mehrotra’s interior point
method. Finally, the hybrid algorithm, which combines the previously mentioned
algorithms, is presented in subsection 2.3.

3



August 25, 2018 Optimization hybridpdipsa

2.1. PDIPSA

In this section, we describe PDIPSA in depth. Consider the following linear pro-
gramming problem (LP.1) in the standard form:

min cTx

s.t. Ax = b (LP.1)

x ≥ 0

where A ∈ Rm×n, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume
that A has full rank, rank(A) = m,m < n. Consequently, the linear system Ax = b
is consistent.

The dual problem associated with the (LP.1) is presented in (DP.1):

max bTw

s.t. ATw + s = c (DP.1)

s ≥ 0

where w ∈ Rm are the Langrange multipliers and s ∈ Rn are the dual slack
variables.

Using a basic partition (B,N), where B is the set of basic indices and N is the
complementary set of nonbasic indices, the linear programming problem in (LP.1)
can be written as shown in (LP.2).

min cTBxB + cTNxN

s.t. ABxB + ANxN = b (LP.2)

xB, xN ≥ 0

In (LP.2), AB is an m ×m nonsingular sub-matrix of A, called basic matrix or
basis. The columns of A that belong to subset B are called basic and those that
belong to N are called nonbasic. The basic solution corresponding to the basis B
is xB = (AB)−1b and xN = 0. This solution is feasible iff xB ≥ 0. Otherwise, it is

infeasible. The solution of (DP.1) is computed by the relation sTN = (cN )T −wTAN ,

where wT = (cB)T (AB)−1. The basis B is dual feasible iff s ≥ 0. In order to
initialize the algorithm, a basic feasible solution must be available. It is well known
that a basis for which the primal solution (xB, xN ) is feasible to (LP.1) and the
dual solution (w, s) is feasible to (DP.1), is also an optimal basis.

PDIPSA is initialized with a dual feasible basis. The procedure of a dual feasible
basis construction is based on a big–M problem [30]. The solutions of (LP.1) and
(DP.1) corresponding to the basic partition (B,N) are denoted by x = (xB, xN )
and (w, s) = (w, sN ), respectively. We assume that an interior point y > 0 to
problem (LP.1) is available. We explain how we choose the initial point y later in
this Section. The main idea of our algorithm is that the point y must be an interior
point. The algorithm generates a sequence of dual feasible bases B(t), t = 1, 2, · · · .
The primal solution x(t) and the dual solution (w(t), s(t)) correspond to the basis
B(t). Recall that x(t) is not (in general) feasible to (LP.1).

Initially a direction dB = yB−xB, where yB is an initial interior point of (LP.1),
is computed. As xB corresponds to a feasible basis of (DP.1) and yB is feasible to
(LP.1), the direction dB is an ascent direction for the objective function cTx.
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At the next step, the leaving variable xk is calculated from the following maxi-
mum ratio test:

a =
xB[r]

−dB[r]
= max

{
xi
−di

: i ∈ B, di > 0 ∧ xi < 0

}
(1)

where r is the position in the basic list B where the maximum is found. In case of
ties, the rightmost index is selected.

The ray R = {x + a′d : a′ ≥ 0} enters the feasible region of (LP.1) through
the boundary point x + ad. Then, the algorithm moves to the point yB, which is
inside (interior) the feasible region. This computation is achieved by the relation
yB = xB + a′dB, where a′ = a+1

2 . PDIPSA can be described formally as shown in
Table 1.

Table 1. Primal-Dual Interior Point Simplex Algorithm (PDIPSA)

Step 0. (Initialization).
A) Start with a dual feasible basic partition (B,N) and an interior point
y > 0 of (LP.1).
Set:

P = N,Q = ∅
and compute

xB = (AB)−1 b, wT = (cB)T (AB)−1, sTN = (cN )T − wTAN

B) Compute the direction dB from the relation: dB = yB − xB
Step 1. (Test of optimality and choice of the leaving variable).
If x ≥ 0 then STOP. (LP.1) is optimal.
else

Choose the leaving variable xk from the relation:

a =
xB[r]

−dB[r]
= max

{
xi

−di
: i ∈ B, di > 0 ∧ xi < 0

}
Step 2. (Computation of the next interior point).
Set:

a′ = a+1
2

Compute the interior point from the relation: yB = xB + a′dB
Step 3. (Choice of the entering variable).

Set: HrN = (AB)−1
r. AN

Choose the entering variable xl from the relation:
−sl
HrN

= min
{
−sj
Hrj

: Hrj ∧ j ∈ N
}

Compute the pivoting column: hl = (AB)−1 A.l

if l ∈ P then
P ← P \ {l}

else
Q← Q \ {l}

Step 4. (Pivoting).
Set:

B[r] = l and Q← Q ∪ {k}
Using the new partition (B,N) where N = (P,Q), compute/update the
new basis inverse A−1

B and the variables xB, w, and sN .
Go to step B.

A revised form of the algorithm is implemented in the current paper. Any known
technique for updating the basic inverse matrix (AB)−1 and the vectors xB, w,
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and sN can be combined efficiently with the algorithm. Here, our effort is focused
on how the direction d can be computed more efficiently. Our results lead to a
different calculation of dB; the component dB is updated in a way very similar to
that of xB. Moreover, our results lead to the construction of a big–M problem (for
solving general LPs).

As it is mentioned before, PDIPSA belongs to the family of EPSA. EPSA con-
struct two paths to an optimal solution. The first path is a sequence of basic but
not feasible solutions and this path is called exterior path. The other path is a
feasible path, its points move on the boundary of the feasible region. Despite their
promising computational performance, EPSA have two significant computational
disadvantages. The first weakness stems from the difficulty of constructing “good”
moving directions, which could lead the algorithm close to an optimal solution. The
creation of a direction with these features is a difficult process. The computational
performance of EPSA is strongly connected to this moving direction. The second
disadvantage is the fact that there is no known method, which can reveal the path
that leads to the interior of the feasible region; something that would make easier
the search of a computational good direction. These disadvantages can be avoided
if the exterior path is replaced with a dual feasible simplex path.

A good implementation of this type of EPSA is described by Paparrizos et al.
[53]. The main idea of the Revised Primal Dual Simplex Algorithm (RPDSA) is
based on the process of moving from any interior point to an optimal basic solution.
Although this algorithm is better from the exterior point simplex algorithm and
it deals very well with the two disadvantages, which were described above, it also
has some weaknesses. RPDSA begins with an interior point and at each iteration
a boundary point is used to compute the leaving variable. It has been observed
that the problem of stalling and cycling can arise very often at this stage. This
weakness can be overcome if the boundary point is replaced by an interior point.
The transfer into the interior of the feasible region makes the algorithm to avoid
the problem of stalling and cycling.

In this paper, we propose an alternative approach of RPDSA. This approach
is much more efficient since it can overcome these two significant drawbacks, of
stalling and cycling. Furthermore, this algorithm is a primal–dual algorithm, mean-
ing that it simultaneously solves the primal and the dual problem. In contrast to
RPDSA, we use an interior point at each iteration to compute the leaving variable
and this is the key factor that enhances the algorithm and thus, we can avoid the
problem of stalling and cycling.

A geometrical representation is necessary to clarify the reasons that our algorithm
can deal quite satisfactory with these two drawbacks. In Figure 1, we present an
LP problem where the problem of staling arises. We assume that our algorithm
is at vertex A at the current iteration. According to RPDSA, the direction d′

computes the boundary point y′ from which it enters the feasible region. This
point is used to choose the leaving variable (constraint); at this point, there are
three possible options, constraints (1), (2) or (3). In other words, there exist bonds
in the specific LP problem. If the next leaving variable is constraint (1), then our
algorithm will move to vertex B. In this case, the new direction enters again the
feasible region from point y′; keeping the point y′ boundary, the algorithm will move
to vertices C and D consecutively until it reaches vertex E, which is an optimal
solution. Consequently, it will compute the optimal value after four iterations;
this phenomenon of pivoting between degenerated vertices of the feasible region is
called stalling. The problem of stalling can be overcome if the boundary point y′

is replaced from an interior point y′′. Now, using this interior point the direction
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Figure 1. Stalling

d′′ enters the feasible region from the boundary point point y′′′. Only constraint
(3) comes through this point and PDIPSA will move to vertex D without visiting
vertices B and C. Consequently, an optimal solution will be calculated in two
iterations in contrast to RPDSA that needs four iterations.

Apart from the problem of stalling, RPDSA has another significant drawback,
it is vulnerable to cycling. In order to clarify this specific situation, we assume in
the above LP problem that the objective function is parallel to line ε1 (see Figure
2). According to RPDSA, the algorithm’s pivot from vertex A to vertex D cannot
lead to any change of the objective function value. Furthermore, in such cases, the
algorithm may continue cycling from one vertex to another. This weakness can be
also overcome if we replace the boundary point with an interior point as it was
described previously.

2.2. Mehrotra’s predictor-corrector method

Since Karmarkar’s algorithm [17], many improvements have been made both in
theory and in practice of IPMs. An infeasible IPM moves from a positive point
to a positive point trying to achieve feasibility and optimality, simultaneously;
this is the big difference with the simplex algorithm, which follows a sequence of
adjacent boundary points to an optimal solution. It has been observed that IPMs
can deal much better than the simplex algorithm in large-scale sparse LPs [18];
these problems are very common in transportation and scheduling applications
that have network models at their core. IPMs are also of interest from a theoretical
point of view, because they have polynomial complexity. There are three main
categories of IPMs: (i) affine-scaling methods, (ii) potential reduction methods,
and (iii) central trajectory methods. The affine-scaling algorithm is an attractive
choice due to its simplicity and its relative good performance in practice. However,
its performance is sensitive to the starting point. Potential reduction methods do
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Figure 2. Cycling

not have the simplicity of affine-scaling methods, but they are more attractive than
affine-scaling methods. IPMs based on the central trajectory are the most useful
in theory and the most used in practice.

The main advantages of IPMs in comparison to the simplex algorithm are: (i)
the number of iterations is not related with the number of vertices, and (ii) IPMs
are not influenced by degeneracies. On the other hand, IPMs have some significant
weaknesses: (i) it has been observed that IPMs are not very effective to detect
infeasibility or unboundedness in some cases, and (ii) numerical issues and bad
starting points may lead IPMs to slow convergence in the later iterations.

The primal–dual path following algorithm is an example of an IPM that operates
simultaneously on the primal and dual LPs. Moreover, the primal–dual algorithms
that incorporate predictor and corrector steps are the most efficient IPMs. This is
the reason that we chose to implement Mehrotra’s Predictor-Corrector method [52]
in order to calculate a “good” interior point for PDIPSA. Although some primal-
dual IPMs need a strictly feasible interior point as a starting point, which is difficult
to calculate, Mehrotra’s Predictor-Corrector is an infeasible primal-dual IPM and
it just requires that (x, s) > 0 for the starting point. Mehrotra also proposed an
efficient heuristic to obtain a starting point [52].

2.3. Combining IPM–PDIPSA (Hybrid IPM–PDIPSA)

A hybrid algorithm is proposed in this paper. This algorithm combines an IPM
with an EPSA and more specifically Mehrotra’s Predictor-Corrector method with
PDIPSA; the most efficient IPM and EPSA, respectively. The main goal of this
combination is to adopt the strengths of each algorithm and to eliminate their
disadvantages. According to this thought, the hybrid algorithm executes Mehrotra’s
Predictor-Corrector method for a few iterations in order to start PDIPSA from a
“good” interior point. Then, PDIPSA completes the calculations and solves the
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LP problem.
PDIPSA demands a starting interior point; this point is computed by Mehrotra’s

Predictor-Corrector method. Moreover, the interior point is necessary for the cal-
culation of the direction d, which reveals the leaving variable. Another significant
issue is that a “good” initial interior point can lead to significant less iterations
of PDIPSA. Consequently, if the initial point is closer to optimal vertex, then an
optimal solution will be sooner spotted by PDIPSA. This is the main reason for
using an IPM at the first stage. IPM is able to move to an interior point close to
the optimal vertex at the first iterations. In this step, PDIPSA receives the interior
point and continues finding the solution. Taking under consideration IPM’s relative
large computational cost per iteration and late convergence at the last iterations
(due to numerical issues or a bad starting point), our hybrid algorithm takes full
advantage of IPMs at the same time of giving a “good” interior point to PDIPSA.

The hybrid algorithm is described formally as follows:

Table 2. Hybrid approach combining Mehrotra’s predictor-corrector method and PDIPSA

Step 1. (IPM).
Perform a few iterations with Mehrotra’s Predictor-Corrector method in
order to compute a “good” interior point y.
Step 2. (PDIPSA).
A) Initialize PDIPSA with a dual feasible basic partition (B,N) and the
interior point y taken from Step 1.
B) Iteratively, PDIPSA continues until it computes an optimal solution as
it was described in Section 2.1.

3. Proof of correctness

The geometrical representation, which was presented in Section 2.1, and the simi-
larity of the proposed hybrid algorithm to the dual simplex method, reveal imme-
diately its correctness. When the algorithm terminates, the basic solution is both
primal and dual feasible. To complete the proof of correctness of the algorithm,
it suffices to show that every basic partition, which is constructed by PDIPSA, is
dual feasible and the computation of the maximum ratio test (Equation (1)) is well
defined.
Theorem 1: If the initial basic partition of PDIPSA is dual feasible, then every

consecutive partition is dual feasible.
Proof: The proof is by induction on the number of iterations. Denote by t the

number of iterations. It is obvious from Step A of PDIPSA that for t = 1 the

relations S
(1)
j ≥ 0 , j ∈ N (1), and S

(1)
j = 0, j ∈ B(1), hold. Suppose now that the

relation S
(t)
j ≥ 0, j ∈ N (t), holds. Let (B(t+1), N (t+1)) be the new basic partition

and S
(t+1)
j , j ∈ N (t+1), the corresponding dual slack variables. The dual slack

variables can be computed by the relation

S
(t+1)
j = S

(t)
j −

S
(t)
l

Hrl
Hrj , j ∈ N (t+1), (2)

where Hrj , j ∈ N (t+1), is the pivot row. From the choice of the entering variable
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xl

−S(t)
l

Hrl
= min{

−S(t)
j

Hrj
: Hrj < 0 ∧ j ∈ N (t)} (3)

we conclude that
−S(t)

l

Hrl
≥ 0. If Hrj ≤ 0, j ∈ N (t+1), then S

(t+1)
j ≥ 0 holds as

the summation of two vectors with positive entries. If Hrj > 0, j ∈ N (t+1), then
relation (2) is equivalent to

S
(t)
j

Hrj
≥

S
(t)
l

Hrl
, (4)

which is true according to relation (3) and consequently S
(t+1)
j ≥ 0. Hence, if

the initial basic partition is dual feasible, then PDIPSA constructs dual feasible
partitions at every iteration.

Lemma 1: At every iteration of PDIPSA, the maximum ratio test yields a ∈
(0, 1).
Proof: The condition xB[i] < 0 combined with the relation dB = yB − xB and

the facts that xB is dual feasible and yB is primal feasible, implies the relation
xi < 0⇒ di > 0, i ∈ B.

From the maximum ratio test we have

a = max{−xi
di

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
yi − xi

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
|yi|+ |xi|

: i ∈ B, di > 0 ∧ xi < 0}

It is obvious from the above relation that 0 < a < 1.

4. Computational results

In this Section, we present the results from a computational study that we con-
ducted to demonstrate the efficiency of the proposed hybrid algorithm. The com-
putational comparison has been performed on a quad-processor Intel Core i7 3.4
GHz with 32 Gbyte of main memory and 8 cores, a clock of 3.7 GHz, an L1 code
cache of 32 KB per core, an L1 data cache of 32 KB per core, an L2 cache of 256
KB per core, an L3 cache of 8 MB and a memory bandwidth of 21 GB/s, running
under Microsoft Windows 8 64-bit. All algorithms have been implemented using
MATLAB Professional R2015b. Some linear algebra built-in functions were also
used to code the algorithms (e.g., inverse of an array, multiplication of two arrays,
multiplication of array and vector, and the mldivide operator for solving systems
of linear equations). Execution times have been measured in seconds using tic and
toc MATLAB’s built-in functions. For each instance, we averaged times over 10
runs. All runs were executed as a batch job.

Totally, 83 LPs were considered from the Netlib set (Optimal and Kennington
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LPs) [54] [55] and the problematic, misc, and stochlp sections of Mészáros collection
[56]. The Netlib library is a well known suite containing many real world LPs.
Ordóñez and Freund [57] have shown that 71% of the Netlib LPs are ill-conditioned.
Hence, numerical difficulties may occur. We implemented an MPS reader to read
MPS files and convert data into MATLAB mat files. All runs terminated with
correct optimal objective values. Table 3 presents some useful information about
the test bed, which was used in the computational study. The first column includes
the name of the problem, the second the number of constraints, the third the
number of variables, the fourth the nonzero elements of matrix A, and the fifth the
optimal objective value.

Table 3.: Statistics of the Netlib (optimal and Kennington
LPs) and Mészáros LPs

Name Constraints Variables Nonzeros A
Optimal

objective value
aa4 426 7,195 52,121 2.59E+04
aa5 801 8,308 65,953 5.37E+04
aa6 646 7,292 51,728 2.70E+04

adlittle 56 97 383 2.25E+05
afiro 27 32 83 -4.65E+02
agg 488 163 2,410 -3.60E+07
agg2 516 302 4,284 -2.02E+07
agg3 516 302 4,300 1.03E+07

aircraft 3,754 7,517 20,267 1.57E+03
beaconfd 173 262 3,375 3.36E+04

blend 74 83 491 -3.08E+01
bnl2 2,324 3,489 13,999 1.81E+03
car4 16,384 33,052 63,724 3.55E+01
cari 400 1,200 152,800 5.82E+02
cr42 905 1,513 6,614 2.80E+01
cre-a 3,516 4,067 14,987 2.36E+07

d6cube 415 6,184 37,704 3.15E+02
fffff800 524 854 6,227 5.56E+05
fit1d 24 1,026 13,404 -9.15E+03

forplan 161 421 4,563 -6.64E+02
fxm2-6 3,900 5,602 32,239 1.84E+04
fxm3 6 6,200 9,492 54,589 1.86E+04

gen 769 2,560 63,085 0.00E+00
gen1 769 2,560 63,085 0.00E+00

gfrd-pnc 616 1,092 2,377 6.90E+06
iiasa 669 2,970 6,648 2.63E+08
israel 174 142 2,269 -8.97E+05

jendrec1 2,109 4,228 89,608 7.03E+03
lotfi 153 308 1,078 -2.53E+01

maros-r7 3,136 9,408 144,848 1.50E+06
nsic1 451 463 2,853 -9.17E+06
nsic2 465 463 3,015 -8.20E+06
nsir1 4,407 5,717 138,955 -2.89E+07
nsir2 4,453 5,717 150,599 -2.72E+07

osa-07 1,118 23,949 143,694 5.36E+05
osa-14 2,337 52,460 314,760 1.11E+06

11
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osa-30 4,350 100,024 600,138 2.14E+06
p05 5,090 9,500 58,955 3.15E+02
p010 10,090 19,000 117,910 1.12E+06
pgp2 4,034 9,220 18,440 4.47E+02

primagaz 1,554 10,836 21,665 1.07E+09
r05 5,190 9,500 103,955 5.58E+05

rail507 507 63,009 409,349 1.72E+02
rail516 516 47,311 314,896 1.82E+02
rail582 582 55,515 401,708 2.10E+02

rat1 3,136 9,408 88,267 2.00E+06
rat5 3,136 9,408 137,413 3.08E+06
rat7a 3,136 9,408 268,908 2.07E+06
recipe 91 180 663 -2.67E+02
rosen2 1,032 2,048 46,504 -5.44E+04
rosen7 264 512 7,770 -2.03E+04
rosen8 520 1,024 15,538 -4.21E+04
rosen10 2,056 4,096 62,136 -1.74E+05
sc105 105 103 280 -5.22E+01
sc205 205 203 551 -5.22E+01

sc205-2r-400 8,813 8,814 24,030 -1.01E+01
sc205-2r-800 17,613 17,614 48,030 -1.01E+01
sc205-2r-1600 35,213 35,214 96,030 0.00E+00

sc50a 50 48 130 -6.46E+01
sc50b 50 48 118 -7.00E+01

scagr25 471 500 1,554 -1.48E+07
scagr7 129 140 420 -2.33E+06

scagr7-2b-64 9,743 10,260 32,298 -8.33E+05
scagr7-2r-216 8,223 8,660 27,042 -8.34E+05
scagr7-2r-432 16,431 17,300 54,042 -8.34E+05

scfxm1 330 457 2,589 1.84E+04
scfxm1-2b-64 19,036 28,914 106,919 2.88E+03

scfxm3 990 1,371 7,777 5.49E+04
scrs8 490 1,169 3,182 9.04E+02

sctap1 300 480 1,692 1.41E+03
sctap2 1,090 1,880 6,714 1.72E+03
sctap3 1,480 2,480 8,874 1.42E+03

share1b 117 225 1,151 -7.66E+04
share2b 96 79 694 -4.16E+02
ship12l 1,151 5,427 16,170 1.47E+06
ship12s 1,151 2,763 8,178 1.49E+06
slptsk 2,861 3,347 72,465 2.99E+01

standata 359 1,075 3,031 1.26E+03
stocfor1 117 111 447 -4.11E+04
stocfor2 2,157 2,031 8,343 -3.90E+04
stocfor3 16,675 15,695 64,875 -4.00E+04
testbig 17,613 31,223 61,639 -6.04E+01

zed 116 43 567 -1.51E+04

Since our primary aim is to improve the computational performance of PDIPSA,
we compare the proposed hybrid algorithm, HYBRID, with PDIPSA. As described
in Section 2, HYBRID uses Mehrotra’s Predictor-Corrector method to calculate an

12
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interior point. In addition, we have implemented the primal Revised Simplex Al-
gorithm (RSA) and we use it in the computational study as a reference point
for the comparison. All algorithms use the same preprocessing, scaling, and ba-
sis update methods. Their major difference is how they select the entering and
leaving variable. In the simplex implementation, we use Dantzig’s pivoting rule;
however, if degeneracy is detected during the algorithm’s execution, then simplex
will automatically switch to the steepest-edge pivoting rule and the problem will
be perturbed. We selected to use Dantzig’s pivoting rule since the steepest edge
variant that we implemented is quite expensive and thus, we use it only when de-
generacy is detected. When stalling occurs, our algorithm automatically perturbs
the upper and lower bounds by adding a small positive number (we use a value of
1e− 6) to the bounds. After the solution of the perturbed problem, we remove the
perturbation by resetting the problem to its original values. All algorithms share
the same data structures and sparse linear algebra routines. All LPs have been
presolved and scaled (using the equilibration scaling technique [58]) prior to the
execution of each algorithm. The basis update method used in all algorithms is the
Product Form of the Inverse [59]. In order to guarantee the accuracy, we compute
from scratch the inverse of the basis every 80 iterations.

Table 4 presents the execution time and the number of iterations of each al-
gorithm over the Netlib and Mészáros set of LPs, while Figure 3 presents the
performance profile based on the execution time of the algorithms. The perfor-
mance profile is displayed in logarithmic scale with base 2 using a tool developed
in [60]. We also report the number of iterations performed by Mehrotra’s Predictor-
Corrector method (“Interior Iter”) in order to initialize the proposed hybrid algo-
rithm (HYBRID). A limit of 1, 000 seconds was set, so symbol “-” denotes that
this algorithm did not find an optimal solution in the specific time interval. HY-
BRID is able to solve all instances, while PDIPSA did not solve three instances
(rail507, rail516, and rail582) and RSA did not solve eleven instances (aa5, aa6,
d6cube, jendrec1, nsir2, p010, rail507, rail516, rail582, scfxm1-2b-64, and slptsk).
In addition, we report the geometric mean of the execution time and the number
of iterations for all algorithms. We also report the geometric mean of the execution
time and the number of iterations for the instances solved by all three algorithms
(shown in parentheses in the last row of the table).

When considering all problems, HYBRID is 1.53× faster than PDIPSA and 2.1×
faster than RSA. Moreover, HYBRID performs 1.36× less iterations than PDIPSA
and 1.69× less iterations than RSA. When considering only the instances that
all three algorithms can solve, HYBRID is 1.49× faster than PDIPSA and 1.73×
faster than RSA. Moreover, HYBRID performs 1.34× less iterations than PDIPSA
and 1.57× less iterations than RSA. Taking also into account that PDIPSA and
RSA fail to solve some instances, HYBRID is superior to PDIPSA and RSA on
these benchmark instances. Finally, HYBRID has better or equal performance than
PDIPSA and RSA on 70 (84.3%) and 65 (78.3%) instances, respectively.

Table 4.: Execution time and number of iterations

Problem
PDIPSA HYBRID RSA

Time Iter Time Iter
Interior
Iter Time Iter

aa4 17.31 4,565 15.49 4,430 2 49.70 14,833
aa5 102.29 8,096 77.24 6,826 2 - -
aa6 46.26 5,377 40.54 5,053 2 - -

adlittle 0.03 77 0.03 89 2 0.03 97
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afiro 0.01 17 0.01 14 3 0.01 14
agg 0.10 149 0.06 77 7 0.06 83
agg2 0.38 296 0.18 173 5 0.10 138
agg3 0.36 291 0.20 195 5 0.10 138

aircraft 5.44 1,989 5.27 1,675 1 10.84 4,034
beaconfd 0.04 86 0.04 83 4 0.02 47

blend 0.02 59 0.01 37 5 0.02 76
bnl2 12.90 2,149 11.37 1,630 20 71.19 3,921
car4 3.86 2,798 3.50 2,163 10 17.21 10,349
cari 0.87 459 1.62 494 1 1.69 1,116
cr42 1.06 625 0.87 571 5 1.13 581
cre-a 11.93 2,993 10.34 2,892 1 72.01 4,899

d6cube 146.95 7,528 115.43 6,243 15 - -
fffff800 0.20 170 0.21 191 1 0.25 399
fit1d 4.54 626 2.53 651 3 2.24 1,773

forplan 0.28 244 0.22 200 3 0.07 180
fxm2-6 4.19 1,303 2.59 895 3 8.01 1,868
fxm3 6 98.51 5,168 71.56 2,673 10 128.05 6,532

gen 33.06 8,162 16.83 5,278 1 96.48 15,304
gen1 35.75 8,162 19.47 6,434 2 210.56 20,112

gfrd-pnc 0.64 335 0.53 331 6 1.61 550
iiasa 2.97 2,448 2.19 1,953 8 2.83 1,966
israel 0.16 313 0.11 166 8 0.10 262

jendrec1 333.20 9,230 113.76 4,005 5 - -
lotfi 0.09 195 0.07 180 3 0.17 123

maros-r7 50.87 2,631 43.84 2,419 10 82.11 3,310
nsic1 0.31 552 0.13 307 1 0.14 405
nsic2 0.19 283 0.18 270 6 0.16 432
nsir1 113.88 5,206 21.22 2,631 2 32.89 3,547
nsir2 46.48 2,845 32.86 2,676 5 - -

osa-07 7.60 897 6.67 631 15 5.58 719
osa-14 31.19 1,879 34.30 1,421 10 52.83 2,512
osa-30 138.23 3,881 133.10 2,813 10 284.17 4,889

p05 27.97 1,829 34.60 1,820 1 536.28 3,118
p010 175.27 3,648 190.61 3,539 1 - -
pgp2 10.17 5,138 9.62 4,855 2 17.91 6,024

primagaz 12.30 2,253 11.95 2,208 1 109.09 6,098
r05 34.33 1,763 35.56 1,761 1 506.04 3,101

rail507 - - 266.36 3,635 5 - -
rail516 - - 222.02 4,734 5 - -
rail582 - - 258.71 3,231 5 - -

rat1 7.70 1,613 7.05 1,589 10 44.71 2,901
rat5 23.80 2,015 21.83 1,928 12 35.51 3,107
rat7a 81.57 2,866 66.17 2,475 15 127.08 4,221
recipe 0.02 32 0.02 23 6 0.02 48
rosen2 3.14 990 2.21 734 1 17.61 4,161
rosen7 0.21 195 0.11 159 3 0.30 517
rosen8 1.09 484 0.45 338 2 1.13 988
rosen10 14.91 1,828 7.04 1,329 4 36.15 4,777
sc105 0.03 76 0.03 66 5 0.02 68
sc205 0.17 180 0.10 159 2 0.09 166
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Figure 3. Performance profile based on the execution time of the three algorithms

sc205-2r-400 5.37 924 0.28 47 1 0.17 51
sc205-2r-800 39.88 1,685 1.48 87 1 0.98 91
sc205-2r-1600 314.74 3,364 11.44 167 1 9.81 171

sc50a 0.02 39 0.01 32 5 0.02 27
sc50b 0.01 32 0.01 31 5 0.01 29

scagr25 0.3 215 0.17 149 12 0.79 462
scagr7 0.04 82 0.03 76 2 0.03 82

scagr7-2b-64 126.85 2,617 21.56 2,937 3 36.23 4,278
scagr7-2r-216 13.32 2,616 13.43 2,503 3 24.95 4,653
scagr7-2r-432 98.28 5,238 94.37 5,248 3 188.36 9,629

scfxm1 0.36 344 0.32 248 10 0.21 349
scfxm1-2b-64 828.32 4,820 625.38 3,878 1 - -

scfxm3 4.57 1,310 2.83 829 9 3.36 1090
scrs8 0.56 414 0.63 450 3 0.55 583

sctap1 0.12 282 0.12 241 1 0.22 387
sctap2 0.36 362 0.65 429 1 3.11 1042
sctap3 0.95 623 1.48 636 1 5.56 1155

share1b 0.11 148 0.09 112 1 0.07 155
share2b 0.05 97 0.04 84 5 0.05 136
ship12l 0.22 176 0.32 303 2 0.45 204
ship12s 0.15 326 0.16 335 1 0.16 311
slptsk 143.47 1,301 99.37 1,193 5 - -

standata 0.26 362 0.18 228 1 0.13 216
stocfor1 0.01 17 0.01 22 2 0.02 30
stocfor2 4.29 784 5.3 914 2 9.9 1214
stocfor3 330.85 4,955 259.15 2,984 2 584.23 10,142
testbig 43.07 804 2.21 803 1 0.79 804

zed 0.01 29 0.01 25 3 0.02 50

Geometric mean
2.94

(1.49)
791.58

(585.85)
1.92

(1.01)
583.10

(438.67)
3

(3)
4.04

(1.74)
984.16

(690.60)

15



August 25, 2018 Optimization hybridpdipsa

5. Conclusions

Some combinations of LP algorithms have been already proposed in the litera-
ture. In this paper, we study the combination of an IPM and an EPSA algorithm.
More specifically, we used Mehrotra’s Predictor-Corrector method and PDIPSA, a
primal-dual interior point simplex algorithm. Our hybrid approach starts running
Mehrotra’s Predictor-Corrector method for a number of iterations in order to calcu-
late a “good” interior point. Then, it initializes PDIPSA with a dual feasible basic
partition and the interior point. Finally, PDIPSA continues solving the problem.
Our aim is to take full advantage of both LP algorithms; use Mehrotra’s Predictor-
Corrector method at the first iterations which lead to significant enhancement of
the objective function’s value and then, use PDIPSA at the latter iterations which
lead to fast convergence to an optimal solution. PDIPSA was utilized because of its
behavior to the problem of stalling and cycling which enhances its computational
performance and makes it one of the most efficient variations of EPSA.

A computational study was also presented with experiments over the Netlib (opti-
mal and Kennington) and the Mészáros collection. Computational results showed
that the proposed hybrid algorithm can improve PDIPSA’s execution time sig-
nificantly. More specifically, the proposed hybrid algorithm is 1.53× faster than
PDIPSA and it performs 1.36×% less iterations than PDIPSA. In addition, the
proposed hybrid algorithm is on average 2.1× faster than the primal revised sim-
plex algorithm.
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