
Multi-Robot Coverage Path Planning in
3-Dimensional Environments

Nikolaos Baras, Minas Dasygenis, Nikolaos Ploskas
University of Western Macedonia

Department of Informatics and Telecommunications Engineering
Kozani 50131, Greece

nbaras@outlook.com, mdasyg@ieee.org, nploskas@uowm.gr

Abstract—Unmanned Vehicles are being used in several
application domains, such as mapping, agriculture, and
surveillance. In these application domains, the problem of
finding a path that covers the entire Area of Interest (AoI) in
a predefined environment is known as Coverage Path Planning
(CPP). Even though many works have been focused on solving
the CPP problem in 2D environments, the CPP problem in
3D environments has not attracted considerable attention. In
this paper, we propose an algorithm capable of solving the
CPP problem both in 2D and 3D environments. The algorithm
can utilize multiple robots tailoring the coverage path for each
robot based on its specifications, i.e., speed and type. We have
performed an experimental evaluation of the algorithm in
artificially synthetic environments and report the results.

Index Terms—autonomous robot, path planning, coverage path
planning, 2D coverage, 3D coverage

I. INTRODUCTION

Coverage Path Planning (CPP) is the problem of determin-
ing a path that covers all points of an area or volume of interest
while avoiding obstacles. CPP is a fundamental problem in
robotics with numerous applications, such as agriculture and
farming [1], [2], robot cleaning [3], and underwater operations
[4]. CPP algorithms that can find a solution in the case of
a single robot have to be revised in order to incorporate
the multi-robot dynamics. Even though many works [5], [6]
have targeted the CPP in 2D environments, these algorithms
cannot be used in 3D environments. In this research, we
propose an offline algorithm to solve the CPP problem in 3D
environments. Our proposed algorithm is capable of solving
the multi-robot CPP problem in two and three dimensional
environments, tailoring each robot’s path based on its technical
specifications such as type and speed. Our algorithm is an
extension of the DARP (Divide Areas based on Robots initial
Positions) algorithm proposed in [5]. The main novelty of the
algorithm is that the DARP algorithm has been extended for
3D environments and that the algorithm takes into account
the different type and speed of each robot. We also developed
an automated simulation tool to evaluate our algorithm and
measure its efficiency.

The structure of the paper is as follows. In Section II, the
background of this paper is presented along with related work.
Section III presents the proposed algorithm. In Section IV,
a comparison between the original DARP and our modified

version is presented along with a preliminary computational
study. Finally, the conclusions of this paper are outlined in
section IV.

II. RELATED WORK

Autonomous robots popularity has risen steadily over the
last decades [7]. Therefore, the CPP problem has attracted
much attention. There are several different approaches at-
tempting to solve the collision-free path planning problems
in general, and the CPP in particular. A CPP algorithm for
autonomous cleaning robots is introduced in [8]. They use
an extension of boustrophedon cellular decomposition [9]
combined with Dijkstra’s algorithm [10]. Even though this
algorithm produces an obstacle free coverage path in single-
robot situations, it is inefficient with respect to memory and
storage requirements. Gabriely and Rimon [11] proposed a
spiral Spanning Tree Coverage (STC) algorithm based on
the idea of dividing the environment into cells twice the
size of the robot (Approximate Cell Decomposition) [12].
Their algorithm offers complete coverage of the AoI while
avoding predefined obstacles. However, the proposed method
is capable of utilizing only one robot at a time. Kapoutsis et al.
[5] attempted to solve the CPP problem by equally dividing
the AoI based on the number of robots available. After the
total AoI is divided into multiple sub-areas, each robot uses
a standard STC technique to cover its exclusive area. Even
though their algorithm works in multi-robot situations, it does
not take into account different types of robots and it cannot
also be used in covering 3D environments.

Our work differs from the aforementioned ones in two
key points: (a) we solve the multi-robot CPP problem in 3D
environments, and (b) we take into account specific features of
the robots, like speed and type. Moreover, the proposed algo-
rithms solves the multi-robot CPP problem in both 2D and 3D
environments using a single unified algorithm. Additionally,
the constraint implementation is fully modular, meaning we
can select on runtime which constraints apply to each robot.
Since we introduce many constraints in the CPP problem, the
execution time of the proposed algorithm is larger than the
execution time of the aforementioned algorithms.

III. THE PROPOSED ALGORITHM

The proposed algorithm consists of four main stages (Fig-
ure 1). The first stage deals with the initialization of the
algorithm. The inputs to the algorithm include: the size and
the topology of the environment, obstacle locations and robot
specifications (such as type, speed, and initial positions). This
data can directly be read from a file. The algorithm then stores
all data in memory for faster access during runtime. In the
second stage, the connected parts of the environment are being
detected and labeled. The output of this stage includes a list
of all the connected parts of the AoI. In the third stage, the
total AoI is being divided into multiple sub-areas for each
robot. This stage outputs two or three dimensional arrays
containing information regarding the area assignment. In the
case of one single robot, the algorithm directly assigns the total
area to the robot without further calculations. Finally, in the
fourth stage, for every calculated sub-area, the coverage path
is being calculated. Outputs of the algorithm are: a graphical
representation of the coverage path for each robot and an
output file containing the coverage path.

Fig. 1. The stages of the proposed algorithm.

In the first stage, the environment, the robots and their
respective specifications are initialized. The environment is a
three-dimensional Euclidean space consisting of multiple 3D
cubicles (which we call votiles in contrast with tiles which
2D environments have). Every votile is placed on a (X,Y, Z)
coordinate. A votile is the smallest space that can be occupied

by any robot and every votile is equal with each other. Votiles
can be obstacles or free space which robots can traverse. In 2D
cases votiles have zero height. Obstacles are by definition areas
that robots cannot traverse. In 3-D environments the obstacles
may be located into various heights, obstructing for example
road vehicles while allowing flying vehicles to pass over them.
If the algorithm determines that flying over an obstacle is
mandatory in order to find the solution for the problem, that
path will be included in the final coverage path for the specific
robot with that movement capability (Figure 2).

(a) (b)
Fig. 2. A 2D (a) and a 3D (b) environment input to the proposed algorithm.
In (b), a robot with flying capability can fly over an obstacle.

Robot specifications include type and speed. In 2D environ-
ments, robots are by definition ground only vehicles. However,
in 3D environments robots can be either on-ground vehicles,
flying vehicles or underwater vehicles. Another characteristic
of robots is their movement speed. The movement speed is
defined as the rate at which the robot can move from one
votile to another. Robots operating on an environment can have
different movement speeds. For example, Robot A may have
twice the speed of Robot B, meaning, that in the same amount
of time, Robot A will cover twice the distance of Robot B. In
other words, Robot A will visit twice the votiles compared to
Robot B.

In the second stage, the non-connected ground areas of the
AoI are being detected using a two-pass algorithm [13]. Even
though a connection between these areas may not exist on
ground level (Z = 0), a path connecting these areas may exist
in higher levels (Z > 0). Using a Breadth First Search (BFS)
algorithm, the distance and the path connecting non-connected
ground areas are calculated. The BFS algorithm guarantees
that the optimal path will always be found, if it exists. If such
path does not exist, that means that the area is inaccessible
and it is ignored for the rest of the execution. The output of
this stage includes: (a) a list of the connected components of
the AoI and (b) the distance and the path connecting them.

In the third stage, using the modified DARP (Divide Areas
based on Robots Initial Positions) algorithm, the AoI is divided
into a number of sub-areas each corresponding to a specific
robot, so as to guarantee complete coverage of the total area
and fully exploit the multi-robot dynamics. Since we are
interested in the coverage of the projected 3D environment

(x, y, z) in 2D (x, y, 1), we initially use the DARP algorithm
to divide the first height layer of the total AoI in multiple sub-
areas for each robot. Initially, DARP uses a votile to robot
arrangement. An evaluation matrix Ei is maintained for every
robot. This evaluation matrix indicates the distance between
every votile in the AoI L and each robot’s initial position. In
order to calculate this distance we use the Euclidean distance
formula (Eq. 1).

Dv =
√
(xv − x0)2 + (yv − y0)2,∀V ∈ L (1)

where (xv, yv) denote the coordinates of each votile and
(x0, y0) denote the coordinates of the robot’s initial position.
On every iteration, the assignment matrix A is calculated using
(Eq. 2). This matrix assigns each votile to a robot, based on
the distance of each votile to each robot’s initial position.

Ax,y = min
i∈{1,...,nr}

Ei,∀(x, y) ∈ L (2)

where Ei is the evaluation matrix for the ith robot and nr is the
total number of robots. Subsequently, each robot’s exclusive
area Li can be calculated directly by the assignment matrix A
using (Eq. 3).

Li = {(x, y) ∈ L : (x, y) = i} ,∀ {i ∈ (1, ..., nr)} (3)

Moreover, the number of assigned votiles per robot k is defined
as the cardinality of the Li set (Eq. 4).

ki = |Li| ,∀i ∈ {1, ..., nr} (4)

Using the assignment matrix A, DARP will assign one votile
to one robot only, and every votile will be assigned to some
robot’s sub-area. It is assumed that the initial position of each
robot is assigned to the corresponding robot’s sub-area.

As we already mentioned, at first, the evaluation matrices
Ei contain distance information between each votile and the
robots. The core idea of the DARP algorithm is that each
evaluation matrix Ei can be modified in order to equalize
the number of votiles ki for each robot. In other words, the
original DARP attempts to generate equal sized sub-areas for
each robot. However, since in our case each robot may have
different movement speed, a modification on the area division
was required. A weight factor WFi is introduced to determine
the percentage of the total AoI that will be allocated to each
robot. Robots capable of moving faster will correspond to a
higher value of WFi. For example, if robot A (green) is twice
as fast as robot B (red), WF = 2 will correspond to robot A
and WF = 1 will correspond to robot B. After the completion
of our proposed algorithm, it is expected that robot A will be
allocated twice the area of robot B (Figure 3).

The aforementioned operation guarantees that every votile
will be assigned to a robot and that each robot’s sub-area will
be tailored to its speed. However, it does not guarantee the
continuity of each robot’s sub-area. DARP solves this issue
by performing a procedure in which votiles located closer to
each robot’s sub-area are being rewarded while votiles located

further away are being penalized, constructing gradually a
closed-shape region. The very specifics of this procedure,
however, are beyond the scope of this paper (see [5]).

(a) (b)
Fig. 3. In our initial setup, having a fast robot (red dot) and a slow robot
(green dot) (a), our algorithm will effectively partition the space for each
robot resulting in the best completion time (b).

In the fourth stage of the algorithm, after the total AoI
is divided into multiple sub-areas, the Minimum Spanning
Tree (MST) must be calculated for each sub-area. MST is
a subset of the edges of a connected edge-weighted graph
that connects all the vertices together without any cycles and
with the minimum possible total edge weight. Since we only
examine the coverage of the bottom layer in 3D environments,
we can essentially reduce every 3D CPP problem into a 2D
one and find the solution using a Spanning Tree Coverage
(STC) technique [11]. Essentially, any MST algorithm can be
used [14]–[17]. In our case, we used Prim’s algorithm since
it has been proven to be the fastest in dense graphs with a
number of edges close to the maximal [18]. Our algorithm
can be visualized in Figure 4.

IV. DISCUSSION & SIMULATION RESULTS

As we already mentioned, our proposed algorithm is an
offline algorithm, meaning that the knowledge of the environ-
ment, robots positions and characteristics is considered already
known. In order to evaluate our algorithm and conduct multiple
experiments, the development of an automated simulation tool
was necessary. Using Python, we developed an environment-
generating tool that takes simple user inputs such as map
size, robot location, robot type, and percentage of unoccupied
votiles and outputs a JSON file describing the generated
environment. This tool is capable of generating both two and
three dimensonal environments. We then use the generated file
as input to our proposed algorithm and automate the simulation
process.

The environment we used to test the proposed algorithm was
[X,Y, Z] = 50× 50× 2. 20% of its votiles were occupied by
obstacles. All obstacles were located in random positions on
the first height layer of the environment (Z = 0) The robot’s
initial positions were located at the edges of the environment.
For this simulation, we used an Intel Core 2 Quad Q9550 CPU
with 4GB of RAM. In Table (I), we can see the simulation
results. The number of connected areas and robots only affect
the total execution time by a small amount. The time required

(a) (b)

(c) (d)

(e)

Fig. 4. In this example, our environment dimensions are {X,Y, Z} =
{6, 6, 2}. Robot A (green dot) is a slow ground only vehicle and robot B (red
dot) is a fast hybrid vehicle (ground and flying capable vehicle). Inaccessible
votiles (obstacles) are marked as black squares and free space is marked as
white squares. Inaccessible obstacles are located only on the first height layer
of the environment. In (a), we can see the initial positions of robots A and B.
In (b), we can see the connected component labeling. In (c), the area division is
shown. We can see that robot B was assigned more votiles to cover compared
to robot A because it is faster than robot A. In (d), we can see the generated
MST for each sub-area (the area of the red robot’s MST marked with blue
color indicates that the robot will fly over the specific obstacle in the second
layer of the environment. In (e), we can see the CPP for each robot using our
modified DARP algorithm.

for the algorithm to find a solution is heavily dependent on
the dimensions of the environment.

CONCLUSIONS

The CPP problem is a fundamental problem in robotics with
numerous applications. In this paper, we proposed a unique
approach that orchestrates the coordination of a multi-robot
team, so as to completely cover a two or three dimensional
environment taking into account the peculiar features of the
robots, like type and speed. Our algorithm is fully modular,

TABLE I
SIMULATION RESULTS FOR A 50×50×2 3D ENVIRONMENT.

Number of robots Connected areas Execution time (s)
1 1 16.21
1 2 18.92
1 3 21.49
2 1 16.55
2 2 19.35
2 3 22.12

meaning we can modify robots’ constraints on runtime. Using
our simulation tool, we automated the evaluation process of
our algorithm and measured its efficiency and scalability.

REFERENCES

[1] M. Seder and I. Petrovic, “Complete coverage path planning of mobile
robots for humanitarian demining,” Industrial Robot: An International
Journal, vol. 39, pp. 484–493, 2012.

[2] J. Jin and L. Tang, “Optimal coverage path planning for arable farming
on 2d surfaces,” Transactions of the ASABE, vol. 53, pp. 283–295, 2010.

[3] M. Kaur and P. Abrol, “Design and development of floor cleaner
robot (automatic and manual),” International Journal of Computer
Applications, vol. 97, pp. 32–38, 2014.

[4] Y. Deng, P.-P. J. Beaujean, E. An, and E. Carlson, “Task allocation
and path planning for collaborative autonomous underwater vehicles
operating through an underwater acoustic network,” Journal of Robotics,
vol. 2013, pp. 1–15, 2013.

[5] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos, “Darp:
Divide areas algorithm for optimal multi-robot coverage path planning,”
Journal of Intelligent & Robotic Systems, vol. 86, no. 3, p. 663–680,
2017.

[6] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, p. 1258–1276,
2013.

[7] C.-Y. Chan, “Advancements, prospects, and impacts of automated
driving systems,” International Journal of Transportation Science and
Technology, vol. 6, no. 3, pp. 208 – 216, 2017.

[8] M. Waanders, “Coverage path planning for mobile cleaning robots,” in
15th Twente Student Conference on IT, 2011.

[9] H. Choset and P. Pignon, “Coverage path planning: The boustrophe-
don decomposition,” in International Conference on Field and Service
Robotics, 1997.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

[11] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” Annals of Mathematics and Artificial
Intelligence, vol. 31, no. 1, pp. 77–98, 2001.

[12] J.-C. Latombe, Approximate Cell Decomposition. Boston, MA: Springer
US, 1991, pp. 248–294.

[13] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the ACM, vol. 13, pp. 471–494, 1966.

[14] A. Mamun and S. Rajasekaran, “An efficient minimum spanning tree
algorithm,” in 2016 IEEE Symposium on Computers and Communication
(ISCC), 2016, pp. 1047–1052.

[15] H. Li, Q. Xia, and Y. Wang, “Research and improvement of kruskal
algorithm,” Journal of Computer and Communications, vol. 05, pp. 63–
69, 2017.

[16] K. Sörensen and G. Janssens, “An algorithm to generate all spanning
trees of a graph in order of increasing cost,” Pesquisa Operacional,
vol. 25, pp. 219 – 229, 2005.

[17] V. Osipov, P. Sanders, and J. Singler, “The filter-kruskal minimum
spanning tree algorithm,” in Proceedings of the Meeting on Algorithm
Engineering & Expermiments. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2009, pp. 52–61.

[18] C. F. Bazlamaçcı and K. S. Hindi, “Minimum-weight spanning tree
algorithms a survey and empirical study,” Computers and Operations
Research, vol. 28, no. 8, pp. 767 – 785, 2001.

