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Linear least squares problems (LLSPs) routinely arise in many scientific and engineering
problems. One of the fastest ways to solve LLSPs involves performing calculations in parallel
on graphics processing units (GPUs). However, GPU algorithms are typically designed for
one GPU architecture and may be suboptimal or unusable on another GPU. To design op-
timal algorithms for any GPU with little need for modifying code, tunable parameters can
simplify the transition of GPU algorithms to different GPU architectures. In this paper, we
investigate the benefits of using derivative-free optimization (DFO) and simulation optimiza-
tion (SO) to systematically optimize tunable parameters for a GPU or hybrid CPU/GPU
architecture. Computational experiments show that both DFO and SO can be effective tools
for determining optimal tuning parameters that can speed up the performance of the popular
LLSP solver MAGMA by about 1.8x, compared to MAGMA’s default parameters for large
tall and skinny matrices. By using DFO solvers, we were able to identify optimal parameters
using an order of magnitude fewer simulations than with direct enumeration.
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1. Introduction

Numerical solvers on graphics processing units (GPUs) are typically designed for one
particular GPU architecture [45], and may be suboptimal or even unusable on another
one [39]. Programmers have circumvented this problem by introducing tunable param-
eters into their algorithms that can be easily modified when the solver is being imple-
mented on a different GPU architecture than it had been designed for [1]. However,
determining tuning parameters that maximize solver performance is a challenging op-
timization problem because there is no explicit relationship to model the interactions
between the software, algorithms, and hardware. Derivative-free optimization (DFO) [59]
and simulation optimization (SO) [6] can be used to solve this problem since they do not
require explicit functional representations of the objective function or of the constraints.
Instead, the solver can be treated as a black-box system that accepts tuning parameters,
and outputs a performance metric such as execution time or floating point operations
per second (FLOPs).

This paper addresses the problem of using DFO and SO to determine optimal tuning
parameters for solving linear least squares problems (LLSPs) with GPUs. Dense LLSPs
are solved in a wide range of fields, such as curve fitting, modeling of noisy data, signal
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processing, parameter estimation, and machine learning, including best subset selection
and the lasso [16, 24]. LLSPs arise when solving an overdetermined system of equations
Ax = b, where A ∈ Rm×n, b ∈ Rm, and x ∈ Rn. In modeling an input-output system, the
A matrix contains information about input variables. One common element in LLSPs is
that A is usually tall and skinny (TS), i.e., m >> n. The vector x denotes the LLSP
solution, and b is the vector of output measurements. In an overdetermined system (m >
n), there may not exist an exact solution. The LLSP finds x that minimizes the difference
between b and Ax or, more formally, min ‖Ax− b‖2. It can be shown that the optimal
LLSP solution satisfies the normal equation ATAx = AT b.

Even though many techniques exist to solve LLSPs, we decided to use QR factorization.
Given A, QR factorization determines matrices Q and R, where Q is orthogonal and
R is upper triangular, such that A = QR. The LLSP solution with QR factorization
simplifies to x = R−1QT b. Other methods such as the normal equation method, and
singular value decomposition, were ruled out for issues related to the numerical stability
of ill-conditioned matrices [29], or more expensive computational costs, respectively [24].
Another technique, the seminormal equation method, combines the normal equation
approach with QR factorization. In this method, QR factorization is used on one side of
the normal equation to simplify the solution x to RTRx = AT b where no information
is needed about Q [44]. Although this method reduces the amount of memory needed
to decompose a matrix, if A is ill-conditioned, the method may not find an accurate
solution.

Dense linear algebra problems were one of the earliest applications for general purpose
GPU computing dating back to the early 2000’s [51]. Now, NVIDIA has standard GPU
libraries for both basic linear algebra subprograms (BLAS) and dense linear algebra
solvers as libraries built into CUDA that are able to solve LU factorization, Cholesky
factorization, and all other types of dense linear algebra problems [49, 50]. Work has also
been conducted on systems that use both the CPU and the GPU to perform linear algebra
problems in parallel on both processing units in libraries such as MAGMA [64]. While
most QR factorization algorithms are inherently sequential, the most time consuming
operations of the algorithm can be parallelized to be executed on GPUs.

To allow for a wider audience to use GPU solvers, a considerable amount of research
has gone into autotuning, methods that are used to automatically tune solver perfor-
mance on different architectures [5, 43, 68]. Autotuning approaches cannot provide a
certificate of optimality to ensure that they identify the best possible parameters since
an exhaustive search of all parameter options is prohibitively expensive. Some common
tuning approaches require a programmer’s insight into the solver to determine accept-
able values, and then use empirical testing to identify better values. Other methods use
heuristics that limit certain parameters to a reduced set of values, and then exhaustively
enumerate all of the remaining choices.

Optimal tuning parameters are desirable as they can lead to significant performance
benefits. For example, well chosen parameters have led to a 25% increase in performance
compared to default parameter values in the case of matrix-matrix multiplication [43].
This paper investigates the potential of using DFO and SO solvers to tune GPU algo-
rithms for LLSPs. The idea of using DFO algorithms to tune algorithms is not new.
Audet and Orban [10] proposed a DFO approach to tune a trust-region method. By
using DFO and SO solvers to determine optimal tuning parameters for solving LLSPs
with GPUs, the primary contributions of this paper are as follows:

(1) We provide a computational comparison of DFO and SO algorithms, thus adding to
a recently emerging literature on comparisons of DFO algorithms that is still in its
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infancy [59] and helps increase our understanding of the capabilities of these solvers.
(2) We show that it is possible to accelerate MAGMA’s QR solver by a factor of 1.8 for

large TS matrices compared to the default MAGMA algorithm.
(3) We demonstrate that a specific collection of five DFO solvers is capable of finding

optimal GPU parameters and that it succeeds in doing so while requiring an order
of magnitude fewer simulations than complete enumeration.

The remainder of this paper is organized as follows. In Section 2, we review QR factor-
ization which we use to solve dense LLSPs, and we analyze state-of-the-art CPU, GPU,
and hybrid QR algorithms. In Section 3, we evaluate four QR solvers, cuSolverDN, LA-
PACK, MAGMA, and PLASMA in a comparative study that aims to determine a high
quality solver that may be amenable to performance improvements through parameter
tuning. In Section 4, we describe different types of DFO and SO algorithms that were
used in our experiments to determine optimal GPU tuning parameters. In Section 5,
we use the DFO and SO algorithms to tune MAGMA and compare the performance of
the tuned MAGMA library against default options. Finally, we provide conclusions in
Section 6.

2. QR factorization

QR factorization decomposes A into the product of two matrices Q and R, where
Q is an orthogonal matrix, and R is an upper triangular matrix. This decomposition
technique can be applied to any square or rectangular matrix. QR algorithms based on
the Gram-Schmidt method and the Givens rotation method are sequential in nature and
are not amenable to parallel computing. On the other hand, QR algorithms based on
approaches such as the Householder transformation method can achieve high levels of
performance on multicore computers or GPUs [4].

2.1 Parallel Householder factorization methods

Utilizing Householder transformations, a few parallel QR algorithms have been de-
veloped to solve large problems. These methods decompose A into panels or tiles that
can be operated on with matrix-matrix multiplication that can be sped up with parallel
computing. Implemented in LAPACK, panel factorization was introduced to speed up
QR factorization by taking advantage of cache locality [7]. Panel factorization is a tech-
nique where A is divided into rectangular panels which have m rows and nb columns,
where nb < n. The block size, nb, is an adjustable value, which is used to manipulate the
algorithm’s granularity. Blocked methods are composed of two operations, panel factor-
izations, which are limited by matrix-vector multiplication, and matrix updates which are
bound by the performance of matrix-matrix multiplication. Panel factorization involves
the decomposition of a panel into the product of Q and R, and matrix updates involve
multiplying the QT matrix from the panel factorization with trailing panels. With the
WY representation [60], it is possible to delay and apply many updates simultaneously
with matrix-matrix multiplication.

2.2 Tall and skinny QR and communication-avoiding QR

While panel methods work well with square matrices that are limited by their update
steps, blocked methods perform an order of magnitude worse for TS matrices [8]. This
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decrease in performance can be attributed to a communication limitation that occurs
when the solvers are bottlenecked by memory bandwidth. To increase the performance
of solvers for TS matrices, the authors of [25] created tall and skinny QR (TSQR) which
is an algorithm that minimizes the amount of memory access required to perform QR
factorization. Algorithms for TSQR divide the matrix into square tiles, and perform mul-
tiple tile factorizations simultaneously. Tile factorization is similar to panel factorization,
except that tiles are of size nb×nb and elimination operations also need to be used to zero
out tiles that are below the diagonal. After a series of tile factorizations, the transforma-
tions computed by the corresponding tile factorization are applied to the trailing tiles in
each row of tiles. TSQR algorithms require more operations than panel factorization al-
gorithms because of the need to use parallel tile factorization and elimination operations
to generate R, which are not required in panel QR algorithms. However, factorization
and elimination operations can be overlapped in TSQR to increase performance when
run on a multicore CPU or GPU.

The TSQR algorithm is designed for TS matrices but is slower than blocked methods
on square matrices. As an extension to handle wider problems, communication-avoiding
QR uses concepts from TSQR with a tree update procedure [8]. These changes allow
TSQR to be extended for use on square matrix problems as well as on tall and skinny
problems. In communication-avoiding QR, the block size is a key variable that controls
the algorithm’s granularity and trades off how small the tiles are with how efficiently a
core can factorize a single tile.

2.3 State-of-the-art QR solvers

Motivated by the need to solve large and dense problems, QR factorization research has
considered GPU-only, CPU-only, and hybrid implementations. Two state-of-the-art CPU
solvers are LAPACK and PLASMA. LAPACK was one of the first dense linear algebra
libraries created in the early 90’s to handle large linear algebra problems [7]. PLASMA
was created later as a multicore version of LAPACK that was meant to increase the
parallelism of LAPACK and allow the solution of large problems more efficiently using
blocking and other techniques. MAGMA, a hybrid dense linear algebra library [19], is
designed to accelerate dense linear algebra routines by assigning sequential tasks to the
CPU and parallelizable tasks to the GPU [64]. Hybrid algorithms gain significant per-
formance benefits by simultaneously running operations in parallel on the CPU and the
GPU. In particular, MAGMA runs the dgeqrf kernel from LAPACK on the CPU at the
same time as the magma dlarfb kernel on the GPU [37]. The LAPACK dgeqrf kernel
performs a panel QR factorization routine on a panel of A, while the magma dlarfb kernel
uses the computed Householder reflectors from the factored panel to update the trailing
matrix panels on the GPU. The magma dlarfb kernel involves a series of matrix-matrix
multiplications, and a triangular matrix multiplication operation. These matrix multipli-
cation operations are performed on the GPU through the cuBLAS library. Overlapping
dgeqrf and dlarfb calculations, magma dgeqrf3 gpu updates one panel. Simultaneously,
the next panel is factored on the CPU and the remaining panels are updated on the GPU.
Panel factorization computations are sequential in nature, and are best handled by the
CPU, while update operations that are filled with matrix-matrix multiplication opera-
tions are best performed in parallel by the GPU, allowing for an efficient distribution of
work.

One disadvantage of hybrid computing is that it relies on expensive data transfers
between the processing units. All data that is transferred between these units has to pass
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through the PCI express bus. Newer PCI express buses have a peak memory bandwidth
of 32 GB/s, an order of magnitude lower than the peak memory bandwidth of newer
GPUs. This difference in transfer speed results in CPU to GPU communication being
expensive, limiting the performance of many hybrid algorithms. Thus, hybrid algorithms
have to be developed carefully to limit the transfer between the CPU and the GPU.

For problems where computations are not bottlenecking performance, solving the en-
tire problem on the GPU can be a more efficient strategy. Communication-avoiding QR
is one example of a GPU-only algorithm that is designed to avoid the penalty of the
PCI express bus [8]. NVIDIA has also designed its own GPU-only dense QR factor-
ization algorithm, included in the library cuSolverDN, where the compiler is in charge
of optimizing architecture specific variables to solve QR factorization problems on the
GPU [50]. One advantage of cuSolverDN is that NVIDIA has knowledge of how their
software and hardware interact, allowing them to optimize their solver.

3. QR factorization comparative study

The standard approach for comparing QR factorization algorithms in the literature is
to evaluate their performance on a range of square matrix problems [1]. Square matrices
are used for comparing the peak performance of solvers when they are compute-bound,
where solvers that have the best performance are considered the best. However, not all
problems are able to be parallelized in an efficient way that can fully utilize the entire
GPU. Thus, another meaningful performance metric is how well an algorithm performs
when it is communication-bound (limited by data transfer). Communication limitations
have been commonly observed when decomposing TS matrices with QR factorization [8].
While we compared different solvers for both square and TS matrices to learn which
solvers are best for different types of problems, our primary focus was on discovering
which solver was best able to handle TS problems.

We conducted our experiments on a workstation running CentOS7, on two Intel Xeon
processors E5-2660 v3 at 2.6 GHz and 128 GB of RAM. The workstation is equipped with
a NVIDIA Tesla K40 GPU, which has 15 streaming multiprocessors each with 192 CUDA
cores, 12 GB of RAM, and a peak memory bandwidth of 288 GB/s. The algorithms are
compiled with GCC version 5.2 using optimization flag -O3, and the NVCC CUDA 7.5
compiler when applicable. The matrices used in all of the experiments were randomly
generated with elements between 0 and 1 from a uniform distribution. These matrices are
sufficient for our purposes since performance of the algorithms compared is based entirely
on the number of floating point operations performed, which is determined by the size
of the matrix, and not its condition. Each matrix size was evaluated with ten different
randomly generated matrices in double precision accuracy, and the average performances
are reported. Performance was measured in terms of billions of floating-point operations
per second (GFLOPs) taken by QR factorization. The number of operations needed to
solve LLSPs by x = R−1QT b is negligible and ignored. We conducted two comparative
studies, one on square matrices, and the other on TS matrices. Table 1 summarizes
the solvers used in the computational experiments, and their defining properties. BLAS
refers to basic linear algebra subprograms utilized and are the routines that perform
basic vector and matrix operations [13].
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Table 1.: QR libraries used in comparative experiments

Solver Computing environment BLAS library

cuSolverDN v7.5 [50] GPU only cuBLAS v7.5 [49]
LAPACK v3.6.1 [7] CPU only OpenBLAS v0.2.18 [69]
MAGMA v2.1 [64] Hybrid cuBLAS v7.5

PLASMA v2.8.0 [30] Multicore CPU Intel MKL v16.0.3
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Figure 1.: Performance of four different LLSP solvers for square matrix problems

3.1 Square matrices

We factor square matrices ranging from 1000 to 36000 rows by increments of 1000.
Figure 1 shows solver performance in terms of GFLOPs as a function of matrix size.
As seen in this figure, MAGMA outperforms all of the other solvers by over 150% for
problems with more than 5000 rows. MAGMA, which simultaneously performs sequential
factorizations on the CPU and update calculations on the GPU, excels at solving square
problems that are amenable to solution approaches that utilize both processing units.
Even though the performance of hybrid algorithms suffers from continuously transfer-
ring data between the CPU and the GPU, by overlapping updates with factorizations,
MAGMA is able to minimize the idle time of the GPU allowing it to outperform the other
solvers. While MAGMA is able to saturate the GPU with parallel update computations,
cuSolverDN performs both update and factorization operations on the GPU. When per-
formed on the GPU, the factorization operations lower the average performance of the
algorithm, and prevent devoting the entire GPU to the update operations that are rich
in matrix-matrix multiplications. Both of these GPU solvers exhibit a typical behavior
where their performance increases linearly as the problem size increases, until a certain
point. Problems larger than that problem size begin to lead to leveling off in performance,
because the GPU cores become fully utilized and peak performance is reached.

When comparing MAGMA or cuSolverDN to LAPACK or PLASMA, MAGMA and
cuSolverDN are about ten times more efficient than LAPACK, highlighting the benefits
of using GPUs for dense linear algebra. For larger square problems, PLASMA is five
times faster than LAPACK, but PLASMA is still significantly outperformed by the
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Figure 2.: Performance of four different LLSP solvers for TS matrix problems

GPU solvers because of how efficiently the GPU solvers are able to factor square dense
problems.

3.2 Tall and skinny matrices

Even though the analysis of square matrices is useful for determining an algorithm’s
peak performance, TS problems are more relevant for solving LLSPs. Our choice of
TS matrices also aims to analyze algorithms that are communication-bound because
those problems are representative of LLSPs in the machine learning area [21, 27]. We
are utilizing TS matrices with 500 columns and 1000 to 126000 rows in increments of
5000. Beyond 1000 columns, solvers become limited more by computations as opposed
to communication limitations, which is not the behavior we are trying to investigate.

From Figure 2, the average performance of solvers on TS problems is an order of mag-
nitude worse than the average performance on square problems with the same number of
rows. This decrease in performance is related to solvers becoming communication-bound
for TS matrices and is consistent with what has been observed before in the literature [8].
Algorithms are not able to perform as well on TS matrices because common approaches
to solve these problems are bandwidth-bound and cannot fully utilize the GPU. Even
though the performance for solving these problems is lower than for square problems,
determining the best solvers for these problems is essential to efficiently solving LLSPs.

Based on the results in Figure 2, there is no clear best solver like in the case of
square problems. For smaller problems, it is beneficial to solve the entire problem on the
GPU as opposed to offloading small factorization operations to the CPU, which is why
cuSolverDN has the best performance for these problems. Although cuSolverDN barely
outperforms MAGMA, both GPU solvers outperform the CPU solvers. Like in the case of
square problems, as the problems increase in size, the performance of the solvers begins
to level off when the transfer rates become saturated. For problems with 35000 to 60000
rows, the performance of MAGMA increases and surpasses the constant performance of
cuSolverDN, and remains above PLASMA.

The most surprising result was that while MAGMA began to decrease in performance
as the problem size increased beyond 60000 rows, PLASMA’s performance increased.
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MAGMA’s performance was expected to increase and level off as in the case of square
problems. However, in this experiment as the number of rows increased, the number
of columns was held constant. The block size which has a large effect on performance
in MAGMA is controlled by the smallest dimension of the matrix. As the number of
rows increased beyond a certain point, while maintaining the number of columns, the
block size could not change leading to a decrease in performance for larger problems.
Without changing the block size as the problems become even taller, the CPU became less
efficient at decomposing taller matrices. This decrease in factorization efficiency, shifted
the bottleneck from the update operations and data transfers on the GPU, that are
normally the most time consuming, to the factorizations and data transfers on the CPU.
PLASMA, on the other hand, experienced an increase in performance because it was able
to parallelize both the factorization and update operations on the CPU without having
to transfer data through the PCI express bus. The performance of cuSolverDN does not
seem to be affected by increasing the problem size, suggesting that the performance is
probably limited by communication as opposed to how fast operations can be performed
on the GPU. Finally, LAPACK had the worst performance of the four solvers for all
problem sizes. Its performance seems to remain relatively constant regardless of the
problem size.

These results suggest that, depending on the application, different solvers could be
useful for solving TS LLSPs. One question we asked was if there was a way to increase
the performance of MAGMA because it was able to achieve the highest performance
in the square problems, suggesting that it could be the most efficient solver for large
TS problems. In this study, we do not intend to tune all four of the solvers. Instead,
we focused on only the one solver that seemed the most promising, MAGMA. Towards
improving MAGMA, we investigated whether there was a way to not only stop the
performance degradation on larger problems, but also to further increase the performance
for all problem sizes above the other solvers. To answer this question, we carried out
experimentations aiming to determine whether DFO and SO algorithms are capable of
determining optimal tuning parameters for MAGMA. These optimization algorithms are
discussed in the next section.

4. Derivative-free optimization and simulation optimization

As the complexity of GPU algorithms increases, the interactions between algorithms,
compilers, and hardware becomes more difficult to model. As a result, the problem of
tuning algorithms to particular software and hardware combinations has become chal-
lenging. Tuning algorithms is especially difficult when there is no explicit algebraic model
for the relationship between tuning parameters and performance, forcing the one carrying
out the optimization to treat the system as a black box.

To address these issues with a more systematic approach than has previously been
used, we utilized DFO and SO algorithms [6, 59]. These classes of algorithms address op-
timization problems whose objective functions are not available in algebraic form and/or
gradients and functions are difficult, too expensive to evaluate, or noisy. Noise, for in-
stance, may be due to random variations in measurements, including computer time
measurements. Both classes of algorithms apply to black-box systems, i.e., systems for
which the input-output relationship is not available in a form other than by querying
a simulator or running an experiment. The literature reserves the term SO to denote
algorithms that are built for an explicit treatment of noise and stochasticity. On the
other hand, DFO algorithms may be applied to noisy problems but do not come with
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theoretical results for this class of problems. In the following sections, we will introduce
the DFO and SO solvers we investigated in this study. For a more detailed background
on DFO solvers, the interested reader is referred to [59], and to [6] for a more thorough
analysis of SO solvers. Table 2 provides a listing of the DFO and SO solvers investigated
in this paper.

Table 2.: DFO and SO solvers used in this paper

Solver Type

ASA† [38] DFO, global, stochastic
BOBYQA† [58] DFO, local, model-based
CMA-ES† [31] DFO/SO, global, stochastic
DAKOTA/DIRECT† [3] DFO, global, deterministic
DAKOTA/EA† [3] DFO, global, stochastic
DAKOTA/PATTERN† [3] DFO, local, direct
DAKOTA/SOLIS-WETS† [3] DFO, global, stochastic
DFO† [20] DFO, local, model-based
FMINSEARCH† [42] DFO, local, direct
GLOBAL† [22] DFO, global, stochastic
HOPSPACK† [54] DFO, local, direct
IMFIL† [41] DFO, local, model-based
MCS† [48] DFO, global, deterministic
NEWUOA† [57] DFO, local, model-based
NOMAD† [2] DFO, local, direct
PRAXIS† [15] DFO, local, direct
PSWARM† [67] DFO/SO, global, stochastic
SID-PSM† [23] DFO, local, direct
SNOBFIT† [36] DFO/SO, global, deterministic
TOMLAB/CGO† [33] DFO, global, deterministic
TOMLAB/GLB† [40] DFO, global, deterministic
TOMLAB/GLC† [40] DFO, global, deterministic
TOMLAB/GLCCLUSTER† [40] DFO, global, deterministic
TOMLAB/LGO† [53] DFO, global, stochastic
TOMLAB/MSNLP† [33] DFO, global, hybrid
TOMLAB/RBF† [55] DFO, global, deterministic
TOMLAB/GLCDIRECT∗ [33] DFO, global, deterministic
TOMLAB/MIDACO∗ [33] DFO, global, stochastic
TOMLAB/GLCFAST∗ [33] DFO, global, deterministic
TOMLAB/GLCSOLVE∗ [33] DFO, global, deterministic
TOMLAB/GLCCLUSTER∗ [33] DFO, global, deterministic
SPSA BASIC† [63] SO, local, stochastic approximation
SPSA Second Order† [63] SO, local, stochastic approximation
STRONG† [18] SO, local, response surface, trust region
SNM∗ [17] SO, global, direct search
† solver accepts continuous variables only
∗ solver accepts continuous and integer variables

9



September 11, 2018 Optimization Methods & Software tuning

4.1 DFO local search methods

4.1.1 Direct methods

Direct search methods are defined as those that compare trial solutions with the current
best solution using some strategy to determine what the next evaluation point should
be [34]. In practice there is a variety of techniques that can be used, such as simplex
methods, pattern search algorithms, and mesh adaptive direct search methods [9, 47, 66].
Originally, direct methods were used to solve difficult problems without any formal termi-
nation or convergence proofs [59]. As the field has developed, under certain assumptions,
a few different direct methods can be shown to converge to a stationary point [65].

4.1.2 Model-based methods

Model-based methods sample the search space to generate surrogate models which can
be used to suggest new evaluation points [59]. Surrogate models are typically first- or
second-order models of the black-box system that can be solved to optimality faster than
performing function evaluations on the black-box system. Surrogate models allow these
methods to use gradient information from the surrogate model as well as probability
density function information to guide the search of the true objective function. Model-
based methods begin by sampling the search space to build a surrogate model. The
surrogate models are then updated based on results from more evaluations of the black-
box function. There are two major types of model-based methods, trust-region methods
and filtering methods [28, 56].

4.2 DFO global search methods

4.2.1 Deterministic methods

Global deterministic search methods fall into two major categories, direct methods
and model-based methods. These methods use techniques that balance local and global
search so that they do not get trapped in a local optimum until they have sufficiently
explored the search space. Some of these methods rely on optimizing a function that
underestimates the objective function by using knowledge of the Lipschitz constant [61].
If the Lipschitz constant is unknown, then other methods to perform global search can
be used such as DIviding the search space into hyperRECTangles (DIRECT), or branch-
and-bound. The DIRECT algorithm computes function values at the center of intervals
and searches the space for an optimal point, and in the absence of a Lipschitz constant
terminates after reaching an iteration limit [40]. Multilevel coordinate search (MCS), like
the DIRECT algorithm, divides the search space into boxes where it is able to vary how
local the search method is by limiting how many times the same box can be subdivided
and processed [35]. Branch-and-bound explores the problem space by branching on the
domain. A lower bound can be estimated based on function evaluations and an upper
bound can be determined through statistical bounds [52]. Then branches can be fathomed
if a lower bound is no smaller than the best known solution.

Global model-based methods operate by optimizing a surrogate model to determine
candidate optimal points for the black-box model. After a point is chosen from the
solution of the surrogate model, that point is evaluated and used to update the accuracy
of the surrogate. There are many techniques that can create these surrogate models such
as response surface methods [11], pattern search [14], and optimization by branch-and-
fit [36].
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4.2.2 DFO stochastic methods

As opposed to deterministic methods, stochastic approaches require non-deterministic
steps that can be used to choose evaluation points. Many stochastic DFO solvers are
inspired by physical or biological principles. Stochastic methods have been widely studied
in the literature and are simpler to implement than deterministic algorithms. Stochastic
methods prevent getting trapped in a local optimum by using techniques to help them
diversify their search strategy, while also being able to intensify and reach a global
optimum when certain conditions are satisfied. A few of the stochastic search strategies
have global convergence proofs under certain assumptions [12]. Some popular methods
include hit-and-run algorithms [62], simulated annealing [46], genetic algorithms [32],
and particle swarm optimization [26]. Many global derivative-free optimization solvers
combine deterministic and stochastic methods into hybrid algorithms.

4.3 SO local search methods

Local SO algorithms rely on strategies that are similar to DFO, but include techniques
that allow them to handle the uncertainty in the output values [6]. Three common types of
these algorithms include response surface methodologies (RSM), gradient-based methods,
and direct search methods. RSM relies on generating a surface (surrogate model) to model
the input-output relationship of the simulation. Once a surrogate model is generated,
derivative-based optimization techniques can be used to determine optimal points that
can be compared with simulation results to further refine the model.

Finite difference is commonly used to estimate gradient information. However, in the
case of simulation optimization, where simulations have uncertainty, and can be costly,
finite differences is not an approach that can be used to identify accurate gradient in-
formation. Instead, gradient-based methods use stochastic approximations to generate
an estimated gradient to move towards an optimal solution. Simultaneous perturbation
stochastic approximation (SPSA) is an algorithm that is able to estimate gradient infor-
mation with only two function evaluations [63].

Direct search methods optimize by performing a sequential examination of points gen-
erated by some strategy [34]. These methods rely solely on a comparison of function
values, and make no attempt to estimate gradient information. Almost all SO direct
search methods are extensions of DFO direct methods, that employ sampling techniques
to manage the uncertainty obtained in measurements, such as evaluating the same point
a few times to calculate an average and standard deviation in the measurement. These
methods are simple to implement and one example of an algorithm is SNM that uses a
Nelder-Mead direct search [17].

4.4 SO global search methods

Global SO methods are comprised of ranking and selection algorithms, metaheuristics,
model-based methods, and Lipschitzian optimization. Like DFO global methods, these
algorithms are equipped with tools to escape from local optima and explore the entire
search space at the cost of usually more function evaluations. With a finite parame-
ter space, ranking and selection tries to minimize the number of repeated simulations
required to accurately identify an optimal solution. The goal of these algorithms is to
guarantee that the optimal design is better than all others by some amount δ with
a probability of 1 − α. Metaheuristic approaches rely on some stochastic element when
identifying what points to evaluate. Typical approaches used are genetic algorithms, sim-
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ulated annealing, tabu search, and scatter search. These methods are easy to implement
and often effective.

Model-based SO methods build probability distributions that are used to guide the
search. For instance, covariance matrix adaption-evolution strategy (CMA-ES) gener-
ates probability distributions for covariances between variables, essentially amounting to
estimating hessians. For a more exhaustive list of different strategies used for all of these
methods see [6].

5. Using DFO and SO to optimize adjustable parameters of the MAGMA
library

The aim of this computational study is to investigate if we can increase the performance
of MAGMA by using DFO and SO solvers to tune its parameters. In this study, we
investigated the effect of varying the block size (nb) used in QR factorization and how A
is stored in memory. The matrix A can either be stored in pinned memory on the CPU
or in non-pinned memory allocated by malloc. By default, MAGMA stores A in pinned
memory which can be faster to transfer data back and forth between the CPU and the
GPU, but there is a cost associated with storing a matrix in pinned memory. Other
typical GPU variables such as the number of threads, the size of a thread block, and
the number of thread blocks to launch are primarily controlled by cuBLAS and were not
able to be manipulated, unless we developed our own GPU BLAS routines. Typically,
cuBLAS has proven to be the most efficient version of GPU BLAS and we defaulted to
using that for this study.

Optimal tuning parameters are dependent on two factors, the GPU architecture that
is being used, and the size of the matrix that needs to be solved. To determine optimal
tuning parameters for any sized matrix, one can develop a lookup table where the ma-
trix size and the GPU architecture are matched to optimal parameters. The MAGMA
library has one of these lookup tables, which was created through experimentation on a
different GPU architecture than the NVIDIA Tesla K40. To measure the effectiveness of
using DFO or SO to determine tuning parameters, we compare the performance of using
MAGMA default parameters against the performance of parameters identified from DFO
or SO. For the problem under study, there are 1000 possible combinations of parameters,
thus affording us the possibility to determine an optimal solution via complete enumer-
ation. The questions addressed in the computational experimentation were (a) whether
DFO/SO solvers are able to find an optimal solution and (b) whether they can do so
much faster than exhaustive enumeration.

5.1 DFO parameter tuning results

The DFO algorithms were used to determine optimal parameters for twenty-six differ-
ent TS matrix sizes that were tested in Section 3. Each of the DFO solvers was given
a limit of twenty function evaluations to search for an optimal solution. Most of the
DFO solvers used in this experiment optimize in real spaces but the selected MAGMA
parameters are integer-valued. Integrality was handled by rounding real values to the
nearest integer inside the simulator. Each of the DFO solvers that uses a starting point
was given the same initial point, and we carried out five trials with different starting
points to minimize the effect a starting point had on solver performance. Parameters
were selected from the DFO algorithm that produced the best result for each problem
size. Trials were conducted with DFO, and MAGMA default parameters in the same
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Figure 3.: MAGMA’s QR factorization performance with different tuning parameters

manner as the previous experiments for TS matrices. To determine how far from the
true optimal solutions the DFO solvers were, we also enumerated all feasible variable
combinations. In Figure 3, it may appear counter intuitive that a few of the best DFO
performance points are better than the enumeration performance. In these cases, the
parameters reported for both the DFO and enumeration results were the same but dif-
ferences in how the operating system prioritized CPU jobs resulted in slightly different
timing measurements.

From Figure 3, we see that for smaller problems there is not much benefit in opti-
mizing tuning parameters. As the problem size increases, we see significant performance
benefits from finding optimal tuning parameters. For problems with 126000 rows, using
the DFO determined parameters speeds up MAGMA by a factor of 1.8 in comparison to
the MAGMA default values. Additionally, by using these tuned parameters, the perfor-
mance of MAGMA not only does not decrease as the problem size increases, but instead
continues to increase.

As seen in Table 3, as the problem size increased, optimal performance was found by
decreasing the block size and using pinned memory. Using a smaller block size allows the
GPU solver to more finely divide the work, and fully utilize the GPU for smaller problems.
For all problem sizes, there is a performance increase compared to the MAGMA default
values, but for large problems when the performance of MAGMA began to decrease,
there is a significant performance benefit from using DFO-determined parameters. For
every problem in our test set, the DFO solvers determined that using pinned memory
always outperformed non-pinned memory. For smaller problems than those reported here
we observed that using pinned memory is not optimal. Nonetheless, it appears that for
matrices larger than 700 by 500 pinned memory is the optimal way to store A.

5.2 DFO solver performance

One initially puzzling result was that, for some problem sizes, the increase in perfor-
mance from using DFO was not as large as for other problem sizes. When comparing
the DFO results with the enumeration performance we observe that those performance
decreases do not happen when the best parameters are chosen. This suggests that none
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Table 3.: DFO determined optimal tuning parameters for different sized matrices
compared against the default MAGMA values

Number of rows Optimal nb MAGMA nb

1000 76 64
6000 16 64
11000 16 64
16000 15 64
21000 13 64
26000 8 64
31000 8 64
36000 14 64
41000 8 64
46000 8 64
51000 8 64
56000 8 64
61000 8 64
66000 8 64
71000 8 64
76000 8 64
81000 8 64
86000 8 64
91000 8 64
96000 8 64
101000 8 64
106000 8 64
111000 8 64
116000 8 64
121000 8 64
126000 8 64

of the DFO solvers were able to find the optimal parameters for certain problem sizes.
However, this could be explained by the number of function evaluations given to the DFO
solvers. Being able to determine high quality tuning parameters in a reasonable amount
of time is a primary motivation for this work. To decrease the expected computation time,
we spent some time experimenting with smaller problems. We first investigated what a
sufficient number of function evaluations to determine good solutions was for a few prob-
lems. We determined that increasing the number of function evaluations above twenty did
not lead to much of an observed performance benefit so we gave every DFO solver twenty
function evaluations to determine optimal parameters. Although some solvers were able
to identify good solutions in twenty function evaluations, some of the DFO solvers needed
a few more function evaluations to determine optimal solutions and ended up with poor
solutions after twenty function evaluations.

To determine what subset of solvers were best able to solve this problem, we compared
the performance of twenty-six continuous DFO solvers and five integer DFO solvers. If
MAGMA would need to be tuned on another GPU, a user could focus on the solvers that
proved to be the most efficient in this experiment, saving them time and allowing for high
quality parameters to be determined quickly. Many of the solvers that we used in the
experiment yielded parameters that had a worse performance than the MAGMA default
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performance. This could have occurred for a few reasons, the first being that we did
not give enough function evaluations to some of the DFO solvers to determine optimal
solutions. Without enough function evaluations, some of the solvers began evaluating
points at one boundary that led to bad solutions, and were not able to find a good
solution within the stated limit on function evaluations.

For local solvers in particular, another issue was that some of the solvers were getting
stuck in fake local maxima. Using GFLOPs to measure the performance of MAGMA
requires measurements of execution times. These execution times (wall clock times) can
vary even when the same experiment is repeated multiple times. Noise in execution
time could have resulted from the operating system prioritizing the algorithm slightly
differently between runs, causing imbalances on how the problem was solved effecting
performance. Noise effecting the DFO search was mostly observed for some local solvers,
DFO, NEWUOA, FMINSEARCH, BOBYQA, and PRAXIS. These DFO solvers would
begin at some starting point, and on the next function evaluation move to another point
that would be rounded to the exact same initial point. The solver would then obtain a
slightly different performance, and use the two different performance results from the
same point to guide the search to a new point. For some of these solvers this process
was repeated for all twenty function evaluations without the parameters being evaluated
changing at all. The solvers would pick a value that was supposed to move towards a
local minimum, but instead could not progress to an optimal solution.

In Table 4, the DFO solvers used were compared to demonstrate how well each per-
formed for all of the TS problems. The columns in Table 4 indicate the average im-
provement that each solver had over the twenty-six problems tested, and the number of
times each solver found the best block size. There were a few solvers that found the best
parameters a few times, but performed fairly poorly on some problems decreasing their
average improvement. Looking at both of these metrics, it is possible to identify a subset
of solvers we can use to optimally solve all of the TS problems. If one were to use the five
DFO solvers that had the best performance, GLCCLUSTER, HOPSPACK, SID-PSM,
MCS, and SNOBFIT, they would be able to determine optimal tuning parameters for
these twenty-six problems an order of magnitude faster than exhaustive enumeration
could.

Table 4 suggests that the continuous solvers that were best able to determine the
optimal tuning parameters were local direct solvers SID-PSM and HOPSPACK, and
global deterministic solvers SNOBFIT and MCS. We also observed that some of the
integer solvers performed exceptionally well for these problems. For these problems, the
integer version of GLCCLUSTER was able to find the optimal solution more often than
any of the other DFO solvers, even for problems where none of the other DFO solvers
could find the optimal solution. The other integer solvers, GLCDIRECT, GLCFAST, and
GLCSOLVE all performed well and were able to identify the optimal parameters in a few
problems, but were not able to perform as well as GLCCLUSTER. One surprising result
is the comparison between the continuous and the integer versions of GLCCLUSTER.
We notice an almost 60% increase in performance when the integer version is used,
suggesting that there are significant benefits for using integer solvers in this parameter
tuning problem. The integer solvers were able to do better than most of the continuous
solvers because they did not get stuck on evaluating the same point because of rounding
as in the case of continuous solvers.

One reason why global solvers are useful for solving these problems is that, if the
functions are non smooth and possess many local maxima, local solvers may not be
able to identify optimal solutions. In the case of our problem, when we carried out the
enumeration of all the variable combinations, we discovered that the problems we are

15



September 11, 2018 Optimization Methods & Software tuning

Table 4.: Average improvement and number of best options that each DFO solver
found in the TS matrix experiments

Solver Performance improvement
(%)‡

Best options

ASA 6 2
BOBYQA -73 0
CMA-ES -2 0
DAKOTA/DIRECT 7 0
DAKOTA/EA 4 0
DAKOTA/PATTERN -16 0
DAKOTA/SOLIS-WETS -11 0
DFO -68 1
FMINSEARCH 7 0
GLOBAL 7 2
HOPSPACK 16 13
IMFIL 7 1
MCS -2 2
NEWUOA -73 0
NOMAD 4 1
PRAXIS -74 0
PSWARM -40 0
SID-PSM 13 10
SNOBFIT 3 4
TOMLAB/CGO -16 0
TOMLAB/GLB -16 0
TOMLAB/GLC -16 0
TOMLAB/GLCCLUSTER† -38 0
TOMLAB/LGO -38 0
TOMLAB/MSNLP -19 1
TOMLAB/RBF -16 0
TOMLAB/GLCDIRECT 11 6
TOMLAB/MIDACO -18 1
TOMLAB/GLCFAST 10 4
TOMLAB/GLCSOLVE 9 5
TOMLAB/GLCCLUSTER∗ 18 18
† solver accepts continuous variables only
∗ solver accepts continuous and integer variables
‡ Performance improvement calculated as (tdefault − ttuned)/tdefault
where tdefault is MAGMA with default tuning parameters

maximizing over are not well-behaved concave functions, as shown in Figure 4. Figure 4
was obtained by plotting the performance results from each parameter combination tested
for a given problem size. The performance function has multiple local maxima. As a
result, it would be difficult to find an optimal solution with local solvers. We believe
the reason for the presence of multiple local maxima has to do with performance trade
offs that occur when the block size is changed. In particular, through profiling of the
MAGMA algorithm with different block sizes, we observed that, for large block sizes, the
occupancy on the GPU was low, causing most of the GPU to remain idle during a large
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portion of the calculations, while the data transfer rate was high. When the block size was
smaller, we observed the opposite trend where the GPU had a high level of occupancy,
and the transfer rate of data between the processing units was low. The places where local
maxima occur are pareto optimal points that best maximized performance by balancing
the trade off between the occupancy and data transfer rates between the CPU and the
GPU.

In addition to tuning the parameters of each individual problem instance, we can
search for better parameters to be applied to the entire test set. The best parameters
from such a study would suggest a set of values that can be used as the default values in
MAGMA. From this experiment, we discovered that by using a block size of eight and
pinned memory, we were able to solve the entire test set faster than using the current
default MAGMA parameters. Even though a block size of eight is not optimal for all
problem instances, it leads to an average improved performance than using MAGMA’s
default block size of sixty-four. By using a block size of eight, users can improve their
existing MAGMA QR solver without having to use DFO to tune MAGMA. Of course,
these values are only guaranteed to be optimal for the NVIDIA Tesla K40. Different
values may be better for other GPU architectures.
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Figure 4.: QR factorization performance for one problem with different options selected

5.3 SO parameter tuning

We used four different SO solvers: SPSA basic, SPSA 2nd order, STRONG, and SNM.
In our first experiment, we ran the SO solvers under the same conditions as the DFO
runs, i.e., using twenty function evaluations, and each solver was given the same initial
starting point if the solver accepted one.

The average improvement over default MAGMA values of each SO solver is shown in
Table 5. SO solvers not improving the performance of MAGMA was unexpected. SO
solvers are designed for optimizing problems that have stochastic elements. However,
three of the four SO solvers performed significantly worse than the default MAGMA
parameter values. These results suggest that these three SO solvers require more function
evaluations than DFO solvers to determine high quality solutions. On the other hand,
SNM appeared to perform fairly well and found parameters that were improvements over
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Table 5.: Average improvement over MAGMA and number of best options that each
SO solver determined with twenty function evaluations

Solver Performance improvement
(%)

Best options

SPSA basic -74 0
SPSA 2nd order -79 0
STRONG -74 0
SNM 15 0

the default MAGMA values for each problem tested. However, for most problems SNM
was only able to find suboptimal solutions.

Suspecting that SO algorithms typically require more function evaluations to deter-
mine optimal solutions, we also conducted an experiment where we allowed the SO al-
gorithms 200 function evaluations. For the fourteen smallest problems we observed that,
for every problem, more function evaluations had no effect on the performance of the
SO algorithms. For the problems tested, the average performance benefit of using SNM
increased from 8% to 12%, while the other solvers found solutions that on average caused
MAGMA to take twice as long as MAGMA using default parameters. Both versions of
SPSA, and STRONG found solutions that were heavily-dependent on the starting point
they were given, while SNM was still only able to find suboptimal solutions. We conclude
that these SO codes are not mature enough yet to handle problems of this complexity,
causing them to not perform well, even with 200 function evaluations.

To compare the performance between SO and DFO solvers, we also studied the quality
of the solutions found as the number of function evaluations increased. In Figure 5,
we compared the best performance found by five different solvers over the first twenty
function evaluations. These results demonstrate that the SO solver SNM was able to
obtain a slightly better level of performance than the default MAGMA parameters within
four function evaluations, and able to surpass that after sixteen evaluations. SO solvers
typically will evaluate the same point multiple times to determine a mean and variance
in the noise, explaining why the SO solver’s performance remains relatively constant
for twelve function evaluations, while the DFO solvers seem to be constantly improving
performance.

6. Conclusions

This paper addresses the problem of determining optimal tuning parameters in GPU
QR factorization. Previous attempts to perform tuning relied on heuristics combined
with exhaustive enumeration to determine the parameters that maximized performance.
We introduced a systematic approach based on using derivative-free optimization and
simulation optimization algorithms.

The performance of thirty-one different DFO and four SO solvers was compared to
determine solvers capable of optimizing the performance of the MAGMA library on a
collection of problems. The best of these solvers provided optimal block size values that
sped up MAGMA by a factor of 1.8 for tall and skinny matrices with over 100000 rows.
With the DFO-determined parameters, the performance of MAGMA can be improved
to above all of the other state-of-the-art solvers for TS matrix problems. Even for larger
problems that the untuned version of MAGMA with default parameters had worse per-
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Figure 5.: Tracking the best performance found as the number of function evaluations
given to the different solvers increases for QR factorization of a 121000 by 500 matrix

formance than PLASMA and cuSolver, when tuned with DFO, MAGMA was able to
outperform all of the other solvers. As seen in Figure 6, this parameter tuning made
MAGMA the best performing LLSP solver over the entire range of tall and skinny ma-
trices that we considered.
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Figure 6.: Performance of four QR solvers, compared against the performance of
MAGMA with DFO-determined parameters

One of the reasons that we were able to find significant performance benefits over the
MAGMA default parameters is due to the coarse grained nature of MAGMA’s default
lookup table. MAGMA only changes the block size based on the smallest dimension of
the matrix, and the optimal parameters span a wide range of problem sizes. By improving
this type of lookup table to include changes for every 1000 rows or columns, performance
could be greatly improved. Even though this type of lookup table may not select the
optimal parameters, those values would result in a better performance than the current
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default parameters and could also be used as an intial point for DFO or SO optimization
to determine optimal tuning parameters for any problem size. This type of fine grained
lookup table will also allow a user the ability to try adjusting block size as factorization
progresses without having to optimize every iteration to determine what the optimal
block size may be.

The proposed approach relies on DFO solvers that are entirely agnostic to the hardware
configuration used. As a result, single-GPU, multiple-GPU, as well as hybrid multi-core
and multi-GPU environments can be tuned.
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